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Abstract—It was recently observed in [1], that in index coding,
learning the coding matrix used by the server can pose privacy
concerns: curious clients can extract information about the
requests and side information of other clients. One approach to
mitigate such concerns is the use of k-limited-access schemes [1],
that restrict each client to learn only part of the index coding
matrix, and in particular, at most k£ rows. These schemes
transform a linear index coding matrix of rank 7' to an alternate
one, such that each client needs to learn at most k of the coding
matrix rows to decode its requested message. This paper analyzes
k-limited-access schemes. First, a worst-case scenario, where the
total number of clients n is 27 — 1 is studied. For this case, a
novel construction of the coding matrix is provided and shown
to be order-optimal in the number of transmissions. Then, the
case of a general n is considered and two different schemes
are designed and analytically and numerically assessed in their
performance. It is shown that these schemes perform better than
the one designed for the case n =27 — 1.

I. INTRODUCTION

It is well established that coding is necessary to optimally
use wireless broadcasting for information transfer. The index
coding framework, in particular, exemplifies the benefits of
coding when using broadcast channels. In fact, by leveraging
their side information, the requests of multiple clients can be
simultaneously satisfied by a set of coded broadcast transmis-
sions, the number of which could potentially be much smaller
than uncoded information transfer [2].

However, as we observed in [1], [3], coding also poses
privacy concerns: by learning the coding matrix, a curious
client can infer information about the identities of the side
information and request of other clients. In this paper, we
build on the work in [1], [3] with the goal to offer improved
constructions and bounds that enable to balance the trade-off
between privacy and efficient broadcasting.

In an index coding setting, a server with m messages is
connected to n clients via a lossless broadcast channel. Each
client requests a specific message and may have a subset of
the messages as side information. To satisfy all clients with
the minimum number of transmissions 7', the server can send
coded broadcast transmissions; the clients then would use the
coding matrix to decode their requests. In [1], we mitigated the
aforementioned privacy risk by providing clients with access
not to the entire coding matrix, but only to the rows required
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for them to decode their own requests. In fact, given a coding
matrix that uses 7" transmissions to satisfy all clients, we can
transform it into another coding matrix that uses 7, > T
transmissions to satisfy all clients, but where each client needs
to learn only k rows of the coding matrix. In [1], we showed
that the attained amount of privacy is dictated by k.
This formulation admits a geometric interpretation. In [2],
it was shown that designing an index code is equivalent to the
rank minimization of an n x m matrix G, where the i-th row
of G has certain properties which enable client i to recover its
request. Assume that the rank of G is 7T'; then, we can use as
a coding matrix A any basis of this 7-dimensional space. By
doing so, client ¢ can linearly combine some vectors of A to
reconstruct the i-th row of G. The geometric interpretation of
our problem is therefore the following: given n distinct vectors
in a T-dimensional space, represented by the rows of G, we
wish to find an overcomplete basis Ay of dimension T} > T,
such that each of the n vectors can be expressed as a linear
combination of at most k of the A vectors.
In [1], we formalized the intuition that the achieved level of
privacy can increase by decreasing the number k of rows of
the coding matrix that a client learns. We also derived upper
and lower bounds on T}, with the former being independent
of n. In this paper, our main contributions are as follows:
1) We derive an improved upper bound that again applies for
all values of n, and show that, in contrast to the one in [1],
it is order-optimal. Our upper bound is constructive, i.e.,
it provides a concrete construction of a coding matrix.

2) For general n < 2T _ 1, the previous construction does
not always offer benefits over uncoded transmissions. For
such cases, we propose two novel algorithms and assess
their analytical and numerical performance. In particular,
we show their superior performance over other schemes
through numerical evaluations.

The paper is organized as follows. Section II formulates the
problem and presents existing results. Section III provides a
scheme for n = 27 — 1. Section IV discusses special instances
of the problem for a general n, while Section V presents
upper bounds and algorithms. Section VI provides numerical
evaluations, and finally Section VII discusses related work.

