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Abstract—It was recently observed in [1], that in index coding,
learning the coding matrix used by the server can pose privacy
concerns: curious clients can extract information about the
requests and side information of other clients. One approach to
mitigate such concerns is the use of k-limited-access schemes [1],
that restrict each client to learn only part of the index coding
matrix, and in particular, at most k rows. These schemes
transform a linear index coding matrix of rank T to an alternate
one, such that each client needs to learn at most k of the coding
matrix rows to decode its requested message. This paper analyzes
k-limited-access schemes. First, a worst-case scenario, where the
total number of clients n is 2

T
− 1 is studied. For this case, a

novel construction of the coding matrix is provided and shown
to be order-optimal in the number of transmissions. Then, the
case of a general n is considered and two different schemes
are designed and analytically and numerically assessed in their
performance. It is shown that these schemes perform better than
the one designed for the case n = 2

T
− 1.

I. INTRODUCTION

It is well established that coding is necessary to optimally

use wireless broadcasting for information transfer. The index

coding framework, in particular, exemplifies the benefits of

coding when using broadcast channels. In fact, by leveraging

their side information, the requests of multiple clients can be

simultaneously satisfied by a set of coded broadcast transmis-

sions, the number of which could potentially be much smaller

than uncoded information transfer [2].

However, as we observed in [1], [3], coding also poses

privacy concerns: by learning the coding matrix, a curious

client can infer information about the identities of the side

information and request of other clients. In this paper, we

build on the work in [1], [3] with the goal to offer improved

constructions and bounds that enable to balance the trade-off

between privacy and efficient broadcasting.

In an index coding setting, a server with m messages is

connected to n clients via a lossless broadcast channel. Each

client requests a specific message and may have a subset of

the messages as side information. To satisfy all clients with

the minimum number of transmissions T , the server can send

coded broadcast transmissions; the clients then would use the

coding matrix to decode their requests. In [1], we mitigated the

aforementioned privacy risk by providing clients with access

not to the entire coding matrix, but only to the rows required
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for them to decode their own requests. In fact, given a coding

matrix that uses T transmissions to satisfy all clients, we can

transform it into another coding matrix that uses Tk ≥ T
transmissions to satisfy all clients, but where each client needs

to learn only k rows of the coding matrix. In [1], we showed

that the attained amount of privacy is dictated by k.

This formulation admits a geometric interpretation. In [2],

it was shown that designing an index code is equivalent to the

rank minimization of an n×m matrix G, where the i-th row

of G has certain properties which enable client i to recover its

request. Assume that the rank of G is T ; then, we can use as

a coding matrix A any basis of this T -dimensional space. By

doing so, client i can linearly combine some vectors of A to

reconstruct the i-th row of G. The geometric interpretation of

our problem is therefore the following: given n distinct vectors

in a T -dimensional space, represented by the rows of G, we

wish to find an overcomplete basis Ak of dimension Tk ≥ T ,

such that each of the n vectors can be expressed as a linear

combination of at most k of the Ak vectors.

In [1], we formalized the intuition that the achieved level of

privacy can increase by decreasing the number k of rows of

the coding matrix that a client learns. We also derived upper

and lower bounds on Tk, with the former being independent

of n. In this paper, our main contributions are as follows:

1) We derive an improved upper bound that again applies for

all values of n, and show that, in contrast to the one in [1],

it is order-optimal. Our upper bound is constructive, i.e.,

it provides a concrete construction of a coding matrix.

2) For general n ≤ 2T − 1, the previous construction does

not always offer benefits over uncoded transmissions. For

such cases, we propose two novel algorithms and assess

their analytical and numerical performance. In particular,

we show their superior performance over other schemes

through numerical evaluations.

The paper is organized as follows. Section II formulates the

problem and presents existing results. Section III provides a

scheme for n = 2T −1. Section IV discusses special instances

of the problem for a general n, while Section V presents

upper bounds and algorithms. Section VI provides numerical

evaluations, and finally Section VII discusses related work.

