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Abstract

We present a robust generalization of the synthetic control method for comparative case
studies. Like the classical method cf. Abadie and Gardeazabal (2003), we present an
algorithm to estimate the unobservable counterfactual of a treatment unit. A distinguishing
feature of our algorithm is that of de-noising the data matrix via singular value thresholding,
which renders our approach robust in multiple facets: it automatically identifies a good
subset of donors for the synthetic control, overcomes the challenges of missing data, and
continues to work well in settings where covariate information may not be provided. We
posit that the setting can be viewed as an instance of the Latent Variable Model and provide
the first finite sample analysis (coupled with asymptotic results) for the estimation of the
counterfactual. Our algorithm accurately imputes missing entries and filters corrupted
observations in producing a consistent estimator of the underlying signal matrix, provided
p = Ω(T−1+ζ) for some ζ > 0; here, p is the fraction of observed data and T is the time
interval of interest. Under the same proportion of observations, we demonstrate that the
mean-squared error in our counterfactual estimation scales as O(σ2/p+ 1/

√
T ), where σ2

is the variance of the inherent noise. Additionally, we introduce a Bayesian framework to
quantify the estimation uncertainty. Our experiments, using both synthetic and real-world
datasets, demonstrate that our robust generalization yields an improvement over the classical
synthetic control method.

Keywords: Observation Studies, Causal Inference, Matrix Estimation

1. Introduction

On November 8, 2016 in the aftermath of several high profile mass-shootings, voters in California
passed Proposition 63 in to law BallotPedia (2016). Prop. 63 “outlaw[ed] the possession of ammunition
magazines that [held] more than 10 rounds, requir[ed] background checks for people buying bullets,”
and was proclaimed as an initiative for “historic progress to reduce gun violence” McGreevy (2016).
Imagine that we wanted to study the impact of Prop. 63 on the rates of violent crime in California.
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Randomized control trials, such as A/B testings, have been successful in establishing effects of
interventions by randomly exposing segments of the population to various types of interventions.
Unfortunately, a randomized control trial is not applicable in this scenario since only one California
exists. Instead, a statistical comparative study could be conducted where the rates of violent crime
in California are compared to a “control” state after November 2016, which we refer to as the
post-intervention period. To reach a statistically valid conclusion, however, the control state must be
demonstrably similar to California sans the passage of a Prop. 63 style legislation. In general, there
may not exist a natural control state for California, and subject-matter experts tend to disagree on
the most appropriate state for comparison.

As a suggested remedy to overcome the limitations of a classical comparative study outlined
above, Abadie et al. proposed a powerful, data-driven approach to construct a “synthetic” control
unit absent of intervention Abadie et al. (2010); Abadie and Gardeazabal (2003); Abadie et al.
(2011). In the example above, the synthetic control method would construct a “synthetic” state
of California such that the rates of violent crime of that hypothetical state would best match the
rates in California before the passage of Prop. 63. This synthetic California can then serve as a
data-driven counterfactual for the period after the passage of Prop. 63. Abadie et al. propose to
construct such a synthetic California by choosing a convex combination of other states (donors) in
the United States. For instance, synthetic California might be 80% like New York and 20% like
Massachusetts. This approach is nearly entirely data-driven and appeals to intuition. For optimal
results, however, the method still relies on subjective covariate information, such as employment
rates, and the presence of domain “experts” to help identify a useful subset of donors. The approach
may also perform poorly in the presence of non-negligible levels of noise and missing data.

1.1 Overview of main contributions.

As the main result, we propose a simple, two-step robust synthetic control algorithm, wherein the
first step de-noises the data and the second step learns a linear relationship between the treated
unit and the donor pool under the de-noised setting. The algorithm is robust in two senses: first,
it is fully data-driven in that it is able to find a good donor subset even in the absence of helpful
domain knowledge or supplementary covariate information; and second, it provides the means to
overcome the challenges presented by missing and/or noisy observations. As another important
contribution, we establish analytic guarantees (finite sample analysis and asymptotic consistency) –
that are missing from the literature – for a broader class of models.

Robust algorithm. A distinguishing feature of our work is that of de-noising the observation data
via singular value thresholding. Although this spectral procedure is commonplace in the matrix
completion arena, it is novel in the realm of synthetic control. Despite its simplicity, however,
thresholding brings a myriad of benefits and resolves points of concern that have not been previously
addressed. For instance, while classical methods have not even tackled the obstacle of missing data,
our approach is well equipped to impute missing values as a consequence of the thresholding procedure.
Additionally, thresholding can help prevent the model from overfitting to the idiosyncrasies of the
data, providing a knob for practitioners to tune the “bias-variance” trade-off of their model and, thus,
reduce their mean-squared error (MSE). From empirical studies, we hypothesize that thresholding
may possibly render auxiliary covariate information (vital to several existing methods) a luxury as
opposed to a necessity. However, as one would expect, the algorithm can only benefit from useful
covariate and/or “expert” information and we do not advocate ignoring such helpful information, if
available.

In the spirit of combatting overfitting, we extend our algorithm to include regularization tech-
niques such as ridge regression and LASSO. We also move beyond point estimates in establishing
a Bayesian framework, which allows one to quantitatively compute the uncertainty of the results
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through posterior probabilities.

Theoretical performance. To the best of our knowledge, ours is the first to provide finite sample
analysis of the MSE for the synthetic control method, in addition to guarantees in the presence
of missing data. Previously, the main theoretical result from the synthetic control literature (cf.
Abadie et al. (2010); Abadie and Gardeazabal (2003); Abadie et al. (2011)) pertained to bounding
the bias of the synthetic control estimator; however, the proof of the result assumed that the latent
parameters, which live in the simplex, have a perfect pre-treatment match in the noisy predictor
variables – our analysis, on the other hand, removes this assumption. We begin by demonstrating
that our de-noising procedure produces a consistent estimator of the latent signal matrix (Theorems
4.1, 4.2), proving that our thresholding method accurately imputes and filters missing and noisy
observations, respectively. We then provide finite sample analysis that not only highlights the value
of thresholding in balancing the inherent “bias-variance” trade-off of forecasting, but also proves that
the prediction efficacy of our algorithm degrades gracefully with an increasing number of randomly
missing data (Theorems 4.3, 4.6, and Corollary 4.1). Further, we show that a computationally
beneficial pre-processing data aggregation step allows us to establish the asymptotic consistency of
our estimator in generality (Theorem 4.4).

Additionally, we prove a simple linear algebraic fact that justifies the basic premise of synthetic
control, which has not been formally established in literature, i.e. the linear relationship between the
treatment and donor units that exists in the pre-intervention continues to hold in post-intervention
period (Theorem 4.5). We introduce a latent variable model, which subsumes many of the models
previously used in literature (e.g. econometric factor models). Despite this generality, a unifying
theme that connects these models is that they all induce (approximately) low rank matrices, which is
well suited for our method.

Experimental results. We conduct two sets of experiments: (a) on existing case studies from real
world datasets referenced in Abadie et al. (2010, 2011); Abadie and Gardeazabal (2003), and (b) on
synthetically generated data. Remarkably, while Abadie et al. (2010, 2011); Abadie and Gardeazabal
(2003) use numerous covariates and employ expert knowledge in selecting their donor pool, our
algorithm achieves similar results without any such assistance; additionally, our algorithm detects
subtle effects of the intervention that were overlooked by the original synthetic control approach.
Since it is impossible to simultaneously observe the evolution of a treated unit and its counterfactual,
we employ synthetic data to validate the efficacy of our method. Using the MSE as our evaluation
metric, we demonstrate that our algorithm is robust to varying levels of noise and missing data,
reinforcing the importance of de-noising.

