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In this paper, the question of interest is estimating true demand of a product at a given store location and time

period in the retail environment based on a single noisy and potentially censored observation. To address this

question, we introduce a framework to make inference from multiple time series. Somewhat surprisingly, we

establish that the algorithm introduced for the purpose of “matrix completion” can be used to solve the relevant

inference problem. Specifically, using the Universal Singular Value Thresholding (USVT) algorithm [7], we

show that our estimator is consistent: the average mean squared error of the estimated average demand with

respect to the true average demand goes to 0 as the number of store locations and time intervals increase to

∞. We establish naturally appealing properties of the resulting estimator both analytically as well as through

a sequence of instructive simulations. Using a real dataset in retail (Walmart), we argue for the practical

relevance of our approach.
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1 INTRODUCTION
1.1 Background
Consider the problem of estimating the daily or weekly rate at which umbrellas are sold at a specific

location, say at the Walmart store in Bentonville, Arkansas. To do so, we have one sample per time

unit across several stores, e.g. 4 and 3 umbrellas were sold in the past two weeks at store A, 6 and 5

were sold at store B and so on. The problem is challenging because the observations can be noisy,

incomplete and censored. The noise is due to random errors in measurement or record-keeping

(e.g. mismatch in inventory records and physical stocks, transaction errors). The data might also

be incomplete due to missed reporting or aggregations for some days or weeks. Importantly, the

data is censored because the store might have stocked only 4 umbrellas during the past week and,

hence, observed 4 sales but there was no information to account for any customers who might

have wished to purchase an umbrella but could not do so due to the stock-out. This is in contrast

to online (web) portals which tend to have good estimates of missed demand due to their ability to
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view customer arrival during stock-outs. Additionally, note that the true (uncensored) demand is

likely to change from week to week, further complicating our problem of estimating it.

It has successfully been shown that ignoring censoring effects will result in demand estimates that

are biased lower than the true value [27]. Furthermore, as one can intuitively expect, the lack of a

complete picture, i.e. censoring, can have a costly impact on inventory planning exercises [8]. In

[8], it is suggested that the impact of a lack of complete visibility can be overcome using “intelligent

analytics". In this paper, as an example of “intelligent analytics", we provide a simple inference

algorithm to estimate the time varying demand rate from effectively a single noisy, incomplete and

censored observation across multiple locations. The key enabler for this is the latent variable model

which allows us to utilize information across a number of stores to synthetically create “multiple

observations" for a given time unit and location to better estimate the time-varying demand rate.

1.2 Setup and Contributions
While the problem of estimating true demand given censored sales data has been studied extensively,

existing models have proven to be unsatisfactory in terms of faithfully capturing reality. Specifically,

the problem of inferring time varying demand based on censored information that is sparse, a focus

of this work, has remained unresolved. As the key contribution of this work, we provide a model to

capture this scenario through the “latent variable model”. Through the lens of this latent variable

model, we are able to apply the rich literature on “matrix estimation” to enable effective resolution

of the problem at hand.

We consider a setting where a retailer has censored sales data for a product or group of products

across N store locations andT time periods. Without loss of generality, we shall assume that N ≤ T .
Let true demand at each location and for each time period be modeled as an independent random

variable with Poisson distribution
1
. Specifically, let Yi j denote the true demand at store 1 ≤ i ≤ N

at time 1 ≤ j ≤ T with λi j = E[Yi j ] being the mean demand. In matrix form, let Y = [Yi j ]i≤N , j≤T
and Λ = [λi j ]i≤N , j≤T .

Let Ci j be the quantity of stock (or inventory) at store i ≤ N during time interval j ≤ T . Therefore,
the number of sales, Xi j = min(Yi j ,Ci j ). That is, Xi j represents the censored demand at store

i at time j. We let mi j = E[Xi j ]. In matrix form, let C = [Ci j ]i≤N , j≤T , X = [Xi j ]i≤N , j≤T and

M = [mi j ]i≤N , j≤T .

To model the situation where some stores might not have reported any information at various

time periods due to supply chain issues, information mismanagement, etc., we consider a setup

where each Xi j is observed with probability p ∈ (0, 1] and not observed with probability 1 − p,
independently. Let Xp

denote this partially observed matrix of censored demand matrix X . The

goal is to estimate Λ from Xp
as accurately as possible.

To that end, if there is no structure in Λ, there is no hope to obtain any meaningful estimate of Λ
from Xp

. For example, let p = 1, let Ci j be very large (say,∞) for all i ≤ N , j ≤ T , and let each λi j
be arbitrarily chosen. Then effectively we are observing one sample each of N ×T Poisson random

variables that have nothing to do with each other. Equivalently, for a given i, j, we are trying to
estimate mean λi j of a Poisson variable from one sample. Naturally, that is a futile exercise.

Therefore, to obtain a meaningful estimate, it is essential to impose structure. In the context of

retail, it makes sense that the average demand at store i ≤ N at time interval j ≤ T depends on

the store as well as the time period itself. Formally, let λi j = h(θi , ρ j ) where θi and ρ j are latent or
hidden features associated with the store i and time j; and h is an arbitrary Lipschitz continuous

function. This is in contrast to the standard assumptions in literature where the latent matrix is

1
Our methodology will work for other distributions as well, provided that the independence assumption is satisfied. See

Appendix A for a similar development with an alternate distribution
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assumed to have a low-rank structure. The Lipschitz structure leads to a more generic model and

seems to have enough expressive power to capture reality well.

As the main result of this work, we provide an estimation algorithm for Λ using Xp
such that the

expected mean squared error (MSE), with respect to Λ, in the estimate
ˆΛ goes to 0 as N →∞ as

long as p ≫ N −
2

d+2 where d is the dimension of the latent feature space. See Theorem 4.3 for precise

details. In Section 4.3 we discuss that the imposition of a more realistic Lipschitz structure instead

of the low-rank assumption comes with the cost of a slower decay of theMSE, as N increases.

Our estimation algorithm is a two step procedure: in the first step, it produces an estimate
ˆM ofM

from Xp
; in the second, it produces as estimate

ˆΛ of Λ using
ˆM and knowledge ofC .

To produce
ˆM using Xp

, we utilize the Universal Singular Value Thresholding (USVT) algorithm

by Chatterjee [7]. Effectively, the algorithm computes the singular value decomposition (SVD) of

Xp
; truncates the decomposition by keeping only top few singular vectors / values and multiplies it

by an appropriate parameter. The choice of the number of top singular vectors / values to retain

is done universally based only on p and dimension of the matrix, hence, universal singular value
thresholding. To bound the expectedMSE( ˆM), with respect toM , under the setup described earlier,

we provide a minor modification of the result established in [7] stated through Lemma 5.4 and

Theorem 5.5. For completeness, we provide the proof for these results, which are direct adaptions

from [7]. In Section 3.1, we discuss the advantages of using the USVT algorithm when compared to

a somewhat related algorithm in literature [16].

To produce
ˆΛ from

ˆM using knowledge ofC , we use analytic properties of the (truncated) Poisson
distribution along with a natural “bisection” algorithm. Using elementary calculations, we establish

that the expected MSE( ˆΛ), with respect to Λ, is within constant factor of the expected MSE( ˆM),

with respect toM ; the constant primarily depends onC . This constant factor gets close to 1 as the

entries inC increase; it becomes larger as entries inC decrease. Intuitively, this makes sense – as

the entries ofC increase, the effect of censoring disappears and, hence,M becomes closer to Λ, and
vice versa.

1.3 Summary of Experiments
Synthetic Data. While our theorems provide useful bounds, we conduct extensive synthetic ex-

periments to understand the finer performance dependency of the estimation algorithm, not fully

explained by our theoretical results. As mentioned earlier, our key result is the bound onMSE( ˆΛ)
in terms of MSE( ˆM). To understand the behavior of this constant factor in the bound as a function

of censoring, we vary the degree of censoring and find that as censoring decreases (equivalently,

entries of C increase) the bound decreases and vice versa. However, somewhat counter-intuitively,

as the entries in C increase, the MSE( ˆM) increases. This behavior can be explained by realizing

that as entries in C increase, the “support” of random variables Yi j increases. We also note that

the bound remains unaffected by the size of the matrix, even though the MSE( ˆΛ) and MSE( ˆM)
themselves decrease.