II. PROBLEM FORMULATION AND PREVIOUS RESULTS

Notation. Calligraphic letters indicate sets; boldface lower
case letters denote vectors and boldface upper case letters



indicate matrices; |X| is the cardinality of X; [n] is the set
of integers {1,---,n}; 0 is the empty set; for all z € R,
the floor and ceiling functions are denoted with |z and [z],
respectively; 0; is the all-zero row vector of dimension j; 0;;
is the all-zero matrix of dimension i X j; 1; denotes a row
vector of dimension j of all ones.

Index Coding. We consider a setup similar to the one in [1].
We assume an index coding instance, where a server has a
database B = {b} of m messages, with M = [m] being the
set of message indices, and all messages b; € Fl'.j € M, are
F-long strings. The server is connected through a broadcast
channel to a set of clients C = {cn}, where N' = [n] is
the set of client indices, and m > n. Each client ¢;,i € N,
has a subset of the messages {bg,}, with §; C M, as side
information and requests a new message b,, with ¢; € M\ S;
that it does not already have. A linear index code solution
to the index coding instance is a designed set of broadcast
transmissions that are linear combinations of the messages in
B. The linear index code can be represented as AB =Y,
where A € F3*™ is the coding matrix, B € 5™ is
the matrix of all the messages and Y € [F2*¥ is the
resulting matrix of linear combinations. Upon receiving these
transmissions, client ¢;,7 € A/, employs linear decoding to
retrieve bg,. A linear index code with the minimum number
of transmissions is called an optimal linear index code.

Problem Formulation. Designing the optimal linear index
code is an NP-Hard problem, and therefore various algorithms
exist for designing sub-optimal linear index codes (see Sec-
tion VII). In this work, we are concerned with designing linear
index codes that maintain higher privacy levels for the requests
of clients. Our approach is based on using k-limited-access
schemes [1]: given a coding matrix A of rank 7', we wish to
create an alternative index code A, = PA, where P € [FQT’c xT
has to be designed such that client ¢;,7 € N can retrieve by,
using at most k vectors of Ay, where 1 < k < T'. The value of
Ty, represents the number of transmissions associated with the
alternative index code Ay, and therefore our goal is to design
P with minimum 7}. In order to create such a linear index
code, we note that the coding matrix A allows client ¢;,i € N
to retrieve by, by a linear decoding operation expressed as
d;AB = d,;Y, where d; € [ is the decoding row vector of
¢;. The resulting vector g; = d; A possesses certain properties
which allows ¢; to decode by, using bs, [2]. Therefore, an
alternative index code A would still allow client ¢; to decode
b,, if it is able to reconstruct g; using Aj. Our problem can
therefore be stated as follows: Given g;,i € N, can we design
a matrix P, with Ty, as small as possible, such that g;,i € N'
can be reconstructed by adding at most k vectors out of Ay ?
Note that, by definition, g;,7 € N lie in the row span of A.
Since the rank of A is T, the maximum number of distinct
g; vectors is 27 — 1. Therefore, without loss of generality, we
assume that n < 27 —1. We refer to the case where n = 27 —1
as full-space covering, and to the case where n < 27 — 1 as
partial-space covering.

Our previous work in [1] provided a lower bound on the

minimum value of T}, which we restate here for convenience.

Lemma I1.1. [I, Theorem III.1] Given an index coding matrix
A € [FQTX’” with T > 2, it is possible to transform it into
A, =PAwithP € [FQT’“XT, such that each client can recover
its request by combining at most k rows of it, if and only if

k T—1  k—1
T (@) 2% kR
T > T* =min {Tk > () Zn} O _2LERE
i1 N €
(1)
where (a) holds when n =27 — 1 and k < [T/2].

In addition, [1, Theorem III.1] provided a construction of
a matrix P for which T}, is shown to have an exponent that
is order-optimal for the full-space covering case and for some
regimes of k. Differently, one contribution in this paper is
a matrix construction that is order-optimal for any value of
1 <k < [T/2]'. This is described in the next section.

III. IMPROVED SCHEME FOR FULL-SPACE COVERING

Here we provide a novel scheme for the full-space covering
case (i.e., n = 27 — 1). This new scheme is order-optimal in
the number of transmissions for the case when 1 < k < [1].
This provides an improvement over the scheme presented in
[1, Theorem IIL.1].