1.2 Related work.

Synthetic control has received widespread attention since its conception by Abadie and Gardeazabal
in their pioneering work Abadie and Gardeazabal (2003); Abadie et al. (2010). It has been employed
in numerous case studies, ranging from criminology Saunders et al. (2014) to health policy Kreif
et al. (2015) to online advertisement to retail; other notable studies include Abadie et al. (2014);
Billmeier and Nannicini (2013); Adhikari and Alm (2016); Aytug et al. (2016). In their paper on
the state of applied econometrics for causality and policy evaluation, Athey and Imbens assert that
synthetic control is “one of the most important development[s] in program evaluation in the past
decade” and “arguably the most important innovation in the evaluation literature in the last fifteen
years” Athey and Imbens (2016). In a somewhat different direction, Hsiao et al. introduce the panel
data method Hsiao (2014); Hsiao et al. (2011), which seems to have a close bearing with some of the
approaches of this work. In particular, to learn the weights of the synthetic control, Hsiao (2014);
Hsiao et al. (2011) solve an ordinary least squares problem of Y on X̃, where Y is the data for the
outcome variable of the treatment unit and X̃ includes other variables, e.g. covariates, and the
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outcome variable data from the donor units. However, Hsiao (2014); Hsiao et al. (2011) restrict the
subset of possible controls to units that are within the geographical or economic proximity of the
treated unit. Therefore, there is still some degree of subjectivity in the choice of the donor pool. In
addition, Hsiao (2014); Hsiao et al. (2011) do not include a “de-noising” step, which is a key feature
of our approach. For an empirical comparison between the synthetic control and panel data methods,
see Gardeazabal and Vega-Bayo (2016). It should be noted that Gardeazabal and Vega-Bayo (2016)
also adapts the panel data method to automate the donor selection process. In this comparison
study, the authors conclude that neither the synthetic control method nor the panel data method is
vastly superior to the other. They suggest that the synthetic control method may be more useful
when there are more time periods and covariates. However, when there is a poor pre-treatment
match, the synthetical control method is not feasible while the panel data method can still be used,
even though it may suffer from some extrapolation bias. But when a good pre-intervention match is
found, the authors conclude that the synthetic control method tends to produce lower MSE, MAPE
and mean-error. However, in another comparison study, Wan et al. (2018) compare and contrast
the assumptions of both methods and note that the panel data method appears to outperform the
synthetic control method in a majority of the simulations they conducted.

Among other notable bodies of work, Doudchenko and Imbens (2016) allows for an additive
difference between the treated unit and donor pool, similar to the difference-in-differences (DID)
method. Moreover, similar to our exposition, Doudchenko and Imbens (2016) relaxes the convexity
aspect of synthetic control and proposes an algorithm that allows for unrestricted linearity as well
as regularization. In an effort to infer the causal impact of market interventions, Brodersen et al.
(2015) introduce yet another evaluation methodology based on a diffusion-regression state-space
model that is fully Bayesian; similar to Abadie et al. (2010); Abadie and Gardeazabal (2003); Hsiao
(2014); Hsiao et al. (2011), their model also generalizes the DID procedure. Due to the subjectivity in
the choice of covariates and predictor variables, Ferman et al. (2016) provides recommendations for
specification-searching opportunities in synthetic control applications. The recent work of Xu (2017)
extends the synthetic control method to allow for multiple treated units and variable treatment
periods as well as the treatment being correlated with unobserved units. Similar to our work, Xu
(2017) computes uncertainty estimates; however, while Xu (2017) obtains these measurements via a
parametric bootstrap procedure, we obtain uncertainty estimates under a Bayesian framework.

Matrix completion and factorization approaches are well-studied problems with broad applications
(e.g. recommendation systems, graphon estimation, etc.). As shown profusely in the literature,
spectral methods, such as singular value decomposition and thresholding, provide a procedure to
estimate the entries of a matrix from partial and/or noisy observations Candès and Recht (2008).
With our eyes set on achieving “robustness”, spectral methods become particularly appealing since
they de-noise random effects and impute missing information within the data matrix Jha et al. (2010).
For a detailed discussion on the topic, see Chatterjee (2015); for algorithmic implementations, see
Mazumder et al. (2010) and references there in. We note that our goal differs from traditional matrix
completion applications in that we are using spectral methods to estimate a low-rank matrix, allowing
us to determine a linear relationship between the rows of the mean matrix. This relationship is then
projected into the future to determine the counterfactual evolution of a row in the matrix (treated
unit), which is traditionally not the goal in matrix completion applications. Another line of work
within this arena is to impute the missing entries via a nearest neighbor based estimation algorithm
under a latent variable model framework Lee et al. (2016); Borgs et al. (2017).

There has been some recent work in using matrix norm methods in relation to causal inference,
including for synthetic control. In Athey et al. (2017), the authors use matrix norm regularization
techniques to estimate counterfactuals for panel data under settings that rely on the availability of a
large number of units relative to the number of factors or characteristics, and under settings that
involve limited number of units but plenty of history (synthetic control). This is different from our
approach, which increases robustness by “de-noising” using matrix completion methods, and then
using linear regression on the de-noised matrix, instead of relying on matrix norm regularizations.
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Despite its popularity, there has been less theoretical work in establishing the consistency of
the synthetic control method or its variants. Abadie et al. (2010) demonstrates that the bias
of the synthetic control estimator can be bounded by a function that is close to zero when the
pre-intervention period is large in relation to the scale of the transitory shocks, but under the
additional condition that a perfect convex match between the pre-treatment noisy outcome and
covariate variables for the treated unit and donor pool exists. Ferman and Pinto (2016) relaxes
the assumption in Abadie et al. (2010), and derives conditions under which the synthetic control
estimator is asymptotically unbiased under non-stationarity conditions. To our knowledge, however,
no prior work has provided finite-sample analysis, analyzed the performance of these estimators
with respect to the mean-squared error (MSE), established asymptotic consistency, or addressed the
possibility of missing data, a common handicap in practice.

2. Background

2.1 Notation.

We will denote R as the field of real numbers. For any positive integer N , let [N ] = {1, . . . , N}.
For any vector v ∈ Rn, we denote its Euclidean (`2) norm by ‖v‖2, and define ‖v‖22 =

∑n
i=1 v

2
i . We

define its infinity norm as ‖v‖∞ = maxi |vi|. In general, the `p norm for a vector v is defined as

‖v‖p =
(∑n

i=1 |vi|
p
)1/p

. Similarly, for an m× n real-valued matrix A = [Aij ], its spectral/operator

norm, denoted by ‖A‖2, is defined as ‖A‖2 = max1≤i≤k |σi|, where k = min{m,n} and σi are the
singular values of A. The Moore-Penrose pseudoinverse A† of A is defined as

A† =
k∑
i=1

(1/σi)yix
T
i , where A =

k∑
i=1

σixiy
T
i , (1)

with xi and yi being the left and right singular vectors of A, respectively. We will adopt the
shorthand notation of ‖·‖ ≡ ‖·‖2. To avoid any confusions between scalars/vectors and matrices, we
will represent all matrices in bold, e.g. A.

Let f and g be two functions defined on the same space. We say that f(x) = O(g(x)) and
f(x) = Ω(g(x)) if and only if there exists a positive real number M and a real number x0 such that
for all x ≥ x0,

|f(x)| ≤M |g(x)| and |f(x)| ≥M |g(x)|, (2)

respectively.

2.2 Model.

The data at hand is a collection of time series with respect to an aggregated metric of interest (e.g.
violent crime rates) comprised of both the treated unit and the donor pool outcomes. Suppose we
observe N ≥ 2 units across T ≥ 2 time periods. We denote T0 as the number of pre-intervention
periods with 1 ≤ T0 < T , rendering T − T0 as the length of the post-intervention stage. Without loss
of generality, let the first unit represent the treatment unit – exposed to the intervention of interest
at time t = T0 + 1. The remaining donor units, 2 ≤ i ≤ N , are unaffected by the intervention for the
entire time period [T ] = {1, . . . , T}.

Let Xit denote the measured value of metric for unit i at time t. We posit

Xit = Mit + εit, (3)

where Mit is the deterministic mean while the random variables εit represent zero-mean noise that
are independent across i, t. Following the philosophy of latent variable models Chatterjee (2015); Lee
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et al. (2016); Aldous (1981); Hoover (1979, 1981), we further posit that for all 2 ≤ i ≤ N , t ∈ [T ]

Mit = f(θi, ρt), (4)

where θi ∈ Rd1 and ρt ∈ Rd2 are latent feature vectors capturing unit and time specific information,
respectively, for some d1, d2 ≥ 1; the latent function f : Rd1 × Rd2 → R captures the model
relationship. We note that this formulation subsumes popular econometric factor models, such as the
one presented in Abadie et al. (2010), as a special case with (small) constants d1 = d2 and f as a
bilinear function.

The treatment unit obeys the same model relationship during the pre-intervention period. That
is, for t ≤ T0

X1t = M1t + ε1t, (5)

where M1t = f(θ1, ρt) for some latent parameter θ1 ∈ Rd1 . If unit one was never exposed to the
intervention, then the same relationship as (5) would continue to hold during the post-intervention
period as well. In essence, we are assuming that the outcome random variables for all unaffected
units follow the model relationship defined by (5) and (3). Therefore, the “synthetic control” would
ideally help estimate the underlying counterfactual means M1t = f(θ1, ρt) for T0 < t ≤ T by using an
appropriate combination of the post-intervention observations from the donor pool since the donor
units are immune to the treatment.