Walmart Data. We used sales data published by Walmart on Kaggle [1] to conduct our experiments

with the hope of understanding the applicability as well as impact of our results in a practical

setting. This dataset contains sales data for several departments across 45 store locations and 143

weeks (time periods). Clearly, we do not have the knowledge of the ground truth in terms of the

underlying “generative model" like in the case of synthetic data. Further, we do not have access to

inventory information. We apply our method based on the model described earlier.

To begin with, we wanted to find evidence in the data about validity of structure across stores

and time periods as considered in this paper. If there is a meaningful structure that our algorithm
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exploits, then we should find as the fraction, p, of observed data increases, we should be able to

reconstruct missing information with higher accuracy. And we do find that.

Next, we wish to verify whether our model assumption the each store and time period’s demand

can be modeled as independent (but different) Poisson random variable makes sense. To that end,

we conduct the following experiment: for each store and time, we find the mean parameter using

our method. For Poisson, the mean parameter tells us about the variance. If there is independence,

then we can determine the overall variance. Interestingly enough, this “model based" variance

estimation matches the overall empirical variance. This suggests that data is not contradicting our

model assumption. This is important because while our methodology extends to other distributions,

see Appendix A for an example, if the “true” distribution is different from the one assumed, an

error will be introduced quantifying which is not the a consideration in this work.

For the Walmart case study, it is important to note that the estimated censored demand is non-

trivially different from the observation suggesting that there is “learning" to be done from the data.

The average of the estimated means are noticeably smaller than the empirical average suggesting

that there is non-trivial censoring happening in the data. Of course, we could have explicitly verified

this if we had access to the inventory information. Finally, it is easy to see that theM is a lower

bound to Λ; that is, ˆM is an estimation of a lower bound of true demand.

1.4 Notations
We shall use R to denote all real values, R+ to denote strictly positive real values, Z represents

all integers, Z+ represent strictly positive integers. For any A ∈ Z+, [A] represents {1, . . . ,A}. For
an a × b real-valued matrix Q = [Qi j ], its Frobenius norm, denoted by ∥Q ∥F , is given by ∥Q ∥F =( ∑a

i=1
∑b

j=1Q
2

i j

) 1

2

. The nuclear norm of Q , denoted by ∥Q ∥∗, is defined as ∥Q ∥∗ =
∑

min(a,b)
i=1 si ,

where si , 1 ≤ i ≤ min(a,b) are singular values of Q .
Given an a × b matrix Q , let Q̂ be a random matrix that is an estimator of Q . Then the error in this

estimator, denoted as average mean squared error, denoted asMSE(Q̂), is defined as

MSE(Q̂) =
1

ab
E
[
∥Q − Q̂ ∥2F

]
. (1)

The root mean squared error, denoted as RMSE(Q̂) is simply defined as square-root of MSE(Q̂),

that is, RMSE(Q̂) =

√
MSE(Q̂).

1.5 Organization
The rest of this work is organized as follows: we review the relevant domains of literature in Section

2. We describe the estimation algorithm in Section 3. Subsequently, we present the main result

(Section 4) and the associated proofs (Section 5). Section 6 discusses the experiments based on

synthetic data. Section 7 discusses the case-study using the Walmart sales data. Finally, Section 8

provides discussion about the model of this work along with the directions for future work.

2 RELATEDWORK
Our work is closely related to three bodies of work: (censored) demand estimation; matrix comple-

tion and estimation; modeling multiple related time series using matrix factorization. We discuss

each next.

2.1 (Censored) Demand estimation
Estimating demand is a well-studied problem of interest across several domains. It appears as a sub-

problem in the inventory management problems such as the classical news-vendor problem. The
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distinction between sales and demand data are also well-established in prior works and censoring

of demand plays a central role in the most widely studied inventory management problems (e.g.

[5], [8], [11]). In [27], the author shows that estimation methods that do not take censoring in to

account experience a low-bias problem. In [8], the authors have successfully argued that a lack of

visibility (censoring) in the demand data can prove to be costly for inventory planning and that

“intelligent analytics" are a valid substitute for the lack of visibility. As such, our work is an instance

of “intelligent analytics" to estimate true demand from noisy, censored and missing data.

There are two major approaches to estimating true demand from missing and censored data:

Bayesian and data-driven non-parametric. Non-parametric approaches to inferring hidden demand

to help with inventory planning have been popular. In a recent work of this flavor non-parametric

estimates are determined in an iid setting under censoring [5]. The underlying distribution of

interest is assumed to be independent and identically distributed effectively allowing multiple

observations of the same distribution and, hence, this is a simpler method than ours. The estimates

are shown to be asymptotically optimal in conjunction with a an inventory planning policy. In

general, there is a long history of works where the censored demand is estimated in conjunction

with a optimal decision-making policy. Works such as [6], [13], [14], [12], [20], [15] solve the

inventory management problems by sampling-based policies under censored demand settings.

However, these works either consider the iid demand scenarios and then approximate the demand

distribution empirically to derive adaptive inventory level decisions for each time step (e.g. [6],

[13]), or they use techniques such as stochastic approximations to solve optimization problems

for “value" functions that do not rely on true demand estimates (e.g. [14], [12], [20]). In [15], the

authors use sample average approximations to learn the empirical distributions of demand. In

these works, in contrast to our approach, there is little attempt to incorporate other dimensions

such as different locations or products, to utilize correlated demand effects which can result in

better estimates. Furthermore, stochastic approximations can be unstable and encounter scaling

problems [12] which is not the case for us since we use the highly scalable matrix completion and

factorization methods.

The Bayesian approach, which is more relevant to our work, assumes a prior probability distribution

and computes the MLE estimators of the demand parameters. In [11], the author computes the

estimates of the parameter of interest for a Poisson demand distribution and it can be considered an

early-precursor to our work. However, only one location (newsstand) across time is considered with

the parameter of interest assumed to be identical across time. The author of [19] extends this to the

iid Normal case which may not be a good approximation to the reality of sales/demand in the real-

world since the demand is non-negative valued and continuously changes. The author of [4] uses the

Bayesian approach to estimate unknown parameters with a known prior distribution chosen from

the natural conjugate family within an iid setting. Our approach is less restrictive and only assumes

the independence across time and locations. In [3], the authors extend the Poisson MLE approach to

the setting with substitutes and infer the parameters of interest. However, only a single location is

studied. Other works such as [3], [10] and [26] use the Expectation-Maximization approach to infer

hidden demand by modeling the demand distribution or customer choice appropriately. In a related

approach, the authors of [18] use the multinomial logit model of customer choice for products

across different stores and available brands, while the author of [25] assumes that the demand vector

for products at time t is a multivariate normal influenced by several observable influencers. This

work then uses the EM approach to learn the parameters of interest. Our work assumes nothing

about the customer choice and uses other locations (stores) as the second dimension in addition

to time. In contrast to all of the above work, our work does not have the limitation of assuming

identical distribution across time and allows for distributions to change across time as well as

location. Secondly, we use at most one observation per time and location and use no additional
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product features or customer choice model to garner additional (side) information. Our results

naturally extend beyond the Poisson case; we use the Poisson distribution for simplicity and ease

of exposition. Lastly, we have provable results about our simple, spectral algorithm unlike the EM

algorithm which is excellent procedure but with limited theoretical understanding.

2.2 Matrix completion and estimation.
In a nutshell, the primary conceptual contribution of this work is to identify that the generic

censored demand problem is equivalent to the so-called “Latent Variable Model" à la Aldous-

Hoover characterization of multi-dimensional exchangeable distributions or what is also known as

“Graphons". This connection opens up the possibility of using a minor extension of the result from

[7] to devise an estimation algorithm with provable performance guarantees. In lieu of that, our

estimation algorithm effectively becomes an instance of “matrix completion and de-noising" based

on partial, noisy matrix data. For a detailed discussion on the evolution of the matrix completion, see

[7]; for various practical algorithmic implementations, as an example, see [17] and references there

in. We note that the significant advantage of using the USVT algorithm of [7] is that it proposes

a practical universal threshold. Additionally, it does not require symmetric matrices. These are

significant advantages over several works in related literature, e.g. [16]. See Section 3.1 for a more

detailed discussion.

2.3 Matrix factorization for multiple time series.
A more recent approach, related closely to our work, is to use matrix factorization to de-noise

random effects and impute missing information in the censored demand data across a line of

products and time. In a recent work [29], the authors factorize the matrix of sales data across

products and time. The temporal dependencies are explicitly modeled in an auto-regressive setting.

