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Abstract. In the domain of programming, intelligent tutoring systems
increasingly employ data-driven methods to automate hint generation.
Evaluations of these systems have largely focused on whether they can
reliably provide hints for most students, and how much data is needed
to do so, rather than how useful the resulting hints are to students. We
present a method for evaluating the quality of data-driven hints and how
their quality is impacted by the data used to generate them. Using two
datasets, we investigate how the quantity of data and the source of data
(whether it comes from students or experts) impact one hint generation
algorithm. We find that with student training data, hint quality stops
improving after 15–20 training solutions and can decrease with additional
data. We also find that student data outperforms a single expert solution
but that a comprehensive set of expert solutions generally performs best.
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1 Introduction

Intelligent tutoring systems (ITSs) increasingly use student data to drive their
decision making. Rather than relying on extensive knowledge engineering,
authors can employ data-driven methods to automate the development of both
“outer loop” [27] components of an ITS (e.g. constructing [30] and improving
[10] student models) and “inner loop” components (e.g. automatically generat-
ing hints [1] and worked examples [14]). Authors of data-driven systems argue
that these approaches avoid the need for experts to spend time constructing
complex domain models [1,23] and can lead to additional insights that experts
alone would not achieve [10].

However, empirical evaluations of the costs and benefits of data-driven
approaches are still rare. This is especially true in the case of data-driven hint
generation, where student data is used to automatically generate hints, rather
than relying on expert models (e.g. model tracing [3] or constraint-based mod-
eling [13]). Many evaluations of data-driven hints have focused on whether a
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system can reliably provide hints to students [16,28], as well as how much data
is necessary to do so [1,15,23], a challenge called the “cold start problem” [1].
However, a cold start analysis can only measure the availability of hints; it makes
no claims about how useful the hints will be for students. This is particularly
concerning in the domain of programming, where a recent evaluation of data-
driven hints suggests that their quality varies considerably and that lower quality
hints can deter students from seeking help when they need it [21].

In this paper, we present a reframing of the cold start problem in which we
evaluate the quality, rather than the availability, of data-driven hints for pro-
gramming. We use this analysis to investigate the following research questions:

RQ1: How does the quantity of available training data affect the quality of
data-driven programming hints?

RQ2: How does data from students data compare to expert-authored data for
generating high-quality programming hints?

We address these questions using datasets from two different programming
environments that offer data-driven hints. We find that with student training
data, hint quality stops improving after adding 15–20 training solutions and
that additional data may harm hint quality. We also find that student data
can outperform a single expert solution, but that a comprehensive set of expert
solutions generally performs best. Our results suggest that some data-driven
hint algorithms can be oversensitive to individual training solutions. We show
that this can be reduced by weighting hints using multiple training solutions,
which also significantly improves hint quality. The primary contributions of this
work are a new procedure for assessing the quality of data-driven hints and
results from the first investigation of the impact of data quantity and source on
data-driven hint quality.

2 Related Work

The Hint Factory [1] was the first data-driven hint generation algorithm, origi-
nally used for logic proof problems. It constructs an Interaction Network [4] that
models how students progress through discrete states during problem solving.
When a student requests a hint, the Hint Factory looks up their current state
in the network and, if it finds a match, suggests a successive state based on how
other students successfully solved the problem. More recent approaches to data-
driven hint generation have focused on the domain of computer programming.
Because programming problems have a large space of possible states [19,23], it
is often infeasible to match hint-requesting students exactly to other students in
the database, as the Hint Factory does. Researchers have addressed this by find-
ing the closest match, rather than an exact one [18,23,31], matching only some
parts of the program [11,19,28], matching the student to a cluster of solutions
[6], or matching using program output instead of source code [15].