II. PROBLEM FORMULATION AND PREVIOUS RESULTS

Notation. Calligraphic letters indicate sets; boldface lower

case letters denote vectors and boldface upper case letters



indicate matrices; |X | is the cardinality of X ; [n] is the set

of integers {1, · · · , n}; ∅ is the empty set; for all x ∈ R,

the floor and ceiling functions are denoted with ⌊x⌋ and ⌈x⌉,

respectively; 0j is the all-zero row vector of dimension j; 0i×j

is the all-zero matrix of dimension i × j; 1j denotes a row

vector of dimension j of all ones.

Index Coding. We consider a setup similar to the one in [1].

We assume an index coding instance, where a server has a

database B = {bM} of m messages, with M = [m] being the

set of message indices, and all messages bj ∈ F
F
2 , j ∈ M, are

F -long strings. The server is connected through a broadcast

channel to a set of clients C = {cN }, where N = [n] is

the set of client indices, and m ≥ n. Each client ci, i ∈ N ,
has a subset of the messages {bSi

}, with Si ⊂ M, as side

information and requests a new message bqi with qi ∈ M\Si

that it does not already have. A linear index code solution

to the index coding instance is a designed set of broadcast

transmissions that are linear combinations of the messages in

B. The linear index code can be represented as AB = Y,

where A ∈ F
T×m
2 is the coding matrix, B ∈ F

m×F
2 is

the matrix of all the messages and Y ∈ F
T×F
2 is the

resulting matrix of linear combinations. Upon receiving these

transmissions, client ci, i ∈ N , employs linear decoding to

retrieve bqi . A linear index code with the minimum number

of transmissions is called an optimal linear index code.

Problem Formulation. Designing the optimal linear index

code is an NP-Hard problem, and therefore various algorithms

exist for designing sub-optimal linear index codes (see Sec-

tion VII). In this work, we are concerned with designing linear

index codes that maintain higher privacy levels for the requests

of clients. Our approach is based on using k-limited-access

schemes [1]: given a coding matrix A of rank T , we wish to

create an alternative index code Ak = PA, where P ∈ F
Tk×T
2

has to be designed such that client ci, i ∈ N can retrieve bqi

using at most k vectors of Ak, where 1 ≤ k ≤ T . The value of

Tk represents the number of transmissions associated with the

alternative index code Ak, and therefore our goal is to design

P with minimum Tk. In order to create such a linear index

code, we note that the coding matrix A allows client ci, i ∈ N
to retrieve bqi by a linear decoding operation expressed as

diAB = diY, where di ∈ F
T
2 is the decoding row vector of

ci. The resulting vector gi = diA possesses certain properties

which allows ci to decode bqi using bSi
[2]. Therefore, an

alternative index code Ak would still allow client ci to decode

bqi if it is able to reconstruct gi using Ak. Our problem can

therefore be stated as follows: Given gi, i ∈ N , can we design

a matrix P, with Tk as small as possible, such that gi, i ∈ N
can be reconstructed by adding at most k vectors out of Ak?

Note that, by definition, gi, i ∈ N lie in the row span of A.

Since the rank of A is T , the maximum number of distinct

gi vectors is 2T − 1. Therefore, without loss of generality, we

assume that n ≤ 2T−1. We refer to the case where n = 2T−1
as full-space covering, and to the case where n < 2T − 1 as

partial-space covering.

Our previous work in [1] provided a lower bound on the

minimum value of Tk, which we restate here for convenience.

Lemma II.1. [1, Theorem III.1] Given an index coding matrix

A ∈ F
T×m
2 with T ≥ 2, it is possible to transform it into

Ak = PA with P ∈ F
Tk×T
2 , such that each client can recover

its request by combining at most k rows of it, if and only if

Tk ≥ T ⋆=min

{

Tk :

k∑

i=1

(
Tk

i

)

≥n

}
(a)

≥ T LB=
2

T−1

k k
k−1

k

e
,

(1)

where (a) holds when n = 2T − 1 and k < ⌈T/2⌉.