Theorem IIL1. For n =27 —1and 1 <k < [Z] we have

T, < 2l %1k )

Before providing the proof for Theorem III.1, which shows

how the scheme is constructed, we analyze the performance

of the scheme in comparison to the lower bound in (1). We
do so in the next lemma (proof is in [4, Appendix 1]).

Lemma IIL2. For 1 <k < [Z], we have T}, = O(2% k).

The main difference between Scheme-1 (in Theorem III.1)
and Scheme-2 (in [1]) is as follows. Both schemes are designed
by: (i) breaking the binary vector of length 7" into parts, (ii)
providing all possible non-zero binary vectors that correspond
to each part, and (iii) combining the solutions to reconstruct
the original vector. However, the two schemes differ in the
following: 1) Scheme-1 splits the vector into larger but fewer
parts than Scheme-2, and 2) Scheme-1 aggregates the solutions
additively while Scheme-2 aggregates them multiplicatively.
While it is indeed true that providing all possible vectors for
the parts in Scheme-1 would lead to larger partial solutions
than those in Scheme-2, aggregating those solutions additively
eventually leads to a smaller number of vectors than in
Scheme-2. For example, assume 7' = 20 and k = 5; Scheme-1
consists of 75 vectors while Scheme-2 consists of 484 vectors.

The remainder of this section proves Theorem III.1 by
showing how the scheme works (i.e., how Ay, is constructed).

Example: We first show how the scheme is constructed via a
small example, where 7" = 8 and k£ = 3. The idea is that, to

IThe case [T/2] < k < T was solved in [1], where we showed that
Ty, = min{T + 1,n}.



reconstruct a vector vA, v € FS, we treat v as k = 3 disjoint
parts; the first 2 are of length lﬂ = 3 and the remaining
part is of length T — (k — 1) [£] = 2. We then construct P
as k = 3 disjoint sections, where each section allows us to
reconstruct one part of the vector. Specifically, we construct

B:  O7xs O7x2
P= 0725 Bz O7x2
O3x3 0O3x3 Bs

where B; = B, contain as rows all possible non-zero vectors
of length 3, and B3 contains as rows all possible vectors of
length 2. Then, any vector v can be reconstructed by picking at
most k vectors out of P, one from each section. For example,
letv=[01001110]. Then, this vector can be reconstructed
by adding vectors number 2, 10 and 16 from P.

Proof of Theorem IIL1: Let Q = |7/ [%]| and Trew =
T — Q[%]. If k divides T, then Q@ = k, Trem = 0,
otherwise Q < k — 1 and Tiey < [%-‘ Then, we can write
P= [BlT BI ... Bg BSH]T, where, for i € [Q], the matrix
B,, of dimension b; x T, is constructed as follows

B; = |:0bi><(i71)|_%~| Bi Obix(sz)[%—‘ ObiXTrcmi| s

where B;, of dimension b; x [£], has as rows all non-
zero vectors of length [%-‘ Similarly, the matrix Bg1, of
dimension bg41 x T, is constructed as follows

Bo1 = [Obg+1xQ(%1 BQH} )

where BQH, of dimension bg41 X Trem, has as rows all non-
zero vectors of length Tiep.

In other words, the matrix P is constructed as a block-
diagonal matrix, with the diagonal elements being B; for all
i € [@ + 1]. Therefore, equation (2) holds by computing

Q+1
To=2 bi=Q (2[%1 - 1) + 2T — 1 < g2l #],
=1

What remains is to show that any vector v € F2 can be
reconstructed by adding at most &k vectors of P. To show this,
we can express it as v = [vq --- vgy1] where v;, i € [Q)] are
parts of the vector v each of length (%1 while vg1 is the
last part of v of length Tier,. Then, we can write v = > vy,

i€K(v)
where v; = [O(ifl)(%w Vi O(Q*l’)[%} OTn:m:I for 7 € [Q],

Voi1 = OQ[%1 vo+1| and K(v) C [@Q + 1] is the set of
indices for which v; is not all-zero. Then, according to the
construction of P, for all ¢ € C(v), the corresponding vector
v; is one of the rows in B;. The proof concludes by noting
that |[KC(v)| < k. |