478 T. W. Price et al.

2.1 The Cold Start Problem

Barnes and Stamper [1] recognized that one challenge with the Hint Factory is
that when it does not have enough data, it will be unable to provide hints to
students who have no match in the network – the “cold start problem.” They
devised a procedure to investigate how much data would be needed to reliably
provide hints to students. They added student attempts to the network, one at
a time, and after each addition calculated the likelihood that the next student
would have a hint available, averaged over many trails. This produced a “cold
start curve,” which plots the amount of training data used to generate hints
against the percent of students with a hint available. Their results showed that
75% hint coverage can be achieved with as few as 49 training attempts, improving
to 91% coverage with over 500 attempts. A later evaluation [25] showed that with
a few expert-authored “seed” solutions in the training dataset, hint coverage
starts at over 55% and then quickly reverts to the original data-only curve.

Others have performed similar cold start experiments to show that data-
driven hint generation for programming requires relatively little student data to
achieve high hint coverage [2,5]. Peddycord et al. [15] used cold start curves to
show how a different representation of student state improved hint availability.
Rivers and Koedinger’s ITAP tutor [23] can generate hints for over 98% of stu-
dent attempts, since ITAP matches students with the closest partial solution in
its dataset. Rather than measuring hint availability in their cold start analysis,
they measured path length, or the number of edits needed to fully correct a
student’s code, which generally decreased as training data increased.

2.2 Other Evaluations of Data-Driven Hints

Other methods for evaluating data-driven hints include the following categories:
Availability Evaluations estimate how often a system will be able to pro-

vide a hint to a requesting student using all training data. Perelman et al. [16]
found that their test-driven synthesis algorithm could generate hints for 65%
of incorrect attempts in the CodeHunt programming game, while the iGrader
system [28] could generate hints for 54% of incorrect attempts in a C# course.

Correction Evaluations estimate how often a system can correct an incor-
rect problem attempt. For the attempts where iGrader [28] was able to generate
hints, it could fully correct 72% of these attempts with at most three “fixes.”
Lazar and Bratko’s hint system [11] was able to correct 35–70% of incorrect
attempts at a set of Prolog problems. The DeepFix system [7] could correct 27%
of incorrect C programs fully and an additional 19% partially.

Student Choice Evaluations generate hints for students seen in historical
data and then determine whether the students’ later edits align with the hints’
suggestions. Lazar et al. [12] found that 97% and 56% of their “buggy” and
“intent” hints, respectively, were later enacted by students. Price et al. [19]
found that 32–35% of their CTD algorithm’s hints would have brought students
closer to their own submitted solution, while 61% of students’ actions did so.
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Student Outcome Evaluations investigate the impact of hints on student
outcomes in classroom and laboratory studies. Fossati et al. [5] found that their
iList tutor, which provides data-driven hints, led to learning gains comparable
to working with a human tutor. Stamper et al. [26] compared a version of their
DeepThought logic tutor with and without data-driven hints across semesters
and found that students with hints performed better in the tutor and the course.

Expert Evaluations directly measure the quality of data-driven hints using
experts. Stamper and Barnes [24] compared two hint generation methods by
having an expert select which method generated the better hint. Others have
asked experts to rate hints directly on a validity scale [8,21,29]. Piech et al. [17]
asked a group of experts to generate single, “gold standard” hints for student
programs, and they evaluated hint systems based on their accuracy in matching
these gold standard hints. Price et al. [18] extended this approach by having
experts identify a set of valid hints, rather than a single best hint. Gross et al.
[6] found that experts often disagreed with their cluster-based hint generation
system about which exemplar solution should be used to generate feedback.

We argue that the first three evaluation categories are insufficient to demon-
strate that data-driven hints are useful to students, since even hints that lead
to a correct solution may not be easily understood [20]. While student outcome
evaluations are ideal for evaluating whole systems, in this paper we focus on
expert evaluation to understand how data impacts hint quality.

3 Method

We used the SourceCheck data-driven hint generation algorithm [18] to inves-
tigate our research questions. Like many hint generation algorithms in the
domain of programming (e.g. [23,28,31]), SourceCheck generates hints for a hint-
requesting student in two phases. First, it searches a training dataset of correct
solutions for the one that best matches the hint-requesting student’s code, using
a code-specific distance metric. It then constructs a set of edits to transform the
student’s code into the matching solution and suggests these edits as hints.