However, censoring and store location based dependencies are not explicitly considered. As such,

this matrix-factorization approach is a conceptual extension of online time series prediction with

missing data in an auto-regressive setting [2]. Considering the problem as that of multiple (stacked)

time series with correlations and dependencies is relevant to our work and considered in previous

works such as [9], [21], [22], [28]. As such, [28] is a form of probabilistic matrix factorization

(collaborative filtering with latent features) using time as one dimension. Works in probabilistic

matrix factorization ([23], [24]) are conceptually close to our work. In [23], for example, Gaussian

priors on the matrix are assumed across two dimensions. However, the parameters of the priors

are more restrictive than what our approach allows. Our work considers time and locations as the

two dimensions of the matrix (for a given product or group of products) but allows each location

and time period to have its own independent distributional parameter with no prior knowledge

of the parameter value. In that sense, our approach can be regarded as a generalization of these

approaches by being able to capture any structure (in the parameters) across the two dimensions

of the matrix. Please see Section 8 for a discussion on these generalizations.

3 ALGORITHM
We are given partial observations of the censored demand matrix, Xp

. We wish to produce an

estimate
ˆΛ of true average demand Λ. We propose to do so in two steps: (1) Obtain an estimate

of the average censored demand, i.e.
ˆM ofM = E[X ], and (2) extrapolate

ˆM to obtain
ˆΛ using the

knowledge of capacity matrixC .

Step 1. Obtaining ˆM . We apply the Universal Singular Value Thresholding (USVT) of [7] to Xp
to

obtain
ˆM . For completeness, we describe the USVT algorithm [7]:

(1) Define b = maxi, j zi j and a = mini, j zi j .
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(2) zi j ←
zi j−(a+b)/2
(b−a)/2 . Now, |zi j | ≤ 1,∀i .j.

(3) Define matrix Z = [zi j ]i≤N , j≤T with

zi j =

{
Xi j if it is observed in Xp

0 otherwise.

(2)

(4) Let Z =
∑N

i=1 siuiv
T
i be the singular value decomposition of Z .

(5) Let p̂ be fraction of the NT entries observed in Xp
, i.e. empirical estimation of p based on

number of entries observed.

(6) Let

S =
{
i : si ≥ 2.02

√
Tp̂

}
. (3)

(7) Define

W =
1

p̂

∑
i ∈S

siuiv
T
i . (4)

(8) Letwi j be the (i, j)th element ofW . Define

m̂i j =


−1 ifwi j < −1

1 ifwi j > 1

wi j otherwise.

(5)

(9) Scale back to the original range:

m̂i j ← (a + b)/2 + m̂i j (b − a)/2. (6)

Step 2. Obtaining ˆΛ. We have access to
ˆM , the estimate ofM where the (i, j)th element m̂i j of ˆM is

an estimate ofmi j = E[Xi j ], the (i, j)th element ofM , which is the average of truncated Poisson

random variable with mean λi j , truncated at Ci j . From ˆM , we want to produce
ˆΛ, an estimate of Λ,

using knowledge of C , which is known.

To that end, let us suppose we knowM exactly. That is, we knowmi j for each i ≤ N , j ≤ T . We

also know Ci j . Now mi j = f (λi j ,Ci j ), where for precise definition of f , please refer to Section

5.1.1. As argued in Lemma 5.1, for any given fixed Ci j ≥ 1, the function f is strictly monotonically

increasing in λi j ∈ R+. Therefore, a simple iterative algorithm (this is also known as the Bisection
algorithm in literature) to find λi j is as follows:

(1) Initialize λU B
i j = ∞, λ

LB
i j = 0 and λ1i j = 1.

(2) In iteration k ≥ 1, letmk
i j = f (λki j ,Ci j ). Ifm

k
i j > mi j then update λU B

i j = λ
k
i j . Ifm

k
i j < mi j , update

λLBi j = λ
k
i j . And,

λk+1i j =

{
1

2

(
λU B
i j + λ

LB
i j

)
, if λU B

i j < ∞

2λLBi j , if λU B
i j = ∞.

(7)

(3) Stop iterating when |λU B
i j − λ

LB
i j | is small enough and declare estimate of λi j =

1

2

(
λU B
i j + λ

LB
i j

)
.

In reality, we do not knowmi j , but we know estimate for it, m̂i j . Therefore, we use m̂i j in place of

mi j in the above algorithm. We denote the resulting estimation of Λ by
ˆΛ.
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3.1 Universal Thresholding
We note that Step 1 of the algorithm could be replaced by other competing singular value thresh-

olding algorithms and heuristics. However, there are significant advantages of using the USVT

algorithm of [7]: the choice of the threshold is universal which is in contrast to many algorithms in

literature which do not specify a principled approach to choosing the threshold. Secondly, the USVT

algorithm allows us to establish attractive asymptotic properties of the MSE( ˆM) and MSE( ˆΛ) as
shown in Section 4. As a reference, we compare the USVT algorithm to a similar spectral algorithm

described in [16] which is applicable to latent variable models for the generalized stochastic block

models (GSBM). We first note that the algorithm in [16] is applicable to symmetric matrices while

our setting does not have such a restriction. Additionally, the algorithm in [16] does not specify

a way to choose the threshold. We use the Appendix B to show a comparison of theMSE( ˆM) for
symmetric matrices using the USVT algorithm and the algorithm from [16] (with the same number

of eigenvalues retained as those in the USVT algorithm). We note that both algorithms have similar

performance. However, the USVT algorithm is always the better option.

4 MAIN RESULT
4.1 Operating assumptions
We note the key model assumptions before stating the main result. Let Yi j be true demand at store

i ∈ [N ] at time j ∈ [T ]. Yi j is an independent random variable with Poisson distribution whose

mean is λi j . Each store i ∈ [N ] has latent feature θi ∈ Ω1 associated with it. Each time j ∈ [T ] has
latent feature ρ j ∈ Ω2 associated with it. We shall assume that Ω1 and Ω2 are compact sets in finite

dimensional Euclidian space. For concreteness and simplicity, let us suppose Ω1 = Ω2 = [0, 1]
d
for

some finite d ≥ 1. We assume that λi j = h(θi , ρ j ), where h : [0, 1]d × [0, 1]d → R+ is a Lipschitz
function with Lipschitz constant L. Given these assumptions, it immediately follows that there

exists λ∗ ∈ R+ so that supθ,ρ ∈[0,1]d h(θ , ρ) = λ
∗
. We note that our Lipschitz assumption imposes a

more realistic structure than the standard low-rank assumption in literature. We discuss the specific

implications of this assumption in Section 4.3.

We assume that the inventory capacity, Ci j at store i ∈ [N ] and time j ∈ [T ] is a random variable

whose distribution is parametrized by θi and ρ j . Specifically, P(Ci j = k) = дk (θi , ρ j ) with дk :

[0, 1]d × [0, 1]d → [0, 1] is a Lipschitz function with Lipschitz constant Lk . We assume that

maximum capacity is bounded above by a universal constant C∗, i.e. Ci j ≤ C∗ with probability

1 for all i ∈ [N ], j ∈ [T ]. With that said, we assume that all realized capacity values are known.

This is a realistic assumption because most modern retailers have equipped themselves with the

ability to record and access precise inventory information. The censored demand realized at store i
at time j is Xi j = min(Yi j ,Ci j ). Letmi j = E[Xi j ]. Each Xi j is observed with probability p ∈ (0, 1],
independently.

4.2 Statement of main result
The main result is about the performance of the algorithm described in Section 3 in terms of its

ability to estimate
ˆΛ. As stated, the algorithm has two estimation steps. Therefore, we state results

about the estimation error introduced in each step. Stitching them together will lead to the main

result.

Estimation Error in ˆM . We state a bound onMSE( ˆM) induced by the Step 1 (USVT) of the algorithm.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 31. Publication date: December 2017.



Censored Demand Estimation in Retail 31:9

Lemma 4.1. For a given ε ∈ (0, 1), let p ≥ N −1+ε . When N is large enough for a given ε , we have

MSE( ˆM) ≤ c1
N −

1

d+2

√
p
, (8)

where c1 = αC∗
(
1 +C∗Γ(Lψ ,d)

)
and Γ(d,Lψ ) = (4dLψ )

d/2, and where Lψ is a Lipscthiz constant and
d is the dimension of the latent variable space. α is a universal constant.