IV. PARTIAL-SPACE COVERING

Here we study some specific instances of the problem,
which we will later use in our algorithms. We first represent
the problem through a bipartite graph as follows. We assume
that the rank of the matrix G is T'. Then, there exists a set of T’

g1 82 83 84 g5 86

Figure 1: Bipartite graph rep- Figure 2: Optimal representa-
resentation. tion when k = 2.

linearly independent vectors in G; without loss of generality,
denote them as g; to gr. We can then represent the problem
as a bipartite graph ({UV,E) with |U| =T and |V| =n—-T,
where u; € U represents the vector g; for i € [T], v; € V
represents the vector g; 7 for i € [n — T], and an edge
exists from node u; to node v; if g; is one of the component
vectors of g; 7. Figure 1 shows an example of such graph,
where n = 9 and 7" = 6. For instance, v; (i.e., g7) can be
reconstructed by adding u;,i € [4]. Given a node s in the
graph, we refer to the sets Os and Z; as the outbound and
inbound sets of s, respectively: the inbound set contains the
nodes which have edges outgoing to node s, and the outbound
set contains the nodes to which node s has outgoing edges.
For instance, with reference to Figure 1, O,, = {v1,v2,v3}
and Z,,, = {uy,us,us,uys}. For this particular example, there
exists a scheme with 75 = 6 which can reconstruct any
vector with at most £ = 2 additions. The matrix Ay which
corresponds to this solution consists of the following vectors:
g1, 811+82, 81 +82+83, 81 +82+83+84, 85 and g5+ ge. It
is not hard to see that each vector in G can be reconstructed
by adding at most 2 vectors in As. The vectors in A that
are not in G can be aptly represented as intermediate nodes
on the previously described bipartite graph, which are shown
in Figure 2 as highlighted nodes. Each added node represents
a new vector, which is the sum of the vectors for the nodes
in its inbound set. We refer to the process of adding these
intermediate nodes as creating a branch, which is defined next.

Definition IV.1. Given an ordered set S = {s1, -+, sg} of
nodes, where s; preceeds s;11 for i € [S—1], a branch on S is
aset S’ ={s), -+, s_;} of S—1 intermediate nodes added
to the graph with the following connections: node s} has two
incoming edges from s; and sq, and for i € [S — 1]\ {1}, s
has two incoming edges from nodes s;_; and s;41.

For the example in Figure 2, we created branches on two
ordered sets, 81 = {u1, ua, us, ug} and So = {us, ug}-
Once the branch is added, we can change the connections of
the nodes in V' in accordance to the added vectors. For the
example in Figure 2, we can replace uyy) in Z,,, with only s3.

Using this representation, we have the following lemma.

Lemma IV.1. If OuiT - (91M,T71 c ... C Ouil for some
permutation iy, - -+ i of [T, then this instance can be solved
by exactly T transmissions for any k > 2.

Proof: One solution of such instance would involve creating



a branch on the set S = {u;,, wiz_,, --* , Ui, . The scheme

t
used would have the matrix Ay with its ¢-th row a; = > g,
/=1

for ¢t € [T]. Note that g;, = a; and a; + a;—1 = g, for all
t € [T]\ {1}. Moreover, for j € [n] \ [T}], if v;_7 € O,
for some i, then v;_7 € (’)uié for all ¢ < t. If we let ¢ be
the maximum index for which v;_7 € Oum then we have

t

Ty, 7 =A{ti, -+, ui},andsowe getg; = > g;, = a;. W
=1

Corollary IV.2. For G € F3*T of rank T, if n = T + 1, then

this instance can be solved in T' transmissions for any k > 2.