In addition, [1, Theorem III.1] provided a construction of

a matrix P for which Tk is shown to have an exponent that

is order-optimal for the full-space covering case and for some

regimes of k. Differently, one contribution in this paper is

a matrix construction that is order-optimal for any value of

1 ≤ k < ⌈T/2⌉1. This is described in the next section.

III. IMPROVED SCHEME FOR FULL-SPACE COVERING

Here we provide a novel scheme for the full-space covering

case (i.e., n = 2T − 1). This new scheme is order-optimal in

the number of transmissions for the case when 1 ≤ k <
⌈
T
2

⌉
.

This provides an improvement over the scheme presented in

[1, Theorem III.1].

Theorem III.1. For n = 2T − 1 and 1 ≤ k <
⌈
T
2

⌉
we have

Tk ≤ 2⌈
T
k ⌉k. (2)

Before providing the proof for Theorem III.1, which shows

how the scheme is constructed, we analyze the performance

of the scheme in comparison to the lower bound in (1). We

do so in the next lemma (proof is in [4, Appendix 1]).

Lemma III.2. For 1 ≤ k <
⌈
T
2

⌉
, we have Tk = Θ(2

T
k k).

The main difference between Scheme-1 (in Theorem III.1)

and Scheme-2 (in [1]) is as follows. Both schemes are designed

by: (i) breaking the binary vector of length T into parts, (ii)

providing all possible non-zero binary vectors that correspond

to each part, and (iii) combining the solutions to reconstruct

the original vector. However, the two schemes differ in the

following: 1) Scheme-1 splits the vector into larger but fewer

parts than Scheme-2, and 2) Scheme-1 aggregates the solutions

additively while Scheme-2 aggregates them multiplicatively.

While it is indeed true that providing all possible vectors for

the parts in Scheme-1 would lead to larger partial solutions

than those in Scheme-2, aggregating those solutions additively

eventually leads to a smaller number of vectors than in

Scheme-2. For example, assume T = 20 and k = 5; Scheme-1

consists of 75 vectors while Scheme-2 consists of 484 vectors.

The remainder of this section proves Theorem III.1 by

showing how the scheme works (i.e., how Ak is constructed).

Example: We first show how the scheme is constructed via a

small example, where T = 8 and k = 3. The idea is that, to

1The case ⌈T/2⌉ ≤ k < T was solved in [1], where we showed that
Tk = min{T + 1, n}.





a branch on the set S = {uiT , uiT−1
, · · · , ui1}. The scheme

used would have the matrix A2 with its t-th row at =
t∑

ℓ=1

giℓ

for t ∈ [T ]. Note that gi1 = a1 and at + at−1 = git for all

t ∈ [T ] \ {1}. Moreover, for j ∈ [n] \ [T ], if vj−T ∈ Ouit

for some it, then vj−T ∈ Ouiℓ
for all ℓ ≤ t. If we let t be

the maximum index for which vj−T ∈ Ouit
, then we have

Ivj−T
= {ui1 , · · · , uit}, and so we get gj =

t∑

ℓ=1

giℓ = at. �

Corollary IV.2. For G ∈ F
n×T
2 of rank T , if n = T +1, then

this instance can be solved in T transmissions for any k ≥ 2.

Proof: Without loss of generality, let g[T ] be a set of linearly

independent vectors of G. Then, we have Oui
= {v1} for i ∈

Iv1
and Ouj

= ∅ for j ∈ [T ] \ Iv1 . Thus, from Lemma IV.1,

this instance can be solved in T transmissions. �

V. ALGORITHMS FOR GENERAL INSTANCES

A. Successive Circuit Removing (SCR) algorithm

Our first proposed algorithm is based on Corollary IV.2,

which can be interpreted as follows: any matrix G of r + 1
vectors and rank r can be reconstructed by a corresponding

A2 matrix with r rows. We denote this collection of vectors as

a circuit2. Our algorithm works for the case k = 2q , for some

integer q. We first describe SCR for the case where q = 1.

The algorithm works as follows:

1) Circuit Finding: find a set of vectors of G that form a

circuit of small size. Denote the size of this circuit as r + 1.