Estimation Error in ˆΛ: using ˆM . We state a bound on theMSE( ˆΛ) induced by Step 2 of the algorithm.

Lemma 4.2. For any i ∈ [N ], j ∈ [T ],

| ˆλi j − λi j | ≤
|m̂i j −mi j |

P(Q ≤ max(0,Ci j − 2))
, (9)

where Q is Poisson random variable with parameter ˜λi j = max(λi j , ˆλi j ).

For any
˜λi j , P(Q ≤ max(0,Ci j − 2)) ≥ P(Q = 0) = exp(− ˜λi j ). Since maxi j λi j ≤ λ

∗
, it follows that

| ˆλi j − λi j | ≤ exp(λ∗)|m̂i j −mi j | (10)

That is,

MSE( ˆΛ) ≤ exp(2λ∗)MSE( ˆM). (11)

Putting It Together. From Theorems 4.1 and 4.2, we obtain the following result.

Theorem 4.3. For a given ε ∈ (0, 1), let p ≥ N −1+ε . When N is large enough, for a given ε , we have

MSE( ˆΛ) ≤ c1 exp{2λ
∗}
N −

1

d+2

√
p
, (12)

where c1 = αC∗
(
1 +C∗Γ(Lψ ,d)

)
and Γ(d,Lψ ) = (4dLψ )

d/2, and where Lψ is a Lipscthiz constant and
d is the dimension of the latent variable space. λ∗ is as defined in Lemma 4.2 above. α is a universal
constant.

As a consequence, as long as p ≫ N
−2
d+2 we haveMSE( ˆΛ) → 0 as N →∞.

4.3 Implications
Theorem 4.3 captures the fact that with enough samples and well-behaved constants, as N →∞,
the errors in both steps of the algorithm go to 0. It is the error in Step 2 that should be affected

by censoring. What is surprising is that even when Ci j = 1 for all i ∈ [N ], j ∈ [T ], in the regime

mentioned above, error goes to 0! That is, if effectively there is only one product on the shelf,

knowing whether it is purchased or not is sufficient to estimate the entire demand rate!

As we pay closer attention to Lemma 4.2, notice that as Ci j → ∞, the error in ˆλi j converges to
error in m̂i j . In other words, as censoring reduces, the censoring induced error in the Step 2 of

the algorithm reduces – naturally, as one would expect. And vice versa. This expected qualitative

behavior gives us confidence in the fact that the bounds on the estimation error are capturing

first-order effects.

We now compare Lemma 4.1 to the standard results in literature which assume that the latent mean

matrix,M , is low-rank. First, note that the Lipschitz assumption is a strict generalization of the low-

rank assumption because the latter can be viewed as a “specific” Lipschitz function. Consequently,

this allows greater flexibility in capturing “reality” using the Lipschitz structure. However, greater

model flexibility comes at a cost. This cost is the greater amounts of data required for estimation

when using the more general Lipschitz setting. Specifically, in the discussion proceeding Theorem
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2.1 in [7], it is shown that for consistent estimation ofM , as N →∞, it is necessary for p ≫ r
N . In

contrast, the Lipschitz structure comes at the cost of needing to observe more data, for a fixed d : in
our setting, asymptotic consistency is achieved if p ≫ N −2/(d+2).

5 PROVING THE RESULT
5.1 Preliminaries
Here we establish a few useful preliminary properties that will be utilized in establishing the

proof of our main result. We first determine the mean of a truncated Poisson distribution and

using some helpful properties then establish a relationship between the means of the truncated

and corresponding non-truncated Poisson distributions. Next, we establish that the mean matrix,

M , is Lipschitz in its latent parameters which allows us to bound the nuclear norm, | |M | |∗. The
relationship between the means of the truncated and non-truncated Poisson distributions and the

bound on the nuclear norm of the matrix of means of the truncated Poisson random variables,

| |M | |∗, will then allow us to establish our main result in Sections 5.2 and 5.3.

5.1.1 Mean of a truncated (censored) Poisson random variable. Consider a Poisson random

variable, sayQ such that E[Q] = λ. For anyC ≥ 1, let the truncation ofQ atC be denoted as R, that
is,

R = min(Q,C). (13)

Let

m ≡ E[R]

=

C−1∑
t=0

tP(R = t) +CP(R = C)

=

C−1∑
t=0

tP(Q = t) +C
( ∞∑
t=C

P(Q = t)
)

=

∞∑
t=0

tP(Q = t) −
∞∑
t=C

(t −C)P(Q = t)

= E[Q] −
∞∑
t=C

(t −C)P(Q = t)

= λ −
∞∑
t=C

(t −C)
exp(−λ)λt

t !

≡ f (λ,C). (14)

That is,m = f (λ,C). This function f satisfies the following useful properties.

Lemma 5.1. The non-negative valued function f : R+ × Z+ → R+, as defined in (14), satisfies the
following: for any λ ∈ R+ and C ∈ Z+,

∂ f

∂λ
(λ,C) = P(Q ≤ max(0,C − 2)) ≤ 1. (15)

(15) appeals to our intuition where the derivative with respect to λ is small and positive in situations

where there is a high degree of censoring (small C). In such situations, the truncated mean,m, will

increase very slowly as λ is increased. On the other hand, in situations where there is little to no

censoring, i.e. C is large, we expect the truncated mean to approximate the un-truncated mean,
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λ, which will grow much more rapidly as λ increases. Note that the derivative remains positive,

bounded above by 1 and bounded below by exp (−λ), under all circumstances.

Proof. To start with, consider case when C = 1. Then,

f (λ, 1) = 1 − exp(−λ). (16)

In this case,

∂ f

∂λ
(λ, 1) = exp(−λ) = P(Q ≤ 0). (17)

Therefore, when C = 1, for any λ ∈ R+, we have

∂ f

∂λ
(λ, 1) = P(Q ≤ max(0,C − 2)), (18)

where Q is Poisson random variable with parameter λ.

Now we consider scenario where C ≥ 2. We start by deriving the precise form of
∂f
∂λ (λ,C). To that

end, we shall use the following definition:

f (λ,C) =
C−1∑
t=0

t exp(−λ)
λt

t !
+

∞∑
t=C

C exp(−λ)
λt

t !
. (19)

Therefore,

∂ f

∂λ
(λ,C) =

C−1∑
t=0

t exp(−λ)

t !

(
tλt−1 − λt

)
+C

∞∑
t=C

exp(−λ)

t !

(
tλt−1 − λt

)
. (20)

Consider the first term in (20):

C−1∑
t=0

t exp(−λ)

t !

(
tλt−1 − λt

)
= exp(−λ)

( C−1∑
t=1

tλt−1

(t − 1)!
−

C−1∑
t=1

λt

(t − 1)!

)
= exp(−λ)

( C−1∑
t=1

(t − 1)λt−1

(t − 1)!
+

C−1∑
t=1

λt−1

(t − 1)!
−

C−1∑
t=1

λt

(t − 1)!

)
= exp(−λ)

( C−2∑
t=1

λt

(t − 1)!
+

C−1∑
t=1

λt−1

(t − 1)!
−

C−1∑
t=1

λt

(t − 1)!

)
=
( C−2∑
t=0

exp(−λ)
λt

t !

)
−

(
exp(−λ)

λC−1

(C − 2)!

)
= P(Q ≤ C − 2) − exp(−λ)

λC−1

(C − 2)!
, (21)

where Q is Poisson random variable with mean λ.
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Consider the second term in (20):

C
∞∑
t=C

exp(−λ)

t !

(
tλt−1 − λt

)
= C exp(−λ)

( ∞∑
t=C

λt−1

(t − 1)!
−
λt

t !

)
= exp(−λ)

λC−1

(C − 2)!
. (22)

Using (21) and (22) in (20), we obtain

∂ f

∂λ
(λ,C) = P(Q ≤ C − 2). (23)

From (18) and (23), we have that for all λ ∈ R+ and C ∈ Z+,

∂ f

∂λ
(λ,C) = P(Q ≤ max(0,C − 2)), (24)

where Q is a Poisson random variable with parameter λ. This completes the proof of Lemma. □

5.1.2 Sensitivity analysis of Λ with respect toM . We state the following result regarding sensi-

tivity analysis of f −1 as defined in (14).