3.1 Data

We analyzed datasets from two programming environments that offer on-
demand, data-driven hints: iSnap [20], a block-based programming environment
and ITAP [23], an intelligent tutoring system (ITS) for Python programming.
Both datasets consist of log data collected from students working on multiple
programming problems, including complete traces of their code and records of
hints they requested. The iSnap dataset was collected from an introductory pro-
gramming course for non-majors during the Fall 2016 and Spring 2017 semesters,
with 120 total students completing 6 programming problems. The ITAP dataset
was collected from two introductory programming courses in Spring 2016, with
89 total students completing up to 40 Python problems (see [22] for details).
Both datasets are available from the PSLC Datashop (pslcdatashop.org) [9].

http://pslcdatashop.org
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Our evaluation of data-driven hint quality required two sets of data: a set
of hint requests for which to generate hints, and a set of training data used to
generate those hints. From the iSnap dataset, we randomly sampled one hint
request per problem from each student who used hints. This ensured that no
student was overrepresented in the set of hint requests. From the ITAP dataset,
we randomly sampled up to two unique hint requests per problem from each
student who used hints, since there were fewer students who requested hints
than in the iSnap dataset. We only sampled hint requests where the student’s
Python code could be parsed, since this is required by SourceCheck. We also
extracted a set of training data from each dataset consisting of the traces of
each student who submitted a correct solution and did not request hints.

We selected a subset of problems from each dataset to analyze, since our
method for evaluating hint quality (explained in Sect. 3.2) involves time-intensive
hint generation by expert tutors. From the iSnap dataset, we selected two rep-
resentative problems, GuessingGame and Squiral, which have been used in pre-
vious evaluation of SourceCheck [18]. The two problems had 23 and 24 hint
requests respectively (47 total). Common solutions to these problems are approx-
imately 13 and 10 lines of code, respectively, and require loops, conditionals,
variables and procedure definitions. From the ITAP dataset, we selected all 5
problems that had at least 7 associated hint requests, for a total of 51 hint
requests (7–14 per problem). These simpler problems had common solutions
with 2–5 lines of code, which included variables, API calls, arithmetic operators
and, for one problem, loops. An important difference between the datasets is
that the iSnap problems are considerably longer and more open-ended, while
the ITAP problems often involve single-line functions, evaluated with test cases.

3.2 Assessing Hint Quality

To address our RQs, we developed a method to measure data-driven hint quality.
As in previous work [17,18], we used a group of experts to generate a set of “gold
standard” hints for each hint request, and we labeled data-driven hints as high-
quality if they matched the gold standard hints. First, three tutors independently
reviewed each hint request, including the history of the student’s code before the
hint request. Each tutor then generated a set of all hints they considered to be
valid, useful, and not confusing. Each hint was represented as one or more edits to
the student’s code, making these hints comparable to the edit-based hints offered
by many data-driven algorithms. Tutors were instructed to limit their hints to
one edit (e.g. one insertion) unless multiple edits were needed to avoid confusion.
Hints were designed to be independently useful, with the understanding that the
student would receive any one hint, not the whole set.

Next, each tutor independently reviewed the hints generated by the other
two tutors and marked each hint as valid or invalid by the same criteria used
to generate hints. We included in our gold standard set any hint which at least
two out of three tutors considered to be valid. Our goal was not to determine a
definitive, objective set of correct hints but rather to identify a large number of
hints that a reasonable human tutor might generate. Requiring that two tutors
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agreed on each hint provided a higher quality standard than is used in most
classrooms, while allowing for differences of opinion among tutors. This produced
between 1 and 11 gold standard hints per hint request for the iSnap dataset
(Med = 5) and between 1 and 5 for the ITAP dataset (Med = 2)1.

We use this set of gold standard hints to automatically assign a Quali-
tyScore to a hint generation algorithm for a set of hint requests. For each hint
request, we first generate a set of candidate hints, H, using the algorithm. Since
some algorithms (including SourceCheck) generate multiple hints for a given
request, the algorithm must also assign a confidence weight to each hint, with
the weights summing to 1. We then mark each candidate hint h ∈ H as valid
if it matches one of the gold standard hints, after standardizing the names of
any newly created variables, methods and string literals. We also detect partial
matches where a candidate hint consists of a subset of the edits suggested by the
tutor. The final QualityScore is the sum of the weights of all valid hints in H.
The QualityScore ranges from 0 (no valid hints) to 1 (all valid hints) and can
be calculated to include partial matches or only full matches. We average this
score over all hint requests to produce a final QualityScore for the algorithm.