To render this feasible, we make the key operating assumption (as done similarly in literature cf.
Abadie et al. (2010, 2011); Abadie and Gardeazabal (2003)) that the mean vector of the treatment
unit over the pre-intervention period, i.e. the vector M−1 = [M1t]t≤T0

, lies within the span of the
mean vectors within the donor pool over the pre-intervention period, i.e. the span of the donor mean
vectors M−i = [Mit]2≤i≤N,t≤T0

1. More precisely, we assume there exists a set of weights β∗ ∈ RN−1

such that for all t ≤ T0,

M1t =
N∑
i=2

β∗iMit. (6)

This is a reasonable and intuitive assumption, utilized in literature, hypothesizing that the treatment
unit can be modeled as some combination of the donor pool. In fact, the set of weights β∗ are the
very definition of a synthetic control. Note, however, that in contrast to Abadie et al. (2010, 2011);
Abadie and Gardeazabal (2003), we do not constrain the weights to be non-negative and sum to 1.
This may reduce the interpretability of the synthetic control produced. We discuss ways to increase
interpretability using our method in Section 3.4.2.

In order to distinguish the pre- and post-intervention periods, we use the following notation for
all (donor) matrices: A = [A−,A+], where A− = [Aij ]2≤i≤N,j∈[T0] and A+ = [Aij ]2≤i≤N,T0<j≤T
denote the pre- and post-intervention submatrices, respectively; vectors will be defined in the same
manner, i.e. Ai = [A−i , A

+
i ], where A−i = [Ait]t∈[T0] and A+

i = [Ait]T0<t≤T denote the pre- and
post-intervention subvectors, respectively, for the ith donor. Moreover, we will denote all vectors
related to the treatment unit with the subscript “1”, e.g. A1 = [A−1 , A

+
1 ].

In contrast with the classical synthetic control work, we allow our model to be robust to incomplete
observations. To model randomly missing data, the algorithm observes each data point Xit in the
donor pool with probability p ∈ (0, 1], independently of all other entries. While the assumption that
p is constant across all rows and columns of our observation matrix is standard in literature, our
results remain valid even in situations where the probability of observation is dependent on the row

1. We note that this is a minor departure from the literature on synthetic control starting in Abadie and
Gardeazabal (2003) – in literature, the pre-intervention noisy observation (rather than the mean) vector
X1, is assumed to be a convex (rather than linear) combination of the noisy donor observations. We
believe our setup is more reasonable since we do not want to fit noise.
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and column latent parameters, i.e. pij = g(θi, ρj) ∈ (0, 1]. In such situations, pij can be estimated as
p̂ij using consistent graphon estimation techniques described in a growing body of literature, e.g. see
Borgs et al. (2017); Chatterjee (2015); Wolfe and Olhede; Yang et al.. These estimates can then be
used in our analysis presented in Section 4.

3. Algorithm

3.1 Intuition.

We begin by exploring the intuition behind our proposed two-step algorithm: (1) de-noising the
data: since the singular values of our observation matrix, X = [Xit]2≤i≤N,t∈[T ], encode both signal
and noise, we aim to discover a low rank approximation of X that only incorporates the singular
values associated with useful information; simultaneously, this procedure will naturally impute any
missing observations. We note that this procedure is similar to the algorithm proposed in Chatterjee
(2015). (2) learning β∗: using the pre-intervention portion of the de-noised matrix, we learn the linear
relationship between the treatment unit and the donor pool prior to estimating the post-intervention
counterfactual outcomes. Since our objective is to produce accurate predictions, it is not obvious why
the synthetic treatment unit should be a convex combination of its donor pool as assumed in Abadie
et al. (2010); Abadie and Gardeazabal (2003); Abadie et al. (2014). In fact, one can reasonably
expect that the treatment unit and some of the donor units may exhibit negative correlations with
one another. In light of this intuition, we learn the optimal set of weights via linear regression,
allowing for both positive and negative elements.

3.2 Robust algorithm (algorithm 1).

We present the details of our robust method in Algorithm 1 below. The algorithm utilizes two
hyperparameters: (1) a thresholding hyperparameter µ ≥ 0, which serves as a knob to effectively
trade-off between the bias and variance of the estimator, and (2) a regularization hyperameter η ≥ 0
that controls the model complexity. We discuss the procedure for determining the hyperparameters
in Section 3.4. To simplify the exposition, we assume the entries of X are bounded by one in absolute
value, i.e. |Xit| ≤ 1.

3.3 Bayesian algorithm: measuring uncertainty (algorithm 2).

In order to quantitatively assess the uncertainty of our model, we will transition from a frequentist
perspective to a Bayesian viewpoint. As commonly assumed in literature, we consider a zero-mean,
isotropic Gaussian noise model (i.e. ε∼N (0, σ2I)) and use the square loss for our cost function. We
present the Bayesian method as Algorithm 2. Note that we perform step one of our robust algorithm
exactly as in Algorithm 1; as a result, we only detail the alterations of step two in the Bayesian
version (Algorithm 2).

3.4 Algorithmic features: the fine print.

3.4.1 Bounded entries transformation.

Several of our results, as well as the algorithm we propose, assume that the observation matrix
is bounded such that |Xit| ≤ 1. For any data matrix, we can achieve this by using the following
pre-processing transformation: suppose the entries of X belong to an interval [a, b]. Then, one can
first pre-process the matrix X by subtracting (a+ b)/2 from each entry, and dividing by (b− a)/2 to
enforce that the entries lie in the range [−1, 1]. The reverse transformation, which can be applied at
the end of the algorithm description above, returns a matrix with values contained in the original
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Algorithm 1 Robust synthetic control

Step 1. De-noising the data: singular value thresholding (inspired by Chatter-
jee (2015)).

1. Define Y = [Yit]2≤i≤N,t∈[T ] with

Yit =

{
Xit if Xit is observed,

0 otherwise.
(7)

2. Compute the singular value decomposition of Y :

Y =

N−1∑
i=1

siuiv
T
i . (8)

3. Let S = {i : si ≥ µ} be the set of singular values above the threshold µ.

4. Define the estimator of M as

M̂ =
1

p̂

∑
i∈S

siuiv
T
i , (9)

where p̂ is the maximum of the fraction of observed entries in X and 1
(N−1)T .

Step 2. Learning and projecting

1. For any η ≥ 0, let

β̂(η) = arg min
v∈RN−1

∥∥∥Y −1 − (M̂−)T v
∥∥∥2 + η‖v‖2. (10)

2. Define the counterfactual means for the treatment unit as

M̂1 = M̂T β̂(η). (11)
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Algorithm 2 Bayesian robust synthetic control

Step 2. Learning and projecting

1. Estimate the noise variance via (bias-corrected) maximum likelihood, i.e.

σ̂2 =
1

T0 − 1

T0∑
t=1

(Y1t − Ȳ )2, (12)

where Ȳ denotes the pre-intervention sample mean.

2. Compute posterior distribution parameters for an appropriate choice of the prior α:

ΣD =
( 1

σ̂2
M̂−(M̂−)T + αI

)−1
(13)

βD =
1

σ̂2
ΣDM̂

−Y −1 . (14)

3. Define the counterfactual means for the treatment unit as

M̂1 = M̂TβD. (15)

4. For each time instance t ∈ [T ], compute the model uncertainty (variance) as

σ2D(M̂·,t) = σ̂2 + M̂T
·,tΣDM̂·,t, (16)

where M̂·,t = [M̂it]2≤i≤N is the de-noised vector of donor outcomes at time t.
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range. Specifically, the reverse transformation equates to multiplying the end result by (b− a)/2 and
adding by (a+ b)/2.

3.4.2 Solution interpretability.

For the practitioner who seeks a more interpretable solution, e.g. a convex combination of donors as
per the original synthetic control estimator of Abadie et al. (2010, 2011); Abadie and Gardeazabal
(2003), we recommend using an `1-regularization penalty in the learning procedure of step 2. Due
to the geometry of LASSO, the resulting estimator will often be a sparse vector; in other words,
LASSO effectively performs model selection and selects the most important donors that comprise
the synthetic control. LASSO can also be beneficial if the number of donors exceeds the number of
pre-treatment time periods. Specifically, for any η > 0, we define the LASSO estimator to be

β̂(η) = arg min
v∈RN−1

∥∥∥Y −1 − (M̂−)T v
∥∥∥2

+ η‖v‖1.

For the purposes of this paper, we focus our attention on ridge regression and provide theoretical
results in Section 4 under the `2-regularization setting. However, a closer examination of the LASSO
estimator for synthetic control methods can be found in Li and Bell (2017).

3.4.3 Choosing the hyperparameters.

Here, we discuss several approaches to choosing the hyperparameter µ for the singular values; note
that µ defines the set S that includes the singular values we wish to include in the imputation
procedure. If it is known a priori that the underlying model is low rank with rank at most k, then
it may make sense to choose µ such that |S| = k. A data driven approach, however, could be
implemented based on cross-validation. Precisely, reserve a portion of the pre-intervention period
for validation, and use the rest of the pre-intervention data to produce an estimate β̂(η) for each of

the finitely many choices of µ (s1, . . . , sN−1). Using each estimate β̂(η), produce its corresponding
treatment unit mean vector over the validation period. Then, select the µ that achieves the minimum
MSE with respect to the observed data. Finally, Chatterjee (2015) provides a universal approach to
picking a threshold; similarly, we also propose another such universal threshold, (20), in Section 4.1.
We utilize the data driven approach in our experiments in this work.