Lemma 5.2. Given fixed C ∈ Z, let (m1, λ1) and (m2, λ2) be pairs of means of truncated Poisson and
Poisson random variables. That is,mk = f (λk ,C) for k = 1, 2 with f as defined in (14). Then,

|λ1 − λ2 | ≤
|m1 −m2 |

P(Q ≤ max(0,C − 2))
, (25)

where Q is Poisson random variable with parameter λ = max(λ1, λ2).

Proof. Without loss of generality, let us assume thatm1 ≤ m2 and hence λ1 ≤ λ2. Given fixed

C ∈ Z, the function f maps λ ∈ R+ to m ∈ R+. Let д be the inverse of the map, i.e. inverse of

f (λ,C) with respect to first argument keeping second argument fixed. Therefore, д(mk ) = λk for

k = 1, 2. We know that f is continuous, differentiable and strictly monotonic over R+. Therefore, д
is continuous and differentiable as well. Then

|λ1 − λ2 | = |д(m1) − д(m2)|

= |д′(m)| |m1 −m2 |, (26)

where the above equality follows from the Mean-Value Theorem with д′(·) being the derivative

of д, andm ∈ (m1,m2). Since f and д both are differentiable over R+, by elementary argument in

analysis, it follows that

|д′(m)| =
1

| f ′(λ)|
(27)

where λ is such that f (λ,C) =m and f ′(λ) =
∂f
∂λ (λ,C). Due to monotonicity of f , it follows that

λ ∈ (λ1, λ2). Substituting (27) in (26), and using Lemma 5.1, we obtain

|λ1 − λ2 | =
|m1 −m2 |

P(Q ≤ max(0,C − 2))
, (28)
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where Q is Poisson random variable with parameter λ ∈ (λ1, λ2). It can be easily verified that

P(Q ≤ max(0,C − 2)) is a monotonically decreasing function of λ for a fixed C . Therefore, for all
λ ∈ (λ1, λ2), it is bounded below by λ = λ2. Therefore, we conclude that

|λ1 − λ2 | ≤
|m1 −m2 |

P(Q ≤ max(0,C − 2))
, (29)

where Q is Poisson random variable with parameter λ = max(λ1, λ2). This completes the proof of

Lemma 5.2. □

5.1.3 Lipschitz property ofM . Next we establish that,mi j = E[Xi j ], the (i, j)th element ofM , is

a Lipschitz function of the latent features θi and ρ j associated with store i ∈ [N ] and time j ∈ [T ].

Lemma 5.3. Let the assumptions stated in Section 4.1 hold. Then, there exists a Lipschitz function
ψ : [0, 1]d × [0, 1]d → [0,C∗] so thatmi j = ψ (θi , ρ j ) for i ∈ [N ], j ∈ [T ].

Proof. By definition,

mi j = E[Xi j ] = E[E[Xi j |Ci j ]]

=

C∗∑
k=1

E[Xi j |Ci j = k]P(Ci j = k). (30)

Now given Ci j = k , E[Xi j |Ci j = k] is precisely f (λi j ,k) where f is defined in (14). By the assump-

tions of Section 4.1, λi j = h(θi , ρ j ) and P(Ci j = k) = дk (θi , ρ j ). Therefore,

mi j =

C∗∑
k=1

f (h(θi , ρ j ),k) дk (θi , ρ j ) ≡ ψ (θi , ρ j ). (31)

Next, we establish thatψ is a Lipschitz function. To that end, by Lemma 5.1, f (·,k) is a Lipschitz
function with Lipschitz constant 1 in it’s first argument for all k ≥ 1. By assumption of Section

4.1, h is a Lipschitz function with constant L. Therefore, for a fixed k , f (h(θi , ρ j ),k) is a Lipschitz
function of (θi , ρ j ) with Lipschitz constant L.
By the assumptions of Section 4.1, дk is a Lipschitz function with constant Lk for 1 ≤ k ≤ C∗.
The following are easy to verify compositional rules associated with Lipschitz functions:

(1) If ϕ1 and ϕ2 are Lipschitz functions with constants z1 and z2, respectively, then ϕ3 = ϕ1 + ϕ2 is
a Lipschitz function with Lipschitz constant z3 = z1 + z2.

(2) ϕ1 and ϕ2 are Lipschitz functions with constants z1 and z2, then ϕ3 = ϕ1 × ϕ2 is also a Lipschitz

function with Lipschitz constant z1 |ϕ2 |∞ + z2 |ϕ1 |∞.

Note that | f (·,k)| ≤ k and k ≤ C∗, that is, | f (·,k)|∞ ≤ C∗; and by definition |дk |∞ ≤ 1. Therefore,

by putting all of the above discussion together, we obtain thatψ is a Lipschitz continuous function

with Lipschitz constant Lψ , where

Lψ ≤ C∗
(
L +

C∗∑
k=1

Lk

)
. (32)

This completes the proof of Lemma 5.3. □

5.1.4 Bounding ∥M ∥∗. We shall utilize the Lipschitz property ofM established in Lemma 5.3 to

bound the nuclear norm of ∥M ∥∗ as stated in Lemma 5.4 below. The proof of the Lemma below

is a straightforward adaption of the arguments from [7, Lemma 3.6]. We present them here for

completeness.
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Lemma 5.4. GivenM as defined above, for any small enough δ > 0,

∥M ∥∗ ≤ δN
√
T +C∗Γ(Lψ ,d)

√
NTδ−d , (33)

where Γ(Lψ ,d) is a constant that depends on Lipschitz constant Lψ ofψ as defined in (32) and d is the
dimension of the latent space. The constant C∗ = ∥ψ ∥∞.

Proof. By Lemma 5.3, the (i, j)th element ofM ,mi j = ψ (θi , ρ j )whereψ is Lipschitz in its arguments

and ψ : [0, 1]d × [0, 1]d → [0,C∗]. For any given δ > 0, it is easy to see that one can find a finite

covering P1(δ ) and P2(δ ) of [0, 1]
d
so that for any θ , ρ ∈ [0, 1]d , there exists θ ′ ∈ P1(δ ) and ρ

′ ∈ P2(δ )
so that

|ψ (θ , ρ) −ψ (θ ′, ρ ′)| ≤ δ . (34)

For example, let ζ =
⌈
2dLψ
δ

⌉
and define P1(δ ) = P2(δ ) = P(δ ), where

P(δ ) = {(k1/ζ , . . . ,kd/ζ ) : k1, . . . ,kd ∈ [ζ ]}. (35)

Then, for any θ , ρ ∈ [0, 1]d , we can find θ ′, ρ ′ ∈ P(δ ) so that

∥(θ , ρ) − (θ ′, ρ ′)∥2 ≤ ∥(θ , ρ) − (θ
′, ρ ′)∥1 ≤

2d

ζ
≤

δ

Lψ
. (36)

Therefore, by Lipschitz property of ψ , we have that |ψ (θ , ρ) − ψ (θ ′, ρ ′)| ≤ δ as desired. In this

construction, we have

|P(δ )| ∼ ζ d ≤ Γ1(d,Lψ )δ
−d , (37)

where Γ1(d,Lψ ) = (4dLψ )
d
.

For latent feature θi corresponding to store i ∈ [N ], find closest element in P(δ ), and let it denote

by p1(θi ). Similarity, for latent feature ρ j corresponding to time j ∈ [T ], find closest element in P(δ ),
and let it denote by p2(ρ j ). Create matrix B = [bi j ] where bi j = ψ (p1(θi ),p2(ρ j )). As argued above,

we have that for all i ∈ [N ], j ∈ [T ]

|mi j − bi j | ≤ δ . (38)

Therefore,

∥M − B∥F ≤ δ
√
NT . (39)

This gives us

∥M ∥∗ ≤ ∥M − B∥∗ + ∥B∥∗

≤
√
N ∥M − B∥F + ∥B∥∗

≤ δN
√
T + ∥B∥∗. (40)

In above, we used the inequality that for any real-valued matrix Q , ∥Q ∥∗ ≤
√
rank(Q)∥Q ∥F . We

shall use the same inequality again to bound ∥B∥∗. To obtain a tight bound, let us argue that the

rank of B does not scale with N and T . To that end, consider any two columns, say j, j ′ ∈ [T ]. If
p2(ρ j ) = p2(ρ j′), then it follows that the columns j and j ′ of B are identical. That is, there are can be

at most |P(δ )| distinct columns of B. Similarly, there can be at most |P(δ )| distinct rows of B. That
is, rank(B) ≤ |P(δ )|. Finally, we know that ∥ψ ∥∞ ≤ C∗. Therefore, we have

∥B∥∗ ≤
√
|P(δ )|∥B∥F ≤

√
|P(δ )|

√
NT ∥ψ ∥∞

≤
√
|P(δ )|

√
NTC∗. (41)
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Putting everything together, we have

∥M ∥∗ ≤ δN
√
T +C∗

√
Γ1(Lψ ,d)

√
NTδ−d . (42)

where Γ1(d,Lψ ) = (4dLψ )
d
, as in (37). □

An immediate implication of the above Lemma is that by selecting δ = N −
1

d+2 , we obtain

∥M ∥∗ ≤
(
1 +C∗Γ(Lψ ,d)

)√
TN 1− 1

d+2 . (43)

where Γ(d,Lψ ) = (4dLψ )
d/2

.