In our analysis, we compared two different approaches for assigning weights to
the set of hints generated by SourceCheck, H, for a given hint request. The first,
uniform weighting, simply assigns a weight of 1/|H| to each hint. The second,
voting-based weighting, uses multiple solutions in the training dataset to assign
weights. Recall that SourceCheck uses a single, closest matching target solution
in the training dataset to generate hints (a 1-nearest-neighbor approach). With
voting-based weighting, hints are also generated using the top-k closest solutions
in the training dataset. The weight of each hint h ∈ H is the percentage of these
top-k solutions which, if used for hint generation, would also have generated h.
The weights are then normalized to sum to 1. In our analysis we chose k = 10,
though other values of k = 5 . . . 15 produced similar outcomes. Note that the
weighting approach does not change which hints are generated, only each hint’s
weight in determining the QualityScore.

3.3 Cold Start Procedure

To investigate RQ1, we developed a cold start procedure that measures the rela-
tionship between the quantity of available data and the resulting hint Qual-
ityScore. Unlike other cold start procedures (e.g. [1,5,23]), our evaluation
considers only actual student hint requests, rather than all states observed in
historical data. For each dataset, we start with the full set of training traces,
T , the set of hint requests, R, and a sample set of training traces, S = ∅. We
repeatedly select a random trace in T , remove it and add it to S. After each
addition, we use the SourceCheck algorithm to generate a set of hints for each
hint request in R and calculate a QualityScore for these hints. We repeat
this until T is empty. The end result is a QualityScore for each i ∈ 1..|T |,

1 Full datasets and hint ratings are available at go.ncsu.edu/hint-quality-data.

http://go.ncsu.edu/hint-quality-data
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where i is the number of traces used to generate hints. We repeated this whole
procedure for the iSnap and ITAP datasets 200 times and averaged the results2.

3.4 Comparing with Expert-Authored Data

In order to investigate RQ2, comparing data from students and expert-authored
data, we created two expert-authored training datasets to use as baselines. The
first baseline dataset, OneExpert, consists of a single solution, authored by
an expert to reflect a straightforward approach to solving each problem. This
is a minimal baseline, since almost any problem will already have at least one
teacher-authored solution available. The second baseline dataset, AllExpert,
consists of all solutions considered by an expert to be useful for hint generation.
To assign a QualityScore to these baselines, we still generate hints with the
SourceCheck algorithm, but we provide it the expert training dataset.

To allow an expert author to generate a comprehensive set of correct solu-
tions, we developed a simple solution templating language. Using this lan-
guage, an author can write solution code that includes “branches,” indicating
where there are multiple ways of writing an acceptable solution. These branches
may represent different high-level programming strategies, or different ways of
expressing the same idea programmatically. Branches can be nested to produce
a wide variety of solutions. Additionally, authors can mark parts of the solution
code as order-invariant and add wildcards that can match any code element.
One researcher, familiar with the problems, authored the expert solutions for
both baselines, using the set of students solutions as a reference. For the larger
iSnap problems, AllExpert solution sets took 60–90 min each to author and
test, producing 960 and 1,152 unique solutions for GuessingGame and Squiral,
respectively. The smaller ITAP problems took 15–60 min each, producing only 2
solutions for most problems, though one problem (KthDigit) had 16.

4 Results

Figure 1 shows cold start curves for the iSnap dataset, plotting how
SourceCheck’s QualityScore (averaged over all trials) changes for both
weighting approaches as the number of solutions in the training dataset increases.
In many ways, the curves resemble a traditional cold start curve, with the
QualityScore increasing rapidly as the first 10–15 solutions are added to the
training data and then leveling off. Comparing the uniform and voting-based
weighting approaches, we can see that the voting-based approach consistently
performs better, achieving a 19.1% and 15.4% higher final QualityScore on
the GuessingGame and Squiral problems, respectively. A Wilcoxon signed-rank
test showed that this difference in the final QualityScore was significant for
the sample of 47 iSnap hint requests (V = 331; p = 0.015; Cohen’s d = 0.143).