The regularization parameter, η, also plays a crucial role in learning the synthetic control and
influences both the training and generalization errors. As is often the case in model selection, a
popular strategy in estimating the ideal η is to employ cross-validation as described above. However,
since time-series data often have a natural temporal ordering with causal effects, we also recommend
employing the forward chaining strategy. Although the forward chaining strategy is similar to
leave-one-out (LOO) cross-validation, an important distinction is that forward chaining does not
break the temporal ordering in the training data. More specifically, for a particular candidate of η
at every iteration t ∈ [T0], the learning process uses [Y11, . . . , Y1,t−1] as the training portion while
reserving Y1t as the validation point. As before, the average error is then computed and used to
evaluate the model (characterized by the choice of η). The forward chaining strategy can also be
used to learn the optimal µ.

3.4.4 Scalability.

In terms of scalability, the most computationally demanding procedure is that of evaluating the
singular value decomposition (SVD) of the observation matrix. Given the ubiquity of SVD methods
in the realm of machine learning, there are well-known techniques that enable computational and
storage scaling for SVD algorithms. For instance, both Spark (through alternative least squares)
and Tensor-Flow come with built-in SVD implementations. As a result, by utilizing the appropriate
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computational infrastructure, our de-noising procedure, and algorithm in generality, can scale quite
well. Also note that for a low rank structure, we typically only need to compute the top few singular
values and vectors. Various truncated-SVD algorithms provide resource-efficient implementations to
compute the top k singular values and vectors instead of the complete-SVD.

3.4.5 Low rank hypothesis.

The factor models that are commonly used in the Econometrics literature, cf. Abadie et al. (2010,
2011); Abadie and Gardeazabal (2003), often lead to a low rank structure for the underlying mean
matrix M . When f is nonlinear, M can still be well approximated by a low rank matrix for a large
class of functions. For instance, if the latent parameters assumed values from a bounded, compact
set, and if f was Lipschitz continuous, then it can be argued that M is well approximated by a low
rank matrix, cf. see Chatterjee (2015) for a very simple proof. As the reader will notice, while we
establish results for low rank matrix, the results of this work are robust to low rank approximations
whereby the approximation error can be viewed as “noise”. Lastly, as shown in Udell and Townsend
(2017), many latent variable models can be well approximated (up to arbitrary accuracy ε) by low
rank matrices. Specifically, Udell and Townsend (2017) shows that the corresponding low rank
approximation matrices associated with “nice” functions (e.g. linear functions, polynomials, kernels,
etc.) are of log-rank.

3.4.6 Covariate information.

Although the algorithm does not appear to rely on any helpful covariate information and the
experimental results, presented in Section 5, suggest that it performs on par with that of the original
synthetic control algorithm, we want to emphasize that we are not suggesting that practitioners should
abandon the use of any additional covariate information or the application of domain knowledge.
Rather, we believe that our key algorithmic feature – the de-noising step – may render covariates
and domain expertise as luxuries as opposed to necessities for many practical applications. If
the practitioner has access to supplementary predictor variables, we propose that step one of our
algorithm be used as a pre-processing routine for de-noising the data before incorporating additional
information. Moreover, other than the obvious benefit of narrowing the donor pool, domain expertise
can also come in handy in various settings, such as determining the appropriate method for imputing
the missing entries in the data. For instance, if it is known a priori that there is a trend or periodicity
in the time series evolution for the units, it may behoove the practitioner to impute the missing
entries using “nearest-neighbors” or linear interpolation.

4. Theoretical Results

In this section, we derive the finite sample and asymptotic properties of the estimators M̂ and
M̂1. We begin by defining necessary notations and recalling a few operating assumptions prior to
presenting the results, with the corresponding proofs relegated to the Appendix. To that end, we
re-write (3) in matrix form as X = M + E, where E = [εit]2≤i≤N,t∈[T ] denotes the noise matrix.
We shall assume that the noise parameters εit are independent zero-mean random variables with
bounded second moments. Specifically, for all 2 ≤ i ≤ N, t ∈ [T ],

E[εit] = 0, and Var(εit) = σ2. (17)

We shall also assume that the treatment unit noise in (5) obeys (17). Further, we assume the
relationship in (6) holds. To simplify the following exposition, we assume that |Mij | ≤ 1 and
|Xij | ≤ 1.

As previously discussed, we evaluate the accuracy of our estimated means for the treatment unit
with respect to the deviation between M̂1 and M1 measured in `2-norm, and similarly between M̂
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and M . Additionally, we aim to establish the validity of our pre-intervention linear model assumption
(cf. (6)) and investigate how the linear relationship translates over to the post-intervention regime, i.e.
if M−1 = (M−)Tβ∗ for some β∗, does M+

1 (approximately) equal to (M+)Tβ∗? If so, under what
conditions? We present our results for the above aspects after a brief motivation of `2 regularization.

Combatting overfitting. One weapon to combat overfitting is to constrain the learning algorithm
to limit the effective model complexity by fitting the data under a simpler hypothesis. This technique
is known as regularization, and it has been widely used in practice. To employ regularization, we
introduce a complexity penalty term into the objective function (10). For a general regularizer, the
objective function takes the form

β̂(η) = arg min
v∈RN−1

∥∥∥Y −1 − (M̂−)T v
∥∥∥2

+ η
N−1∑
j=1

|vj |q, (18)

for some choice of positive constants η and q. The first term measures the empirical error of the model
on the given dataset, while the second term penalizes models that are too “complex” by controlling
the “smoothness” of the model in order to avoid overfitting. In general, the impact/trade-off of
regularization can be controlled by the value of the regularization parameter η. Via the use of
Lagrange multipliers, we note that minimizing (18) is equivalent to minimizing (10) subject to the
constraint that

N−1∑
j=1

|vj |q ≤ c,

for some appropriate value of c. When q = 2, (18) corresponds to the classical setup known as ridge
regression or weight decay. The case of q = 1 is known as the LASSO in the statistics literature; the
`1-norm regularization of LASSO is a popular heuristic for finding a sparse solution. In either case,
incorporating an additional regularization term encourages the learning algorithm to output a simpler
model with respect to some measure of complexity, which helps the algorithm avoid overfitting to the
idiosyncrasies within the observed dataset. Although the training error may suffer from the simpler
model, empirical studies have demonstrated that the generalization error can be greatly improved
under this new setting. Throughout this section, we will primarily focus our attention on the case of
q = 2, which maintains our learning objective to be (convex) quadratic in the parameter v so that its
exact minimizer can be found in closed form:

β̂(η) =
(
M̂−(M̂−)T + ηI

)−1

M̂−Y −1 . (19)

4.1 Imputation analysis.

In this section, we highlight the importance of our de-noising procedure and prescribe a universal
threshold (similar to that of Chatterjee (2015)) that dexterously distinguishes signal from noise,
enabling the algorithm to capture the appropriate amount of useful information (encoded in the
singular values of Y ) while discarding out the randomness. Due to its universality, the threshold
naturally adapts to the amount of structure within M in a purely data-driven manner. Specifically,
for any choice of ω ∈ (0.1, 1), we find that choosing

µ = (2 + ω)
√
T (σ̂2p̂+ p̂(1− p̂)), (20)

results in an estimator with strong theoretical properties for both interpolation and extrapolation
(discussed in Section 4.2). Here, p̂ and σ̂2 denote the unbiased maximum likelihood estimates of p
and σ2, respectively, and can be computed via (9) and (12).
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The following Theorems (adapted from Theorems 2.1 and 2.7 of Chatterjee (2015)) demonstrate
that Step 1 of our algorithm (detailed in Section 3.2) accurately imputes missing entries within
our data matrix X when the signal matrix M is either low rank or generated by an L-Lipschitz
function. In particular, Theorems 4.1 and 4.2 state that Step 1 produces a consistent estimator of
the underlying mean matrix M with respect to the (matrix) mean-squared-error, which is defined as

MSE(M̂) = E

[
1

(N − 1)T

N∑
i=2

T∑
j=1

(M̂ij −Mij)
2

]
. (21)

We say that M̂ is a consistent estimator of M if the right-hand side of (21) converges to zero as N
and T grow without bound.

The following theorem demonstrates that M̂ is a good estimate of M when M is a low rank
matrix, particularly when the rank of M is small compared to (N − 1)p.