5.2 Key Enabler
We state the key enabler [7, Theorem 2.1]. We state it here for non-normalized setup as described

below and applicable to our setting. Consider anm×n matrixA = [Ai j ] of interest. LetAi j ∈ [−B,B]
for all i ∈ [m], j ∈ [n] for some B ≥ 1. Letm ≤ n. Let Z = [Zi j ] be anm × n random matrix whose

entries are independent such that E[Zi j ] = Ai j and Zi j ∈ [−B,B] with probability 1. Each entry of

the matrix Z is observed independently with probability p ∈ [0, 1] and unobserved with probability

1 − p. The Universal Singular Value Thresholding (USVT) algorithm as described in Section 3 when

applied to Z produces an estimation matrix Â. The expected mean squared error is defined as

MSE(Â) =
1

mn
E
[
∥Â −A∥2F

]
. (44)

Then, as claimed and proved in [7],

Theorem 5.5 (Theorem 2.1 of [7]). Let there be a given ε > 0. Suppose p ≥ n−1+ε . Then

MSE(Â) ≤ α min

{
B
∥A∥∗
m
√
np
+
B2

np
,
∥A∥2∗
mn
,B2

}
+ B2β(ε) exp(−γnp), (45)

where α and γ are universal constants and β(ε) depends on ε .

5.3 Proof of Lemmas 4.1 and 4.2, Theorem 4.3
Proof of Lemma 4.1. The application of Theorem 5.5 (where A isM , B = C∗,m = N and n = T ), we
find that as long as p ≥ N −1+ε ≥ T −1+ε for any 0 < ε < 1, for N large enough, the Step 1 of our

algorithm described in Section 3 produces
ˆM so that

MSE( ˆM) ≤ α
(C∗∥M ∥∗
N
√
Tp
+
(C∗)2

Tp

)
+ (C∗)2β(ε) exp(−γTp), (46)

By plugging in bound from (43) and using T ≥ N , we obtain

MSE( ˆM) ≤ c1
N −

1

d+2

√
p
+

c2
Tp
+ c3 exp(−N

ε ). (47)

where c1 = αC
∗
(
1 +C∗Γ(Lψ ,d)

)
, c2 = α(C

∗)2 and c3 depends on ε and γ . As earlier, we have that

Γ(d,Lψ ) = (4dLψ )
d/2

, where d is the dimension of the latent space and Lψ is a Lipschitz constant.

Since p ≥ N −1+ε , as N scales, the first term on the right is dominant, leading to

MSE( ˆM) ≤ c1
N −

1

d+2

√
p
, (48)

Proof of Lemma 4.2. Lemma 4.2 follows immediately from Lemma 5.2.
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Proof of Theorem 4.3. The proof of Theorem 4.3 follows immediately by putting together Lemma

4.1 and implication (11) of Lemma 4.2.

6 SIMULATED EXPERIMENTS
6.1 Experimental Setup
We conduct simulated experiments to establish the various properties of the estimates

ˆM and
ˆΛ. We

consider the following metrics of evaluation: RMSE( ˆM), RMSE( ˆΛ) and the Ratio:
RMSE( ˆΛ)
RMSE( ˆM )

. This

last quantity, Ratio, helps establish the relationship between RMSE( ˆΛ) and RMSE( ˆM) to confirm
the various implications of Lemma 4.2 and Theorem 4.3, as discussed in Section 4.3.

For our experiments, θi and ρ j are randomly sampled from a U(1) uniform distribution for all

1 ≤ i ≤ N , 1 ≤ j ≤ T , unless noted otherwise. The (hidden, unknown) parameters of interest, λi j
are determined using the following Lipschitz function: λi j = h(θi , ρ j ) =

J
exp{−θi−ρ j−αθi ρ j }

. Note

that α ∈ (0, 1) is random but fixed constant. J is a scaling constant used to generate as large values

as needed for a simulation. Therefore, in all the experiments discussed, comparisons are only drawn

for a constant scaling constant, unless explicitly stated otherwise. The stocking level realizations

of Ci j are known for all 1 ≤ i ≤ N , 1 ≤ j ≤ T . The random, but unknown, matrix of true demand

values is sampled as Yi j ∼ Poisson(λi j ) for all 1 ≤ i ≤ N , 1 ≤ j ≤ T . Each demand realization is then

subject to censoring due to the stocking levelCi j . This gives us the matrix X . We fix the probability

of observation, p. Using that, we observe each entry of the matrix X independently with probability

p giving us the matrix Xp
. We then estimate the censored means and (hidden) original parameters

using the algorithm described in Section 3.

The simulation experiments are designed to help explore various properties of the results stated

in Section 4. We would like the experiments to reveal how our evaluation metrics are affected by

the amounts of censoring. As discussed in Section 4.3, we expect the Ratio to decay to a value of

1 as the degree of censoring reduces, and be increasingly greater than 1 as censoring increases.

Additionally, we expect that as the probability of observation, p, is increased the estimates improve.

We also expect to confirm the consistency property of both RMSE( ˆM) and RMSE( ˆΛ). Finally, we
would also like to study the impact of structure on the estimates. We intuitively expect that the

more structure there is to exploit, the better the estimates will be.

6.2 Effects of Censoring and Probability of Observation

This set of simulated experiments show the effect of censoring on the Ratio:
RMSE( ˆΛ)
RMSE( ˆM )

and RMSE(
ˆM)

and how they vary across different levels of p. The parameter scaling constant, J = 15. To illustrate

the effects of censoring clearly, allCi j are kept the same for each experiment and denoted byC . For
this set of experiments we used a matrix size of 10,000.

Figure 1 shows that as the censoring levels decrease, i.e. C increases, the Ratio decreases and

plateaus out to equal 1 for all values of p used. At higher levels of censoring, i.e. C is smaller, the

Ratio is larger, as expected. This behavior holds across all values of p.

Figure 2, shows that different levels of p result in quantitatively different profiles of RMSE( ˆM). The
higher the value of p, the lower the RMSE( ˆM)), as we would expect. Also we note that RMSE( ˆM)
increases as censoring decreases. This makes sense because mi j are the censored means and

censoring reduces the range of possible values (support) ofmi j . Therefore, it makes sense that the

RMSE( ˆM) is smaller in situations of increased censoring.
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Fig. 1. The effect of decreasing censoring (varying C ) on the Ratio for different levels of p . J = 15.

Fig. 2. The effect of descreasing censoring (varying C ) on the RMSE( ˆM ) for different levels of p . J = 15.

6.3 Consistency of Estimates: ˆM and ˆΛ

For this series of simulations, we used the scaling constant J = 5. In order to study the effect of the

levels of censoring we vary it across experiments but keep all Ci j constant within each experiment.

We explore three levels of censoring: significant (C = 2),mild (C = 5) and little(C = 10).

Figures 3 and 4 show the results of this set of experiments. As expected, we note that RMSE( ˆM)

and RMSE( ˆΛ) both decrease as the size of the matrix increases. As claimed in Section 4.3, RMSE(Λ)
is consistently smaller when the levels of censoring are smaller (higher C values). Note that the

effect is exactly the opposite for RMSE(M), as argued in Section 6.2. However, as the matrix size

increases, RMSE(M) decreases for all levels of censoring.
Figure 5 shows that the Ratio is lowest when there is little censoring (≈ 1) and increases in the

presence of increased censoring. However, the size of the matrix appears to have minimal impact

on the Ratio for a fixed level of censoring. This is an appealing property of the Ratio because both

RMSE( ˆM) and RMSE( ˆΛ) do get affected by the size of the matrix. However, their ratio does not

indicating that the changes in RMSE( ˆM) and RMSE( ˆΛ) are correlated.
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Fig. 3. Effect of increasing the size of the matrix on the RMSE( ˆM ). The different plots represent different levels of censoring.
J = 5. The three levels of censoring are: little (C = 10), mild (C = 5) and significant (C = 2).