2 Over 200 trials, the standard error of the averaged QualityScores was always less
than 0.01, and averaged less than 0.0025 across values of i.
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Fig. 1. Cold start curves for the iSnap dataset (black) with uniform (solid) and voting-
based weighting (dotted) with AllExpert (green) and OneExpert (blue) baselines.
(Color figure online)

Traditional cold start curves measure hint coverage and are guaranteed
to increase monotonically with more data. However, our QualityScore
curves show clear fluctuations as more training solutions are added, sometimes
decreasing in QualityScore. Here too we see a difference between weighting
approaches. The uniform weighting curves have a final QualityScore 8.4%
and 8.3% lower than their peak score on GuessingGame and Squiral, respec-
tively, while the voting-based weighting curves lose only 3.4% and 4.8% of their
peak QualityScore, respectively. Recall that Fig. 1 shows QualityScore
averaged over all hint requests for a given problem. To further investigate why
additional data may decrease hint QualityScore in the iSnap dataset, we cal-
culated cold start curves for each of the 47 iSnap hint requests individually, and
we found a wide variety of curve shapes. For voting-based weighting, 39.1% and
33.3% of hint requests on GuessingGame and Squiral showed a negative correla-
tion between quantity of data and hint QualityScore, while 47.8% and 45.8%
showed a positive correlation. This trend was similar for uniform weighting. This
suggests the fluctuations at the end of the cold start curves are due to competing
positive and negative effects of data quantity on different hint requests.

Figure 1 shows lines indicating the OneExpert and AllExpert baseline
QualityScores3. They have a constant value, since they are calculated using
a set of expert solutions, not student data. Student data with uniform weighting
fails to surpass the OneExpert baseline. However, with voting-based weight-
ing, student data outperforms OneExpert with only 7 training solutions for
both problems, achieving a peak QualityScore 9.8% and 7.5% higher than
OneExpert on GuessingGame and Squiral. Even with voting-based weight-
ing, student data falls short of the AllExpert baseline, with the peak student

3 Because the OneExpert baseline uses only one training solution, both weighting
approaches produce the same results. For simplicity, Fig. 1 shows only voting-based
weighting for the AllExpert baseline.
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QualityScore 73.3% and 94.3% as high as the AllExpert baseline. However,
a Wilcoxon signed-rank test shows that this difference between the final student
data QualityScore and the AllExpert baseline was not significant for the
sample of 47 iSnap hint requests (V = 181; p = 0.077; Cohen’s d = 0.221).
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Fig. 2. Cold start curves and baselines for the ITAP dataset.

Figure 2 shows cold start curves for the ITAP dataset. Note that unlike in
the iSnap dataset, QualityScores for ITAP curves were calculated including
partial matches (see Sect. 3.2), since Python ASTs are more complex, and many
of SourceCheck’s hints matched only part of the gold standard hints. The IsPunc-
tuation, KthDigit, and OneToN problems have a similar curve shape to the
iSnap problems; however, rather than fluctuating, they increase monotonically
in QualityScore with additional data. They also show almost no difference
between uniform and voting-based weighting. Student data easily outperforms
the OneExpert baseline and, in the IsPunctuation and OneToN problems,
matches the AllExpert baseline. These problems have much smaller training
datasets, so it is unclear how the curves would continue with additional training
data.