Theorem 4.1. (Theorem 2.1 of Chatterjee (2015)) Suppose that M is rank k. Suppose that

p ≥ T−1+ζ

σ2+1 for some ζ > 0. Then using µ as defined in (20),

MSE(M̂) ≤ C1

√
k

(N − 1)p
+O

( 1

(N − 1)T

)
, (22)

where C1 is a universal positive constant.

Suppose that the latent row and column feature vectors, {θi} and {ρj}, belong to some bounded,
closed sets K ⊂ Rd, where d is some arbitrary but fixed dimension. If we assume f : K×K → [−1, 1]

possesses desirable smoothness properties such as Lipschitzness, then M̂ is again a good estimate of
M .

Theorem 4.2. (Theorem 2.7 of Chatterjee (2015)) Suppose f is a L-Lipschitz function. Suppose

that p ≥ T−1+ζ

σ2+1 for some ζ > 0. Then using µ as defined in (20),

MSE(M̂) ≤ C(K, d,L)
(N − 1)−

1
d+2

√
p

+O
( 1

(N − 1)T

)
, (23)

where C(K, d,L) is a constant depending on K, d, and L.

It is important to observe that the models under consideration for both Theorems 4.1 and 4.2
encompass the mean matrices, M , generated as per many of the popular Econometric factor models
often considered in literature and assumed in practice. Therefore, de-noising the data serves as an
important imputing and filtering procedure for a wide array of applications.

4.2 Forecasting analysis: pre-intervention regime.

Similar to the setting for interpolation, the prediction performance metric of interest is the average
mean-squared-error in estimating M−1 using M̂−1 . Precisely, we define

MSE(M̂−1 ) = E

[
1

T0

T0∑
t=1

(M1t − M̂1t)
2

]
. (24)

If the right-hand side of (33) approaches zero in the limit as T0 grows without bound, then we say
that M̂−1 is a consistent estimator of M−1 (note that our analysis here assumes that only T0 →∞).

In what follows, we first state the finite sample bound on the average MSE between M̂−1 and M−1
for the most generic setup (Theorem 4.3). As a main Corollary of the result, we specialize the bound
in the case where we use our prescribed universal threshold. Finally, we discuss a minor variation
of the algorithm where the data is pre-processed, and specialize the above result to establish the
consistency of our estimator (Theorem 4.4).
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4.2.1 General result.

We provide a finite sample error bound for the most generic setting, i.e. for any choice of the
threshold, µ, and regularization hyperparameter, η.

Theorem 4.3. Let S denote the set of singular values included in the imputation procedure, i.e., the
set of singular values greater than µ. Then for any η ≥ 0 and µ ≥ 0, the pre-intervention error of
the algorithm can be bounded as

MSE(M̂−1 ) ≤ C1

p2T0
E
(
λ∗ + ‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

+
2σ2|S|
T0

+
η‖β∗‖2

T0
+ C2e

−cp(N−1)T .

(25)

Here, λ1, . . . , λN−1 are the singular values of pM in decreasing order and repeated by multiplicities,
with λ∗ = maxi/∈S λi; C1, C2 and c are universal positive constants.

Bias-variance tradeoff. Let us interpret the result by parsing the terms in the error bound. The
last term decays exponentially with (N − 1)T , as long as the fraction of observed entries is such that,
on average, we see a super-constant number of entries, i.e. p(N−1)T � 1. More interestingly, the first
two terms highlight the “bias-variance tradeoff” of the algorithm with respect to the singular value
threshold µ. Precisely, the size of the set S increases with a decreasing value of the hyperparameter
µ, causing the second error term to increase. Simultaneously, however, this leads to a decrease in λ∗.
Note that λ∗ denotes the aspect of the “signal” within the matrix M that is not captured due to the
thresholding through S. On the other hand, the second term, |S|σ2/T0, represents the amount of
“noise” captured by the algorithm, but wrongfully interpreted as a signal, during the thresholding
process. In other words, if we use a large threshold, then our model may fail to capture pertinent
information encoded in M ; if we use a small threshold, then the algorithm may overfit the spurious
patterns in the data. Thus, the hyperparameter µ provides a way to trade-off “bias” (first term) and
“variance” (second term).

4.2.2 Goldilocks principle: a universal threshold.

Using the universal threshold defined in (20), we now highlight the prediction power of our estimator
for any choice of η, the regularization hyperparameter. As described in Section 4.1, the prescribed
threshold automatically captures the “correct” level of information encoded in the (noisy) singular
values of Y in a data-driven manner, dependent on the structure of M . However, unlike the
statements in Theorems 4.1 and 4.2, the following bound does not require M to be low rank or f to
be Lipschitz.

Corollary 4.1. Suppose p ≥ T−1+ζ

σ2+1 for some ζ > 0. Let T ≤ αT0 for some constant α > 1. Then
for any η ≥ 0 and using µ as defined in (20), the pre-intervention error is bounded above by

MSE(M̂−1 ) ≤ C1

p
(σ2 + (1− p)) +O(1/

√
T0), (26)

where C1 is a universal positive constant.

As an implication, if p = (1 + ϑ)
√
T0/(1 +

√
T0) and σ2 ≤ ϑ, we have that MSE(M̂−1 ) = O(1/

√
T0).

More generally, Corollary 4.1 shows that by adroitly capturing the signal, the resulting error bound
simply depends on the variance of the noise terms, σ2, and the error introduced due to missing data.
Ideally, one would hope to overcome the error term when T0 is sufficiently large. This motivates the
following setup.
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4.2.3 Consistency.

We present a straightforward pre-processing step that leads to the consistency of our algorithm. The
pre-processing step simply involves replacing the columns of X by the averages of subsets of its
columns. This admits the same setup as before, but with the variance for each noise term reduced.
An implicit side benefit of this approach is that required SVD step in the algorithm is now applied
to a matrix of smaller dimensions.

To begin, partition the T0 columns of the pre-intervention data matrix X− into ∆ blocks,
each of size τ = bT0/∆c except potentially the last block, which we shall ignore for theoretical
purposes; in practice, however, the remaining columns can be placed into the last block. Let
Bj = {(j − 1)τ + ` : 1 ≤ ` ≤ τ} denote the column indices of X− within partition j ∈ [∆]. Next, we
replace the τ columns within each partition by their average, and thus create a new matrix, X̄−,
with ∆ columns and N − 1 rows. Precisely, X̄− = [X̄ij ]2≤i≤N,j∈[∆] with

X̄ij =
1

τ

∑
t∈Bj

Xit ·Dit, (27)

where

Dit =

{
1 if Xit is observed,

0 otherwise.

For the treatment row, let X̄1j = p̂
τ

∑
t∈Bj X1t for all j ∈ [∆]2. Let M̄− = [M̄ij ]2≤i≤N,j∈[∆] with

M̄ij = E[X̄ij ] =
p

τ

∑
t∈Bj

Mit. (28)

We apply the algorithm to X̄− to produce the estimate ˆ̄M− of M̄−, which is sufficient to produce β̂(η).

This β̂(η) can be used to produce the post-intervention synthetic control means M̂+
1 = [M̂1t]T0<t≤T

in a similar manner as before 3: for T0 < t ≤ T ,

M̂1t =
N∑
i=2

β̂i(η)Xit. (29)

For the pre-intervention period, we produce the estimator ˆ̄M−1 = [ ˆ̄M1j ]j∈[∆]: for j ∈ [∆],

ˆ̄M1j =
N∑
i=2

β̂i(η) ˆ̄Mij . (30)

Our measure of estimation error is defined as

MSE( ˆ̄M−1 ) = E

[
1

∆

∆∑
j=1

(M̄1j − ˆ̄M1j)
2

]
. (31)

For simplicity, we will analyze the case where each block contains at least one entry such that X̄− is
completely observed. We now state the following result.

2. Although the statement in Theorem 4.4 assumes that an oracle provides the true p, we prescribe
practitioners to use p̂ since p̂ converges to p almost surely by the Strong Law of Large Numbers.

3. In practice, one can first de-noise X+ via step one of Section 3, and use the entries of M̂+ in (29).
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Theorem 4.4. Fix any γ ∈ (0, 1/2) and ω ∈ (0.1, 1). Let ∆ = T
1
2 +γ

0 and µ = (2+ω)
√
T 2γ

0 (σ̂2p̂+ p̂(1− p̂)).

Suppose p ≥ T−2γ
0

σ2+1 is known. Then for any η ≥ 0,

MSE( ˆ̄M−1 ) = O(T
−1/2+γ
0 ). (32)

We note that the method of (Abadie and Gardeazabal, 2003, Sec 2.3) learns the weights (here β̂(0))
by pre-processing the data. One common pre-processing proposal is to also aggregate the columns,
but the aggregation parameters are chosen by solving an optimization problem to minimize the
resulting prediction error of the observations. In that sense, the above averaging of column is a
simple, data agnostic approach to achieve a similar effect, and potentially more effectively.