2) Matrix Update: apply Corollary IV.2 to find a set of r
vectors that can optimally reconstruct the circuit by adding at

most k = 2 of them, and add this set to A2.

3) Circuit Removing: update G by removing the circuit.

Repeat the first two steps until the matrix G is of size T ′×T
and of rank T ′, where T ′ ≤ T . Then, add these vectors to A2.

Once SCR is executed, the output is a matrix A2 such that

any vector in G can be reconstructed by adding at most k = 2
vectors of A2. Consider now the case where q = 2 (i.e., k = 4)

for example. In this case, a second application of SCR on

the matrix A2 would yield another matrix, denoted as A4,

such that any row in A2 can be reconstructed by adding at

most 2 vectors of A4. Therefore, any vector in G can now

be reconstructed by adding at most 4 vectors of A4. We can

therefore extrapolate this idea for a general q by successively

applying SCR q times on G to obtain Ak, with k = 2q .

The following theorem gives a closed form characterization

of the best and worst case performance of SCR.

Theorem V.1. Let T SRC
q be the number of vectors in Ak

obtained via SCR. Then, for k = 2q and integer q, we have

fBest(fBest(· · · fBest(n)))
︸ ︷︷ ︸

q times

≤T SRC
q ≤fWorst(fWorst(· · · fWorst(n)))

︸ ︷︷ ︸

q times

,

(3)

where fBest(n) = 2
⌊
n
3

⌋
and fWorst(n) = T

(⌊
n

T+1

⌋

+ 1
)

.

2This is in accordance to the definition of a circuit for a matroid [5].

Proof: First we focus on the case q = 1. The lower bound

in (3) corresponds to the best case when the matrix G can be

partitioned into disjoint circuits of size 3. In this case, if SRC

finds one such circuit in each iteration, then each circuit is

replaced with 2 vectors in A2 according to Corollary IV.2. To

obtain the upper bound, note that any collection of T +1 has

at most T independent vectors, and therefore contains a circuit

of at most size T +1. Therefore, the upper bound corresponds

to the case where the matrix G can be partitioned into circuits

of size T + 1 and an extra T linearly independent vectors. In

that case, the algorithm can go through each of these circuits,

adding T vectors to A2 for each of these circuits, and then add

the last T vectors in the last step of the algorithm. Finally, the

bounds in (3) for a general q can be proven by a successive

repetition of the above arguments. �

B. Branch-Search heuristic

A naive approach to determining the optimal matrix Ak

is to consider the whole space F
T
2 , loop over all possible

subsets of vectors of F
T
2 and, for every subset, check if it

can be used as a matrix Ak. The minimum-size subset which

can be used as Ak is indeed the optimal matrix. However,

such algorithm requires in the worst case O
(

22
T
)

number

of operations, which makes it prohibitively slow even for

very small values of T . Instead, the heuristic that we here

propose finds a matrix Ak more efficiently than the naive

search scheme. The main idea behind the heuristic is based on

providing a subset R ⊂ F
T
2 which is much smaller than 2T

and is guaranteed to have at least one solution. The heuristic

then searches for a matrix Ak by looping over all possible

subsets of R. Our heuristic therefore consists of two sub-

algorithms, namely Branch and Search. Branch takes as input

G, and produces as output a set of vectors R which contains

at least one solution Ak. The algorithm works as follows:

1) Find a set of T vectors of G that are linearly independent.

Denote this set as B.

2) Create a bipartite graph representation of G as discussed

in Section IV, using B as the independent vectors for U .

3) Pick the dependent node vi with the highest degree, and

split ties arbitrarily. Denote by deg(vi) the degree of node vi.
4) Consider the inbound set Ivi , and sort its elements in a

descending order according to their degrees. Without loss of

generality, assume that this set of ordered independent nodes

is Ivi = {u1, u2, · · · , udeg(vi)}.

5) Create a branch on Ivi
. Denote the new branch nodes as

{u⋆
1, u

⋆
2, · · · , u

⋆
deg(vi)

}.