The other two curves, for HelloWorld and FirstAndLast, have unique shapes.
For both problems, additional data has a clear negative impact on hint qual-
ity. Additionally, the OneExpert baseline has equal or better performance
compared to the AllExpert baseline. HelloWorld and FirstAndLast are the
simplest problems we investigated, each with a common, one-line solution that
comprised 47.1% and 93.5% of the training dataset, respectively. This solution
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was also used in the OneExpert baseline. The curves suggest that the pres-
ence of other solutions in the training dataset lowered hint QualityScore. For
FirstAndLast, the second most common solution comprised 35.3% of the train-
ing dataset. It used a more advanced Python feature (using s[-1] to get the
last character in a string), which the human tutors never suggested to strug-
gling students, preferring a more straightforward approach (s[len(s) - 1]).
SourceCheck often selected the more advanced approach as the target solution,
since it is shorter, which accounts for the lower QualityScore for student data
on this problem. It is also important to note that QualityScores for these two
problems were based on the fewest number of hint requests (7 each), which may
not be fully representative of all likely hint requests.

5 Discussion

RQ1: How does the quantity of available training data affect the quality of data-
driven programming hints? Our results suggest increased training data has a
positive impact on hint quality up to a point. For our datasets, hint quality
stops increasing after 15–20 training solutions. However, for the more complex
problems in the iSnap dataset, additional data had either no positive effect, or
even a slight negative effect, on hint quality. While this does validate the claim
of many data-driven algorithms that little student data is needed to generate
hints [1,5], it is concerning that additional data fails to improve SourceCheck’s
effectiveness. A similar problem was noted by Rivers et al. [23] on some problems,
where ITAP’s hint generation performance decreased with additional data. We
could interpret the analysis presented here as a method to measure a data-driven
algorithm’s ability to effectively make use of all of its data. Ideally, a data-
driven algorithm should have monotonically increasing hint quality as it is given
additional training data, selecting useful solutions and ignoring unhelpful ones.
By this interpretation, the SourceCheck algorithm has mixed success, especially
on the iSnap dataset.

In considering why additional data may be harmful, recall that this evalua-
tion relied on the SourceCheck algorithm to generate all the hints we evaluated.
Like many data-driven hint generation algorithms (e.g. [23,28,31]), SourceCheck
generates hints using the single best-matching target solution from the training
dataset (a “1-nearest neighbor” approach). This makes it sensitive to additional
training data. Our training data consists of all correct student solutions, and
some of these will contain unnecessary code, unique design choices, or advanced
features (e.g. s[-1] in FirstAndLast) that make them problematic for hint gen-
eration. This is especially true for the more open-ended problems found in the
iSnap dataset [20]. As more of these problematic solutions are added to the train-
ing dataset, it becomes increasingly likely that one of them will be the closest
match for the hint-requesting student (e.g. if the student added similar unneces-
sary code). Since only the closest match in the training dataset is used for hint
generation, a single problematic solution can eclipse others that are more useful.



486 T. W. Price et al.

Our comparison of uniform and voting-based hint weighting lends some sup-
port to the hypothesis that this “1-nearest-neighbor” approach to hint genera-
tion is overly sensitive to additional data. When SourceCheck uses the top 10
best matches in the training dataset to weight hints, its final QualityScore
improves significantly and less quality is lost from additional training data. How-
ever, this weighting does not change the hints themselves, which may still suffer
from a bad match. Another way to reduce this sensitivity to additional data is the
approach of Gross et al. [6], which selects a matching cluster of solutions, rather
than a single target, and uses an exemplar solution from that cluster for hint
generation. Rivers and Koedinger [23] address this in part by discovering new
target solutions through path construction, which better match the hint request-
ing student’s code. We could also attempt to filter training solutions (manually
or automatically) to retain only those useful for hint generation. Importantly,
both the decrease in QualityScore with additional training data and the
difference in QualityScore between weighting approaches appeared only in
the iSnap dataset. This may be because the iSnap dataset featured larger and
more complex problems than the ITAP dataset, but it is also possible that these
trends result from more specific features of the iSnap dataset itself.

RQ2: How does data from students compare to expert-authored data for generat-
ing high-quality programming hints? The use of student data for hint generation
makes the implicit assumption that it will yield better hints than using a single
expert solution, and our results suggest that this is not always the case. In the
iSnap dataset, student data failed to outperform the OneExpert baseline when
using uniform hint weighting. However, we also showed that this can be addressed
with voting-based weighting. On the simpler ITAP dataset, student data seems
to perform better, outperforming OneExpert with only 1–3 training solutions
on 3 problems, regardless of the hint weighting. However, our results also show
that for the simplest problems (HelloWorld and FirstAndLast), a single expert
solution may be all the data that is required.