4.3 Forecasting analysis: post-intervention regime.

For the post-intervention regime, we consider the average root-mean-squared-error in measuring the
performance of our algorithm. Precisely, we define

RMSE(M̂+
1 ) = E

[
1√

T − T0

(
T∑

t>T0

(M1t − M̂1t)
2

)1/2]
. (33)

The key assumption of our analysis is that the treatment unit signal can be written as a linear
combination of donor pool signals. Specifically, we assume that this relationship holds in the pre-
intervention regime, i.e. M−1 = (M−)Tβ∗ for some β∗ ∈ RN−1 as stated in (6). However, the
question still remains: does the same relationship hold for the post-intervention regime and if so,
under what conditions does it hold? We state a simple linear algebraic fact to this effect, justifying
the approach of synthetic control. It is worth noting that this important aspect has been amiss in the
literature, potentially implicitly believed or assumed starting in the work by Abadie and Gardeazabal
(2003).

Theorem 4.5. Let (6) hold for some β∗. Let rank(M−) = rank(M). Then M+
1 = (M+)Tβ∗.

If we assume that the linear relationship prevails in the post-intervention period, then we arrive at
the following error bound.

Theorem 4.6. Suppose p ≥ T−1+ζ

σ2+1 for some ζ > 0. Suppose
∥∥∥β̂(η)

∥∥∥
∞
≤ ψ for some ψ > 0. Let

α′T0 ≤ T ≤ αT0 for some constants α′, α > 1. Then for any η ≥ 0 and using µ as defined in (20),
the post-intervention error is bounded above by

RMSE(M̂+
1 ) ≤ C1√

p
(σ2 + (1− p))1/2 +

C2‖M‖√
T0

· E
∥∥∥β̂(η)− β∗

∥∥∥+O(1/
√
T0),

where C1 and C2 are universal positive constants.

Benefits of regularization. In order to motivate the use of regularization, we analyze the error
bounds of Theorems 4.3 and 4.6 to observe how the pre- and post-intervention errors react to
regularization. As seen from Theorem 4.3, the pre-intervention error increases linearly with respect
to the choice of η. Intuitively, this increase in pre-intervention error derives from the fact that
regularization reduces the model complexity, which biases the model and handicaps its ability to fit
the data. At the same time, by restricting the hypothesis space and controlling the “smoothness” of
the model, regularization prevents the model from overfitting to the data, which better equips the
model to generalize to unseen data. Therefore, a larger value of η reduces the post-intervention error.
This can be seen by observing the second error term of Theorem 4.6, which is controlled by the
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expression
∥∥∥β̂(η)− β∗

∥∥∥. In words, this error is a function of the learning algorithm used to estimate

β∗. Interestingly, Farebrother (1976) demonstrates that there exists an η > 0 such that

MSE(β̂(η)) ≤ MSE(β̂(0)),

without any assumptions on the rank of M̂−. In other words, Farebrother (1976) demonstrates that

regularization can decrease the MSE between β̂(η) and the true β∗, thus reducing the overall error.
Ultimately, employing ridge regression introduces extraneous bias into our model, yielding a higher
pre-intervention error. In exchange, regularization reduces the post-intervention error (due to smaller
variance).

4.4 Bayesian analysis.

We now present a Bayesian treatment of synthetic control. By operating under a Bayesian framework,
we allow practitioners to naturally encode domain knowledge into prior distributions while simultane-
ously avoiding the problem of overfitting. In addition, rather than making point estimates, we can
now quantitatively express the uncertainty in our estimates with posterior probability distributions.

We begin by treating β∗ as a random variable as opposed to an unknown constant. In this
approach, we specify a prior distribution, p(β), that expresses our apriori beliefs and preferences about
the underlying parameter (synthetic control). Given some new observation for the donor units, our
goal is to make predictions for the counterfactual treatment unit on the basis of a set of pre-intervention
(training) data. For the moment, let us assume that the noise parameter σ2 is a known quantity
and that the noise is drawn from a Gaussian distribution with zero-mean; similarly, we temporarily
assume M− is also given. Let us denote the vector of donor estimates as M·t = [Mit]2≤i≤N ; we
define X·t similarly. Denoting the pre-intervention data as D = {(Y1t,M·t) : t ∈ [T0]}, the likelihood
function p(Y −1 | β,M−) is expressed as

p(Y −1 | β,M̂−) = N ((M−)Tβ, σ2I), (34)

an exponential of a quadratic function of β. The corresponding conjugate prior, p(β), is therefore
given by a Gaussian distribution, i.e. β ∼N (β | β0,Σ0) with mean β0 and covariance Σ0. By using
a conjugate Gaussian prior, the posterior distribution, which is proportional to the product of the
likelihood and the prior, will also be Gaussian. Applying Bayes’ Theorem (derivation unveiled below
in Section G in the Appendix, we have that the posterior distribution is p(β |D) = N (βD,ΣD) where

ΣD =
(
Σ−1

0 +
1

σ2
M−(M−)T

)−1

(35)

βD = ΣD

(
1

σ2
M−Y −1 + Σ−1

0 β0

)
. (36)

For the remainder of this section, we shall consider a popular form of the Gaussian prior. In particular,
we consider a zero-mean isotropic Gaussian with the following parameters: β0 = 0 and Σ0 = α−1I for
some choice of α > 0. Since M− is unobserved by the algorithm, we use the estimated M̂−, computed
as per step one of Section 3, as a proxy; therefore, we redefine our data as D = {(Y1t, M̂·t) : t ∈ [T0]}.
Putting everything together, we have that p(β |D) = N (βD,ΣD) whereby

ΣD =
(
αI +

1

σ2
M̂−(M̂−)T

)−1

(37)

βD =
1

σ2
ΣDM̂

−Y −1 (38)

=
1

σ2

(
1

σ2
M̂−(M̂−)T + αI

)−1

M̂−Y −1 . (39)
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4.4.1 Maximum a posteriori (MAP) estimation.

By using the zero-mean, isotropic Gaussian conjugate prior, we can derive a point estimate of β∗

by maximizing the log posterior distribution, which we will show is equivalent to minimizing the
regularized objective function of (10) for a particular choice of η. In essence, we are determining the

optimal β̂ by finding the most probable value of β∗ given the data and under the influence of our
prior beliefs. The resulting estimate is known as the maximum a posteriori (MAP) estimate.

We begin by taking the log of the posterior distribution, which gives the form

ln p(β |D) = − 1

2σ2

∥∥∥Y −1 − (M̂−)Tβ
∥∥∥2

− α

2
‖β‖2 + const.

Maximizing the above log posterior then equates to minimizing the quadratic regularized error (10)

with η = ασ2. We define the MAP estimate, β̂MAP, as

β̂MAP = arg max
β∈RN−1

ln p(β |D)

= arg min
β∈RN−1

1

2

∥∥∥Y −1 − (M̂−)Tβ
∥∥∥2

+
ασ2

2
‖β‖2

=
(
M̂−(M̂−)T + ασ2I

)−1

M̂−Y −1 . (40)

With the MAP estimate at hand, we then make predictions of the counterfactual as

M̂1 = M̂T β̂MAP. (41)

Therefore, we have seen that the MAP estimation is equivalent to ridge regression since the introduc-
tion of an appropriate prior naturally induces the additional complexity penalty term.

4.4.2 Fully Bayesian treatment.

Although we have treated β∗ as a random variable attached with a prior distribution, we can
venture beyond point estimates to be fully Bayesian. In particular, we will make use of the
posterior distribution over β∗ to marginalize over all possible values of β∗ in evaluating the predictive
distribution over Y −1 . We will decompose the regression problem of predicting the counterfactual
into two separate stages: the inference stage in which we use the pre-intervention data to learn
the predictive distribution (defined shortly), and the subsequent decision stage in which we use the
predictive distribution to make estimates. By separating the inference and decision stages, we can
readily develop new estimators for different loss functions without having to relearn the predictive
distribution, providing practitioners tremendous flexibility with respect to decision making.