Fig. 4. Effect of increasing the size of the matrix, Xp , on the RMSE( ˆΛ). The different plots represent different levels of
censoring. J = 5. The three levels of censoring are: little (C = 10), mild (C = 5) and significant (C = 2).

Fig. 5. Effect of increasing the size of the matrix, Xp , on the Ratio: RMSE( ˆΛ)
RMSE( ˆM )

. The different plots represent different

levels of censoring. J = 5. The three levels of censoring are: little (C = 10), mild (C = 5) and significant (C = 2).
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Fig. 6. Ratio vs various sets of values of Ci j . We have J = 15. The ranges of values of Ci j are grouped in four sets. Each
set is colored differently. For instance, the red dots indicate Ci j values in the ranges 15 − 25, 20 − 25 and 25 (constant).

6.4 Effects of range of values of Ci j

Our simulations, thus far, have assumed a constant value for all Ci j to illustrate the effects of

censoring. However, each location i and time period j can experience varying levels of censoring.

To study the effects of censoring across ranges of of values, we assign values of stock levels to

eachCi j within a range. We vary the range across individual experiments to study the effect on the

Ratio. We expect that the larger the range, given the same upper limit, the larger the Ratio to be.

Figure 6 confirms our intuitive expectations. We have J = 15. Just like previously argued, for

the constant values of Ci j∀i, j, we see a drop in Ratio as the censoring effect is reduced. More

interestingly, across each set of ranges of the values ofCi j , the Ratio is highest when more variation

is allowed and drops down when the range becomes a constant. This helps us anticipate that if

we know the stocking levels vary greatly across locations and time then we can expect a loss of

precision in estimating the true parameters, as one might expect. In other words, more structure,
i.e. constant Ci j ,∀i, j, leads to more precise estimates.

For completeness, we observe the same effects if we allow the scaling constants to vary randomly

for each store i and time j. The larger the variation among the scaling constants, the less structure

there is to exploit, and that leads to worse estimates.

6.5 The effect of structure
The premise of our work is that the imposition of some structure allows us to estimate the true
demand parameters better. We confirm that by comparing the case of allowing the parameters,

λi j , to be chosen randomly to the case of choosing λi j in manner outlined in earlier in Section

6.1. Figure 7 confirms that our premise is sound by demonstrating that the imposition of structure
allows better estimation of the true parameters.

7 A CASE STUDY: WALMART
After extensive simulated experiments, we turn our attention to a real-world dataset. Our goal is to

use actual sales data from several stores across time for a product or type of products and learn the

true parameters of demand for each location and instance of time. To that end, we use the Walmart

sales data made available by Kaggle [1]. The dataset provides sales data for 45 stores located across
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Fig. 7. RMSE( ˆΛ) vs p for the Poisson parameters being chosen randomly and with the structure imposed in our model.
J = 15 and Ci j = 30 for all i and j .

different geographical regions. Each store provides weekly sales data for up to 100 departments for

143 weeks (Feb 5, 2010 - Oct 26, 2012). As such, consider the sales data for each department to be a

45 x 143 matrix of observations. Several department matrices have missing data/information.

As is typical for real-world settings, we are unaware of the true demand generating distributions and

stocking levels at each store location and instance of time. This information is not provided with

the dataset either. Therefore, we have no definitive way to evaluate how our approach performs in

determining the true demand function parameters. To this end, we make certain assumptions and

adopt heuristics to determine the value of this exercise.

7.1 Modeling Assumptions
For a given department, we have a 45 x 143 matrix of observations, Y . For simplicity, we firstly

assume that there is little to no censoring, i.e. Ci j >> Yi j for all i, j. We relax this condition later

to study the impacts of induced (artificial) censoring. Note that we assume Yi j ∼ Poisson(λi j ). We

choose a probability of observation, p ∈ (0, 1], which results in an observation matrix Xp
. This

allows us to learn the parameters λi j as detailed in Section 3.

7.2 Learning parameters via De-noising
We use the observation matrix, Xp

, from the Walmart sales dataset to determine the parameters

of the Poisson distributions, Yi j . As mentioned earlier, we do not know whether the true demand

distributions are Poisson. However, we use our estimates
ˆλi j to evaluate the error between them

and the actual demand observations, Yi j .

Figure 8 shows the RMSE between the estimated means,
ˆλi j and the actual observationsYi j . We vary

the independent observation probability (horizontal axis) to see the effect on the RMSE. The plot

shows the RMSE computed across all the entries of the matrix and also just for the hidden entries.

It is clear that RMSE values are lower as p gets higher. Given that the RMSE values are similar for

both the entire matrix and for the values that were hidden, there appears to be structure in the

data which has been exploited by our method. We call this property a de-noising effect because

on average our estimated means of the true demand are not too far off from the observations, on

average.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 31. Publication date: December 2017.



Censored Demand Estimation in Retail 31:21

Fig. 8. For theWalmart sales data across 45 stores and 143 weeks. Department = 79. The plot shows RMSE(Λ̂) vs observation
probability, p . The RMSE is obtained between the estimated ˆλi j and the original observaions Y . We assume little to
no-censoring. The plot is showing RMSE values for the entire matrix Λ̂ and also for only those values that were hidden
(due to our choice of p).

7.3 Transformed Distribution of Observations: Gaussian
Thus far, we have established that our approach allows us to approximate the de-noising of the data

observations reasonably well, on average. However, we do not know the true demand distributions.

Therefore, one natural question is to evaluate how valid our model assumption about the demand

being a matrix of independent Poisson variables with means λi j really is. To that end, we use the

bootstrap method to generate the distribution of the following random variable:

W =

1

|S|

∑
i j∈S
(Yi j− ˆλi j )√

1

(|S|)2

∑
i j∈S

ˆλi j

where S is a random sample of the indices of observation matrix Y and the estimated mean matrix

ˆΛ.
If the entries in the matrix Y are indeed independent Poissons, we expect W to be Normally

distributed because for a Poisson random variable with mean λ, the variance is also λ. Figure 9
shows that the histogram and the QQ-plot both show an approximately Normal distribution of

W. Both plots confirm a center to the right of 0 which suggests that there is some censoring in

the dataset (see Section 7.4). The QQ-plot shows that the data points lie on the red straight line

which confirms Normality with reference to a Gaussian distribution with mean equal to the sample

mean and standard deviation equation to the sample mean’s standard deviation. Remarkably, this

appears to suggest that our assumption about the data being distributed as independent Poisson

random variables is the valid for this dataset.

7.4 Estimated parameters as Lower bounds
Notice that while Figure 8 shows the RMSE decaying, it doesn’t reach zero. The estimated parameters,

ˆλi j , tend to be lower-bounds of the observations. Figure 10 shows this behavior via a comparison

of the average of observations,
1

NT
∑
i, j
Yi j , and the average of the estimated means,

1

NT
∑
i, j

ˆλi j . This

plot confirms the findings in the RMSE plot in Figure 8 where the average of the estimated means

approaches the average of the observations as p increases. However, the estimated averages are

always a lower-bound on the averages of the observations. We find that this lower-bound behavior
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Fig. 9. For the Walmart sales data across 45 stores and 143 weeks. Department = 79. The histogram on the left is generated
by random sampling from the random variableW. The matrices are sampled at random with an independent probability of
selection, i.e. p < 1. On the the right is a QQ-plot of the distribution ofW against a Normal distribution with mean being
the mean of the samples ofW and standard deviation of the samples ofW.

Fig. 10. For the Walmart sales data across 45 stores and 143 weeks. Department = 79. The plot shows the comparison
between the average of observations matrix and the average of the estimated means. We assume no censoring. The
observation probability, p , is varied (horizontal axis).

holds across all departments in the Walmart dataset. This finding is useful because it hints at the

utility of this approach in planning exercises for retailers where conservative estimates of the

demand functions can be made by following the approach introduced in this paper. Note also

that the estimates could be improved with knowledge of the actual stock levels, Ci j , which were

assumed to be practically infinite in this series of experiments.