Proof: Without loss of generality, let g7} be a set of linearly
independent vectors of G. Then, we have O,,, = {v;} fori €
Z,, and O,, = 0 for j € [T]\ Z,,. Thus, from Lemma IV.1,
this instance can be solved in 7' transmissions. ]

V. ALGORITHMS FOR GENERAL INSTANCES
A. Successive Circuit Removing (SCR) algorithm

Our first proposed algorithm is based on Corollary IV.2,
which can be interpreted as follows: any matrix G of r 4 1
vectors and rank 7 can be reconstructed by a corresponding
A, matrix with r rows. We denote this collection of vectors as
a circuif®*. Our algorithm works for the case k = 29, for some
integer q. We first describe SCR for the case where ¢ = 1.
The algorithm works as follows:

1) Circuit Finding: find a set of vectors of G that form a
circuit of small size. Denote the size of this circuit as r + 1.
2) Matrix Update: apply Corollary IV.2 to find a set of r
vectors that can optimally reconstruct the circuit by adding at
most k = 2 of them, and add this set to As.

3) Circuit Removing: update G by removing the circuit.
Repeat the first two steps until the matrix G is of size T x T
and of rank 7", where 7" < T Then, add these vectors to As,.

Once SCR is executed, the output is a matrix A, such that
any vector in G can be reconstructed by adding at most k = 2
vectors of As. Consider now the case where ¢ = 2 (i.e., k = 4)
for example. In this case, a second application of SCR on
the matrix Ao would yield another matrix, denoted as A,
such that any row in Ay can be reconstructed by adding at
most 2 vectors of Ay. Therefore, any vector in G can now
be reconstructed by adding at most 4 vectors of A4. We can
therefore extrapolate this idea for a general g by successively
applying SCR ¢ times on G to obtain Ay, with k = 29,

The following theorem gives a closed form characterization
of the best and worst case performance of SCR.

Theorem V.1. Let T qSRC be the number of vectors in Ay
obtained via SCR. Then, for k = 29 and integer q, we have

fBest(fBest(. . fBest(n))) ST(}SRC S fWorst(fWorst(_ . Janmt(n)))7

q times

q times

3)
where fB%'(n) =2 | 2| and f""(n) =T (LTLHJ + 1).

2This is in accordance to the definition of a circuit for a matroid [5].

Proof: First we focus on the case ¢ = 1. The lower bound
in (3) corresponds to the best case when the matrix G can be
partitioned into disjoint circuits of size 3. In this case, if SRC
finds one such circuit in each iteration, then each circuit is
replaced with 2 vectors in Ay according to Corollary IV.2. To
obtain the upper bound, note that any collection of 7"+ 1 has
at most 7" independent vectors, and therefore contains a circuit
of at most size 7'+ 1. Therefore, the upper bound corresponds
to the case where the matrix G can be partitioned into circuits
of size T'+ 1 and an extra T linearly independent vectors. In
that case, the algorithm can go through each of these circuits,
adding T vectors to A for each of these circuits, and then add
the last 7" vectors in the last step of the algorithm. Finally, the
bounds in (3) for a general ¢ can be proven by a successive
repetition of the above arguments. |

B. Branch-Search heuristic

A naive approach to determining the optimal matrix Ay
is to consider the whole space F2, loop over all possible
subsets of vectors of [Fg and, for every subset, check if it
can be used as a matrix Ag. The minimum-size subset which
can be used as Ay is indeed the optimal matrix. However,
such algorithm requires in the worst case O (22T> number
of operations, which makes it prohibitively slow even for
very small values of T. Instead, the heuristic that we here
propose finds a matrix Ay more efficiently than the naive
search scheme. The main idea behind the heuristic is based on
providing a subset R C F1" which is much smaller than 27
and is guaranteed to have at least one solution. The heuristic
then searches for a matrix Ay by looping over all possible
subsets of R. Our heuristic therefore consists of two sub-
algorithms, namely Branch and Search. Branch takes as input
G, and produces as output a set of vectors R which contains
at least one solution Aj. The algorithm works as follows:

1) Find a set of T" vectors of G that are linearly independent.
Denote this set as B.

2) Create a bipartite graph representation of G as discussed
in Section IV, using B as the independent vectors for U.

3) Pick the dependent node v; with the highest degree, and
split ties arbitrarily. Denote by deg(v;) the degree of node v;.
4) Consider the inbound set Z,,, and sort its elements in a
descending order according to their degrees. Without loss of
generality, assume that this set of ordered independent nodes
is T, = {u1, u2, -+, Ugeg(v;) }-

5) Create a branch on Z,,. Denote the new branch nodes as
{uy, ub, -, ugeg(vi)}.