Let us begin with a study of the inference stage. We evaluate the predictive distribution over
Y1t, which is defined as

p(Y1t | M̂·t, D) =

∫
p(Y1t | M̂·t, β) p(β |D) dβ

= N (M̂T
·t βD, σ

2
D), (42)

where

σ2
D = σ2 + M̂T

·,tΣDM̂·,t. (43)

Note that p(β |D) is the posterior distribution over the synthetic control parameter and is governed
by (37) and (39). With access to the predictive distribution, we move on towards the decision stage,
which consists of determining a particular estimate M̂1t given a new observation vector X·t (used to
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determine M̂·t). Consider an arbitrary loss function L(Y1t, g(M̂·t)) for some function g. The expected
loss is then given by

E[L] =

∫ ∫
L(Y1t, g(M̂·t)) · p(Y1t, M̂·t) dY1t dM̂·t

=

∫ (∫
L(Y1t, g(M̂·t)) · p(Y1t | M̂·t) dY1t

)
p(M̂·t) dM̂·t, (44)

and we choose our estimator ĝ(·) as the function that minimizes the average cost, i.e.,

ĝ(·) = arg min
g(·)

E[L(Y1t, g(M̂·t))]. (45)

Since p(M̂·t) ≥ 0, we can minimize (44) by selecting ĝ(M̂·t) to minimize the term within the
parenthesis for each individual value of Y1t, i.e.,

M̂1t = ĝ(M̂·t)

= arg min
g(·)

∫
L(Y1t, g(M̂·t)) · p(Y1t | M̂·t) dY1t. (46)

As suggested by (46), the optimal estimate M̂1t for a particular loss function depends on the
model only through the predictive distribution p(Y1t | M̂·t, D). Therefore, the predictive distribution
summarizes all of the necessary information to construct the desired Bayesian estimator for any given
loss function L.

4.4.3 Bayesian least-squares estimate.

We analyze the case for the squared loss function (MSE), a common cost criterion for regression
problems. In this case, we write the expected loss as

E[L] =

∫ (∫
(Y1t − g(M̂·t))

2 · p(Y1t | M̂·t) dY1t

)
p(M̂·t) dM̂·t.

Under the MSE cost criterion, the optimal estimate is the mean of the predictive distribution, also
known as the Bayes’ least-squares (BLS) estimate:

M̂1t = E[Y1t | M̂·t, D]

=

∫
Y1t p(Y1t | M̂·t, D)dY1t

= M̂T
·t βD. (47)

Remark 4.6.1. Since the noise variance σ2 is usually unknown in practice, we can introduce another
conjugate prior distribution p(β, 1/σ2) given by the Gaussian-gamma distribution. This prior yields
a Student’s t-distribution for the predictive probability distribution. Alternatively, one can estimate
σ2 via (12).

5. Experiments

We begin by exploring two real-world case studies discussed in Abadie et al. (2010, 2011); Abadie
and Gardeazabal (2003) that demonstrate the ability of the original synthetic control’s algorithm to
produce a reliable counterfactual reality. We use the same case-studies to showcase the “robustness”
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property of our proposed algorithm. Specifically, we demonstrate that our algorithm reproduces
similar results even in presence of missing data, and without knowledge of the extra covariates
utilized by prior works. We find that our approach, surprisingly, also discovers a few subtle effects
that seem to have been overlooked in prior studies. In the following empirical studies, we will employ
three different learning procedures as described in the robust synthetic control algorithm: (1) linear
regression (η = 0), (2) ridge regression (η > 0), and (3) LASSO (ζ > 0).

As described in Abadie et al. (2010, 2011, 2014), the synthetic control method allows a practitioner
to evaluate the reliability of his or her case study results by running placebo tests. One such placebo
test is to apply the synthetic control method to a donor unit. Since the control units within the
donor pool are assumed to be unaffected by the intervention of interest (or at least much less affected
in comparison), one would expect that the estimated effects of intervention for the placebo unit
should be less drastic and divergent compared to that of the treated unit. Ideally, the counterfactuals
for the placebo units would show negligible effects of intervention. Similarly, one can also perform
exact inferential techniques that are similar to permutation tests. This can be done by applying the
synthetic control method to every control unit within the donor pool and analyzing the gaps for
every simulation, and thus providing a distribution of estimated gaps. In that spirit, we present the
resulting placebo tests (for only the case of linear regression) for the Basque Country and California
Prop. 99 case studies below to assess the significance of our estimates.

We will also analyze both case studies under a Bayesian setting. From our results, we see that our
predictive uncertainty, captured by the standard deviation of the predictive distribution, is influenced
by the number of singular values used in the de-noising process. Therefore, we have plotted the
eigenspectrum of the two case study datasets below. Clearly, the bulk of the signal contained within
the datasets is encoded into the top few singular values – in particular, the top two singular values.
Given that the validation errors computed via forward chaining are nearly identical for low-rank
settings (with the exception of a rank-1 approximation), we shall use a rank-2 approximation of the
data matrix. In order to exhibit the role of thresholding in the interplay between bias and variance,
we also plot the cases where we use threshold values that are too high (bias) or too low (variance).
For each figure, the dotted blue line will represent our posterior predictive means while the shaded
light blue region spans one standard deviation on both sides of the mean. As we shall see, our
predictive uncertainty is smallest in the neighborhood around the pre-intervention period. However,
the level of uncertainty increases as we deviate from the the intervention point, which appeals to our
intuition.

In order to choose an appropriate choice of the prior parameter α, we first use forward-chaining
for the ridge regression setting to find the optimal regularization hyperparameter η. By observing
the expressions of (19) and (40), we see that η = ασ2 since ridge regression is closely related to MAP
estimation for a zero-mean, isotropic Gaussian prior. Consequently, we choose α = η/σ̂2 where η is
the value obtained via forward chaining.

5.1 Basque Country

The goal of this case-study is to investigate the effects of terrorism on the economy of Basque Country
using the neighboring Spanish regions as the control group. In 1968, the first Basque Country victim
of terrorism was claimed; however, it was not until the mid-1970s did the terrorist activity become
more rampant Abadie and Gardeazabal (2003). To study the economic ramifications of terrorism on
Basque Country, we only use as data the per-capita GDP (outcome variable) of 17 Spanish regions
from 1955-1997. We note that in Abadie and Gardeazabal (2003), 13 additional predictor variables
for each region were used including demographic information pertaining to one’s educational status,
and average shares for six industrial sectors.

Results. Figure 2a shows that our method (for all three estimators) produces a very similar
qualitative synthetic control to the original method even though we do not utilize additional predictor
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(a) Eigenspectrum of Basque data. (b) Eigenspectrum of California data.

Figure 1: Eigenspectrum

(a) Comparison of methods. (b) Missing data. (c) Impact of de-noising.

Figure 2: Trends in per-capita GDP between Basque Country vs. synthetic Basque Country.

variables. Specifically, the synthetic control resembles the observed GDP in the pre-treatment period
between 1955-1970. However, due to the large-scale terrorist activity in the mid-70s, there is a
noticeable economic divergence between the synthetic and observed trajectories beginning around
1975. This deviation suggests that terrorist activity negatively impacted the economic growth of
Basque Country.

One subtle difference between our synthetic control – for the case of linear and ridge regression –
and that of Abadie and Gardeazabal (2003) is between 1970-75: our approach suggests that there was
a small, but noticeable economic impact starting just prior to 1970, potentially due to first terrorist
attack in 1968. Notice, however, that the original synthetic control of Abadie and Gardeazabal (2003)
diverges only after 1975. Our LASSO estimator’s trajectory also agrees with that of the original
synthetic control method’s, which is intuitive since both estimators seek sparse solutions.

To study the robustness of our approach with respect to missing entries, we discard each data
point uniformly at random with probability 1 − p. The resulting control for different values of p is
presented in Figure 2b suggesting the robustness of our (linear) algorithm. Finally, we produce Figure
2c by applying our algorithm without the de-noising step. As evident from the Figure, the resulting
predictions suffer drastically, reinforcing the value of de-noising. Intuitively, using an appropriate
threshold µ equates to selecting the correct model complexity, which helps safeguard the algorithm
from potentially overfitting to the training data.

Placebo tests. We begin by applying our robust algorithm to the Spanish region of Cataluna, a
control unit that is not only similar to Basque Country, but also exposed to a much lower level of
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(a) Cataluna. (b) Aragon. (c) Castilla Y Leon.

Figure 3: Trends in per-capita GDP for placebo regions.

(a) Includes all control regions. (b) Excludes 2 regions.

Figure 4: Per-capita GDP gaps for Basque Country and control regions.

terrorism Abadie et al. (2011). Observing both the synthetic and observed economic evolutions of
Cataluna in Figure 3a, we see that there is no identifiable treatment effect, especially compared to
the divergence between the synthetic and observed Basque trajectories. We provide the results for
the regions of Aragon and Castilla Y Leon in Figures 3b and 3c.

Finally, similar to Abadie et al. (2011), we plot the differences between our estimates and the
observations for Basque Country and all other regionals, individually, as placebos. Note that Abadie
et al. (2011) excluded five regions that had a poor pre-intervention fit but we keep all regions. Figure
4a shows the resulting plot for all regions with the solid black line being Basque Country. This
plot helps visualize the extreme post-intervention divergence between the predicted means and the
observed values for Basque. Up until about 1990, the divergence for Basque Country is the most
extreme compared to all other regions (placebo studies) lending credence to the belief that the effects
of terrorism on Basque Country were indeed significant. Refer to Figure 4b for the same test but
with Madrid and Balearic Islands excluded, as per Abadie et al. (2011). The conclusions drawn
should remain the same, pointing to the robustness of our approach.