7.5 Induced Censoring
Given that we have established that our assumption about the demand data being Poisson is

reasonable for the Walmart data, we next investigate whether the original data parameters can be

learned after some induced artificial censoring. We censor the observations by choosing a stocking

level, Ci j , which is not as large as the one chosen in the experiments described earlier. Eventually,

we learn the parameters
ˆλi j as estimates of the true demand distributions.

We choosemild and significant censoring. For themild censoring situationwe setCi j = 0.4(maxi .j Yi j )
and significant censoring where we set Ci j = 0.2(maxi .j Yi j ). The stocking levels, Ci j , are all set to
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Fig. 11. Mild induced censoring. For the Walmart sales data across 45 stores and 143 weeks. Department = 79. The
plot shows RMSE(Λ̂) vs p . The RMSE is obtained between the estimated ˆΛ and the original observations Y . We keep
Ci j = 0.4(maxi .j Yi j ) for all i, j . The plots show the RMSE values for the entire matrix Λ̂ and also for only those values
that were hidden (due to our choice of p).

Fig. 12. Significant induced censoring. For the Walmart sales data across 45 stores and 143 weeks. Department = 79.
The plot shows RMSE(Λ̂) vs p . The RMSE is obtained between the estimated ˆΛ and the original observations Y . We keep
Ci j = 0.2(maxi .j Yi j ) for all i, j . The plots show the RMSE values for the entire matrix Λ̂ and also for only those values
that were hidden (due to our choice of p).

the same value within each experiment. We note that the mild censoring situation ends up censoring

about 30% of the entries in the original Walmart dataset, department 79. In the significant censoring

case we notice about 66% of the entries experiencing censoring. Figures 11 (mild-censoring) and

12 (significant censoring) show the plots obtained for RMSE( ˆΛ) with reference to the Walmart

data observations. Compare these plots to Figure 8, while noticing the scale differences on the

vertical axis, which shows the same plots for the situation with no censoring. As the amount

of (induced) censoring is increased the RMSE values increase confirming our intuition from the

simulated experiments that the estimates get worse with censoring.

8 DISCUSSION
Estimation of true demand parameters from noisy, incomplete and censored sales data is a problem

of significant interest. We present a novel approach to estimating the true demand parameters from

a single sample of a matrix of observations across N stores and for T time periods. We assume that
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the demand at each location and time period is distributed as a Poisson random variable. We model

the demand with independent, but not identical, Poisson random variables in a latent variable

setting. This allows us to present a spectral algorithm to estimate the true parameters from the

matrix of observations. Note that our approach is not restricted to Poisson random variables. See

Appendix A for an example with a different distribution. However, if a practitioner’s assumption

about the true demand distribution is incorrect, the procedure suggested here will produce an error

quantifying which is not the subject of this work. We show that our estimates for the censored

means and the true demand parameters are consistent, i.e. the average expected MSE → 0 as

N ,T →∞. Further, we show that as the degree of censoring increases the estimates become poorer

and establish this analytically and with the help of simulations. Finally, we conduct a series of

experiments on a real-world dataset with Walmart’s sales data and conclude that our approach has

great practical value.
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Appendices
A OTHER PROBABILITY DISTRIBUTIONS
As discussed earlier, our setting is not limited to situations where the demand is distributed as

Poisson. While Poisson-distributed demand is natural for the retail setting, other applications may

warrant data distributed differently. While different distributions will lead to different forms and

constants in the results derived earlier, our approach will extend to any probability distribution

that allows the following to hold:

(i). Censored mean as a function of parameters and C. As discussd in Section 5.1.1, the cen-

sored mean,mi j must be a function of the parameters of the distribution and the stocking levels,

Ci j . We also require that this function be continuous and differentiable in all parameters, given

Ci j .

(ii). Parameters as functions of location and time.We require that the parameters be functions

of hidden variables of time, θi , and location, ρ j . In other others, if the d-dimensional parameters

are represented by λdi j , then we must have λdi j = h(θi , ρ j ). For a direct application of Lemma 4.1,

we require that h(θi , ρ j ) be Lipschitz and P(Ci j = k) also be a Lipschitz function of θi , ρ j .

As an example of a distribution other than Poisson, consider that the demand at each location i and
time period j is distribution as a Binomial distribution with a known parameter ni j and unknown

parameter λi j . We have that Yi j ∼ Binomial(ni j , λi j ). As usual, we define Xi j = min{Yi j ,Ci j } and

each Xi j is observed with probability p ∈ (0, 1]. The censored means are defined asmi j = E(Xi j ). It

is straight forward to show that, ignoring the subscripts for simplicity,m = f (λ,n,C), noting that

we have assumed that n is a known (scaling) constant.

m ≡ E[X ]

=

C−1∑
k=0

kP(Y = k) +C
( ∞∑
k=C

P(Y = k)
)

=

∞∑
k=0

kP(Y = k) −
∞∑

k=C

(k −C)P(Y = k)

= E[Y ] −
∞∑

k=C

(k −C)P(Y = k)

= nλ −
∞∑

k=C

(k −C)

(
n

k

)
λk (1 − λ)(n−k )

≡ f (λ,n,C). (49)

We can see that f (.) is continuous in the parameter λi j , given Ci j and ni j . This satisfies the first
assumption stated above. If the conditions stated in the second assumptions hold then similar to

the Poisson case we can show that f (θi , ρ j ) is Lipschitz continuous in the latent parameters. The

algorithm described in Section 3 can then be used to compute the estimates of censored means,

m̂i j , and original parameters,
ˆλi j . In this case, the results stated in Section 4 are directly applicable.

B USVT VS GSBM ALGORITHM
We choose the USVT Algorithm of [7] for Step 1 of our Algorithm. The USVT algorithm is a

spectral thresholding algorithm and there are several competing spectral algorithms in literature
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which could also be considered. However, the USVT algorithm is attractive due to its universal
nature–it proposes a threshold whereas several others in literature do not prescribe one, i.e. they are

existential in nature. Secondly, the USVT algorithm is applicable to symmetric and non-symmetric

matrices whereas several other algorithms in literature deal specifically with symmetric ones.

Finally, the USVT is a computationally efficient algorithm within the class of spectral methods.

For comparison, we consider the Generalized Stochastic Block Model (GSBM) algorithm proposed

in [16]. Since this algorithm is only applicable to symmetric matrices, our comparisons with the

USVT algorithm consider only symmetric matrices. We consider the following setting:

We generate N parameters, θ , and keep them fixed. In this case θi ∼ Uni f orm(0, 1), 1 ≤ i ≤ N . We

let α ∼ Uni f orm(0, 1). Next, we generate the following probabilities of edges between each pair of

vertices:

pi j =
1

1 + exp{ fi j }
, 1 ≤ i, j ≤ N ,

where

fi j = exp{−θi − θ j − αθiθ j }

Edges, ei j ∈ {0, 1} are then generated for the graph using the interaction (edge) probabilities pi j .
Further, each realization of an edge is observed with probability p. The generated realization of

edges is our graph, G.
In our implementation, we set the following GSBM algorithm specific parameters [16]:

ϵ =
1

2

median{| |zi − zj | |}

and,

hϵ (x) = min{1,max{0, 2 −
x

ϵ
}}

The number of eigenvalues retained is kept to be the same as the number chosen by the USVT

algorithm since [16] does not provide a guideline for choosing how many to retain. The only USVT

algorithm specific parameter [7] is η = 0.01.
We conduct two types of comparison experiments: (a) fix the (symmetric) dimension, N , of the

matrix, G, and vary the probability of observation, p; (b) keep the p fixed and vary the dimension

of the matrix. In each case, the metric of interest is the averageMSE(Ĝ) with respect to G. Figures
13 and 14 show the average MSE produced by each algorithm for the experiments (a) and (b). We

conclude that the USVT algorithm is a better choice. It is also more versatile (applicable to non-

symmetric settings), prescriptive (specifies exactly what threshold to choose) and is computationally

far superior.

Fig. 13. AverageMSE vs the probability of observation for the two algorithms under consideration. The size
of matrix is fixed to 80x80. Note that the USVT algorithm is comparatively better at all p.
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Fig. 14. AverageMSE vs the size of the (symmetric) matrix for the two algorithms under consideration. The
probability of observation, p = 1.0. Note that the USVT algorithm performs comparatively better at all but
the smallest matrix size.
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