6) Update the connections of all dependent nodes in accor-
dance with the constructed branch. This is done as follows:
for each node v; € V with deg(v;) > k, if Z,, NZ,, is of the
form {uy, ug, -+, ug} for some ¢ < deg(v;), then replace
{u1, ug, ---, ug} in 7, with the single node uj.

7) Repeat 3) to 6) until all nodes in V have degree at most k.

The output R is the set of vectors corresponding to all nodes
in the graph. The next theorem shows that R in fact contains
one possible A, and characterizes the performance of Branch.
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Figure 3: Numerical evaluation - T'= 6, k = 2.

Theorem V.2. (Proof in [4, Appendix 2]) For a matrix G of
dimension n X T, (a) Branch produces a set R which contains
at least one possible Ay, (b) the worst-case time complexity
tBranch of Branch is O(n?), and (c) |R| < (n —T)T.

Let tsearch be the worst-time complexity of the Search step
in Branch-Search. Then the worst-case time complexity of
Branch-Search is equal to tgs = tBranch + tsearch < O(n?) +
2Rl = O(n?) + 0(2"") = O(2"T), which is exponentially
better than the complexity of the naive search. Although our
heuristic is still of exponential runtime complexity, we observe
from numerical simulations that |R| is usually much less than
(n — T)T. Finding more efficient ways of searching through
the set R to find a better solution Ay is an open question.

VI. NUMERICAL EVALUATION

Here we evaluate the performance of our proposed schemes
through numerical evaluations. Specifically, we assess the
performance in terms of 7} of the scheme in Theorem III.1
(which we here refer to as Scheme-1), SCR and Branch-Search
(labeled BS). We compare their performance against the lower
bound in Lemma II.1 (denoted by LB), and the upper bound of
sending uncoded transmissions (denoted by UB). For the case
of partial-space covering, we adapt Scheme-1 in the following
way: we first sort the columns of G in a decreasing order
according to their weights (i.e., number of non-zero elements),
then for the i-th part of length [T'/k], we fill B;, not with all
non-zero vectors of length [T/k] (as described in the proof
of Theorem III.1), but only with all the vectors that appear
for that part across all the n vectors of G. This modification
removes vectors from the matrix Ay, that are not used by any
vector in G. For SCR, we evaluate its average performance
as well as its upper and lower bound performance established
in Theorem V.1. For Branch-Search, we evaluate its average
performance. Figure 3 shows the performance of all the
aforementioned schemes for 7' = 6 and & = 2. As can be seen,
Scheme-1 does not perform well for small values of n. SCR
consistently performs better than uncoded transmissions. In
addition, although the current implementation of SCR greedy
searches for a small circuit to remove, more sophisticated
algorithms for small circuit finding could potentially improve

its performance. However, the bounds in (3) suggest that the
performance of SCR is asymptotically O(n). Branch-Search
appears to perform better than other schemes in the average
sense. Our current investigation includes understanding its
asymptotic behavior in the worst-case.

VII. RELATED WORK

The problem of protecting privacy was initially proposed
to enable the disclosure of databases for public access, while
maintaining the anonymity of the users [6]. In Private Informa-
tion Retrieval (PIR) [7], [8], clients ensure that no information
about their requests is revealed to a set of malicious databases
when they retrieve information from them. Similarly, the
problem of Oblivious Transfer (OT) [9] establishes, by means
of cryptographic techniques, two-way private connections be-
tween the clients and the server.

We were here interested in addressing privacy concerns
within the framework of index coding. This problem differs
from secure index coding [10], where the goal is to guarantee
that each client does not learn any information about the
content of the messages other than its request. Differently, our
goal was to limit the information that a client can learn about
the identities of the requests of other clients. Our initial work
in [3] addressed the possibility of designing coding matrices
that provide privacy guarantees for clients. The solutions based
on k-limited-access schemes proposed in [1] can be interpreted
as finding overcomplete bases that allow sparse representation
of vectors, which is closely related to dictionary learning [11].
However, finding lossless representation of vectors forbids us
from using the efficient dictionary learning algorithms.
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