The AllExpert baseline is more robust, and it outperformed student data
on the three problems where more than 2 expert solutions were generated as
training data (GuessingGame, Squiral, KthDigit), as well as on FirstAndLast.
While this difference was not significant on the iSnap dataset, this may be due to
our relatively small sample size (47 hint requests). On the remaining problems,
student data has similar performance to the AllExpert baseline. These results
suggest that for all but the simplest problems, a comprehensive set of expert
solutions is likely to be more useful for hint generation than student data. This is
not surprising, since our expert solutions were authored by a researcher familiar
with the problems (as most instructors would be), using student solutions as a
reference, so in many ways they represent an ideal training dataset. It would also
be possible to author expert solutions without the benefit of referencing student
solutions, but this may yield lower-quality hints.

The template-based data generation technique used in the AllExpert base-
line is not the focus of this paper, but we do note some advantages to this app-
roach. In addition to outperforming student data in terms of QualityScore,
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this approach solves the cold start problem entirely. Also, if a problem changes
from one semester to the next (e.g. adding an additional objective), it is easy to
modify the corresponding template, while any student solutions would be ren-
dered useless. Previous work suggests that even a few low-quality hints may deter
students from using a help system [21], so the consistency of expert-authored
data is desirable. However, like expert models, the templates are time intensive
to produce, taking 15–90 min per problem and likely longer for more complex
problems. This process may therefore not scale well to larger problem sets.

5.1 Considerations and Limitations

Automatically assessing the quality of hints is a difficult and inherently subjec-
tive task. Our method for generating gold standard tutor hints strikes a balance
between including many hints (generated by three separate tutors) and ensuring
hint quality (all hints were “seconded” by another tutor). However, our results
may have been different if we had used more than 3 tutors or a higher stan-
dard of agreement (consensus among all tutors). The process of matching an
automatically-generated hint to a gold standard hint is also imperfect, and it
is likely that some hints were marked invalid despite being similar to a gold
standard hint. For all of these reasons, the QualityScores reported here may
seem low. However, raw QualityScores are difficult to interpret, so we use
them primarily for comparing hint generation approaches.

One important limitation of this work is that the QualityScore metric
was calculated based on a moderate number of hint requests for each problem
(23–24 for iSnap; 7–14 for ITAP). The QualityScore metric is therefore only
as accurate as these hint requests are representative of all hint requests. The
tutors generating hints for these requests noted that students’ code often con-
tained a range of strange misconceptions and creative mistakes and often did
not resemble other students’ solutions. However, we see this as an important
feature of our data and analysis. The set of code states where students request
hints is not representative of students’ code generally, since it reflects students’
need to request outside help. Hint requests are full of strange design choices and
incorrect code, and this is exactly what a hint generation algorithm should be
designed to address. One limitation of this work is that these hint-requesting
students were not included in the training datasets, diminishing their diversity.
Lastly, most problems in the ITAP dataset had fewer training solutions (7 to 22),
and it is unclear how the cold start curves would have continued with additional
data.

6 Conclusion

In this paper we presented a detailed method for evaluating the quality of
data-driven hints, and we applied that method to investigate how the quan-
tity and source of data impacts data-driven hint quality for one algorithm. We
showed that a relatively small number of student solutions can outperform a
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single expert-authored solution, but they fall short of a comprehensive set of
expert-authored solutions. We also introduced a voting-based hint weighting
approach that significantly improves hint quality. We compared our results across
2 datasets that used different programming languages – to our knowledge, the
first evaluation of data-driven hints to do so. While our quality evaluation pro-
cedure comes with limitations, we argue that research on data-driven hint gen-
eration should hold itself to the more rigorous standard of evaluation presented
here, rather than relying on availability evaluations. We have suggested that part
of that standard should be an algorithm’s ability to effectively leverage training
data, as assessed with the cold start curves presented here. In future work, we
hope to use our method to benchmark and compare hint generation algorithms
on common datasets to better understand their strengths and weaknesses.
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