6) Update the connections of all dependent nodes in accor-

dance with the constructed branch. This is done as follows:

for each node vj ∈ V with deg(vj) ≥ k, if Ivj
∩ Ivi

is of the

form {u1, u2, · · · , uℓ} for some ℓ ≤ deg(vi), then replace

{u1, u2, · · · , uℓ} in Ivj
with the single node u⋆

ℓ .

7) Repeat 3) to 6) until all nodes in V have degree at most k.

The output R is the set of vectors corresponding to all nodes

in the graph. The next theorem shows that R in fact contains

one possible Ak, and characterizes the performance of Branch.
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Figure 3: Numerical evaluation - T = 6, k = 2.

Theorem V.2. (Proof in [4, Appendix 2]) For a matrix G of

dimension n×T , (a) Branch produces a set R which contains

at least one possible Ak, (b) the worst-case time complexity

tBranch of Branch is O(n2), and (c) |R| ≤ (n− T )T .

Let tSearch be the worst-time complexity of the Search step

in Branch-Search. Then the worst-case time complexity of

Branch-Search is equal to tBS = tBranch + tSearch ≤ O(n2) +
2|R| = O(n2) + O(2nT ) = O(2nT ), which is exponentially

better than the complexity of the naive search. Although our

heuristic is still of exponential runtime complexity, we observe

from numerical simulations that |R| is usually much less than

(n − T )T . Finding more efficient ways of searching through

the set R to find a better solution Ak is an open question.

VI. NUMERICAL EVALUATION

Here we evaluate the performance of our proposed schemes

through numerical evaluations. Specifically, we assess the

performance in terms of Tk of the scheme in Theorem III.1

(which we here refer to as Scheme-1), SCR and Branch-Search

(labeled BS). We compare their performance against the lower

bound in Lemma II.1 (denoted by LB), and the upper bound of

sending uncoded transmissions (denoted by UB). For the case

of partial-space covering, we adapt Scheme-1 in the following

way: we first sort the columns of G in a decreasing order

according to their weights (i.e., number of non-zero elements),

then for the i-th part of length ⌈T/k⌉, we fill Bi, not with all

non-zero vectors of length ⌈T/k⌉ (as described in the proof

of Theorem III.1), but only with all the vectors that appear

for that part across all the n vectors of G. This modification

removes vectors from the matrix Ak that are not used by any

vector in G. For SCR, we evaluate its average performance

as well as its upper and lower bound performance established

in Theorem V.1. For Branch-Search, we evaluate its average

performance. Figure 3 shows the performance of all the

aforementioned schemes for T = 6 and k = 2. As can be seen,

Scheme-1 does not perform well for small values of n. SCR

consistently performs better than uncoded transmissions. In

addition, although the current implementation of SCR greedy

searches for a small circuit to remove, more sophisticated

algorithms for small circuit finding could potentially improve

its performance. However, the bounds in (3) suggest that the

performance of SCR is asymptotically O(n). Branch-Search

appears to perform better than other schemes in the average

sense. Our current investigation includes understanding its

asymptotic behavior in the worst-case.

VII. RELATED WORK

The problem of protecting privacy was initially proposed

to enable the disclosure of databases for public access, while

maintaining the anonymity of the users [6]. In Private Informa-

tion Retrieval (PIR) [7], [8], clients ensure that no information

about their requests is revealed to a set of malicious databases

when they retrieve information from them. Similarly, the

problem of Oblivious Transfer (OT) [9] establishes, by means

of cryptographic techniques, two-way private connections be-

tween the clients and the server.

We were here interested in addressing privacy concerns

within the framework of index coding. This problem differs

from secure index coding [10], where the goal is to guarantee

that each client does not learn any information about the

content of the messages other than its request. Differently, our

goal was to limit the information that a client can learn about

the identities of the requests of other clients. Our initial work

in [3] addressed the possibility of designing coding matrices

that provide privacy guarantees for clients. The solutions based

on k-limited-access schemes proposed in [1] can be interpreted

as finding overcomplete bases that allow sparse representation

of vectors, which is closely related to dictionary learning [11].

However, finding lossless representation of vectors forbids us

from using the efficient dictionary learning algorithms.
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