Bayesian approach. We plot the resulting Bayesian estimates in the figures below under varying
thresholding conditions. It is interesting to note that our uncertainty grows dramatically once we
include more than two singular values in the thresholding process. This confirms what our theoretical
results indicated earlier: choosing a smaller threshold, µ, would lead to a greater number of singular
values retained which results in higher variance. On the other hand, notice that just selecting 1
singular value results in an apparently biased estimate which is overestimating the synthetic control.
It appears that selecting the top two singular values balance the bias-variance tradeoff the best and
is also agrees with our earlier finding that the data matrix appears to be of rank 2 or 3. Note that
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(a) Top singular value. (b) Top two singular values. (c) Top three singular values.

(d) Top four values. (e) Top five singular values. (f) Top six singular values.

Figure 5: Trends in per-capita GDP between Basque Country vs. synthetic Basque Country.

in this setting, we would find it hard to reject the null-hypothesis because the observations for the
treated unit lie within the uncertainty band of the estimated synthetic control.

5.2 California Anti-tobacco Legislation

We study the impact of California’s anti-tobacco legislation, Proposition 99, on the per-capita
cigarette consumption of California. In 1988, California introduced the first modern-time large-scale
anti-tobacco legislation in the United States Abadie et al. (2010). To analyze the effect of California’s
anti-tobacco legislation, we use the annual per-capita cigarette consumption at the state-level for all
50 states in the United States, as well as the District of Columbia, from 1970-2015. Similar to the
previous case study, Abadie and Gardeazabal (2003) uses 6 additional observable covariates per state,
e.g. retail price, beer consumption per capita, and percentage of individuals between ages of 15-24,
to predict their synthetic California. Furthermore, Abadie and Gardeazabal (2003) discarded 12
states from the donor pool since some of these states also adopted anti-tobacco legislation programs
or raised their state cigarette taxes, and discarded data after the year 2000 since many of the control
units had implemented anti-tobacco measures by this point in time.

Results. As shown in Figure 6a, in the pre-intervention period of 1970-88, our control matches the
observed trajectory. Post 1988, however, there is a significant divergence suggesting that the passage
of Prop. 99 helped reduce cigarette consumption. Similar to the Basque case-study, our estimated
effect is similar to that of Abadie and Gardeazabal (2003). As seen in Figure 6b, our algorithm is
again robust to randomly missing data.

Placebo tests. We now proceed to apply the same placebo tests to the California Prop 99 dataset.
Figures 7a, 7b, and 7c are three examples of the applied placebo tests on the remaining states
(including District of Columbia) within the United States.
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(a) Comparison of methods. (b) Missing data.

Figure 6: Trends in per-capita cigarette sales between California vs. synthetic California.

(a) Colorado. (b) Iowa. (c) Wyoming.

Figure 7: Placebo Study: trends in per-capita cigarette sales for Colorado, Iowa, and Wyoming.

Finally, similar to Abadie et al. (2010), we plot the differences between our estimates and the ac-
tual observations for California and all other states, individually, as placebos. Note that Abadie et al.
(2010) excluded twelve states but we keep all states. Figure 8a shows the resulting plot for all states
with the solid black line being California. This plot helps visualize the extreme post-intervention
divergence between the predicted means and the observed values for California. Up until about 1995,
the divergence for California was clearly the most significant and consistent outlier compared to all
other regions (placebo studies) lending credence to the belief that the effects of Proposition 99 were
indeed significant. Refer to Figure 8b for the same test but with the same twelve states excludes as
in Abadie et al. (2010). Just like the Basque Country case study, the exclusion of states should not
affect the conclusions drawn.

Bayesian approach. Similar to the Basque Country case study, our predictive uncertainty increases
as the number of singular values used in the learning process exceeds two. In order to gain some new
insight, however, we will focus our attention to the resulting figure associated with three singular
values, which is particularly interesting. Specifically, we observe that our predictive means closely
match the counterfactual trajectory produced by the classical synthetic control method in both the
pre- and post-intervention periods (up to year 2000), and yet our uncertainty for this estimate is
significantly greater than our uncertainty associated with the estimate produced using two singular
values. As a result, it may be possible that the classical synthetic control method overestimated the
effect of Prop. 99, even though the legislation did probably discourage the consumption of cigarettes
– a conclusion reached by both our robust approach and the classical approach.

Remark 5.0.1. We note that in Abadie et al. (2014), the authors ran two robustness tests to examine
the sensitivity of their results (produced via the original synthetic control method) to alterations in
the estimated convex weights – recall that the original synthetic control estimator produces a β∗
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(a) Includes all donors. (b) Excludes 12 states.

Figure 8: Per-capita cigarette sales gaps in California and control regions.

(a) Top singular value. (b) Top two singular values. (c) Top three singular values.

Figure 9: Trends in per-capita cigarette sales between California vs. synthetic California.

that lies within the simplex. In particular, the authors first iteratively reproduced a new synthetic
West Germany by removing one of the countries that received a positive weight in each iteration,
demonstrating that their synthetic model is fairly robust to the exclusion of any particular country
with positive weight. Furthermore, Abadie et al. (2014) examined the trade-off between the original
method’s ability to produce a good estimate and the sparsity of the given donor pool. In order to
examine this tension, the authors restricted their synthetic West Germany to be a convex combination
of only four, three, two, and a single control country, respectively, and found that, relative to the
baseline synthetic West Germany (composed of five countries), the degradation in their goodness of
fit was moderate.

5.3 Synthetic simulations

We conduct synthetic simulations to establish the various properties of the estimates in both the pre-
and post-intervention stages.

Experimental setup. For each unit i ∈ [N ], we assign latent feature θi by drawing a number
uniformly at random in [0, 1]. For each time t ∈ [T ], we assign latent variable ρt = t. The mean value
mit = f(θi, ρt). In the experiments described in this section, we use the following:

f(θi, ρt) = θi + (0.3 · θi · ρt/T ) ∗ (expρt/T )

+ cos(f1π/180) + 0.5 sin(f2π/180) + 1.5 cos(f3π/180)− 0.5 sin(f4 ∗ π/180),

where f1, f2, f3, f4 define the periodicities: f1 = ρt mod (360), f2 = ρt mod (180), f3 = 2 · ρt mod
(360), f4 = 2.0 · ρt mod (180). The observed value Xit is produced by adding i.i.d. Gaussian noise to
mean with zero mean and variance σ2. For this set of experiments, we use N = 100, T = 2000, while
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Figure 10: Treatment unit: noisy observations (gray) and true means (blue) and the estimates
from our algorithm (red) and one where no singular value thresholding is performed (green). The
plots show all entries normalized to lie in range [−1, 1]. Notice that the estimates in red generated
by our model are much better at estimating the true underlying mean (blue) when compared to an
algorithm which performs no singular value thresholding.

Figure 11: Same dataset as shown in Figure 10 but with 40% data missing at random. Treatment
unit: not showing the noisy observations for clarity; plotting true means (blue) and the estimates
from our algorithm (red) and one where no singular value thresholding is performed (green). The
plots show all entries normalized to lie in range [−1, 1].

assuming the treatment was performed at t = 1600.

Training error approximates generalization error. For the first experimental study, we analyze
the relationship between the pre-intervention MSE (training error) and the post-intervention MSE
(generalization error). As seen in Table 1, the post-intervention MSE closely matches that of the
pre-intervention MSE for varying noise levels, σ2. Thus suggesting efficacy of our algorithm. Figures
10 and 11 plot the estimates of algorithm with no missing data (Figure 10) and with 40% randomly
missing data (Figure 11) on the same underlying dataset. All entries in the plots were normalized to
lie within [−1, 1]. These plots confirm the robustness of our algorithm. Our algorithm outperforms the
algorithm with no singular value thresholding under all proportions of missing data. The estimates
from the algorithm which performs no singular value thresholding (green) degrade significantly with
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Table 1: Training vs. generalization error

Noise Training error Generalization error

3.1 0.48 0.53
2.5 0.31 0.34
1.9 0.19 0.22
1.3 0.09 0.1
0.7 0.027 0.03
0.4 0.008 0.009
0.1 0.0005 0.0006

Table 2: Impact of thresholding

Noise De-noising error No De-noising error

3.1 0.122 0.365
2.5 0.079 0.238
1.9 0.046 0.138
1.6 0.032 0.098
1 0.013 0.038
0.7 0.006 0.018
0.4 0.002 0.005

missing data while our algorithm remains robust.

Benefits of de-noising. We now analyze the benefit of de-noising the data matrix, which is the
main contribution of this work compared to the prior work. Specifically, we study the generalization
error of method using de-noising via thresholding and without thresholding as in prior work. The
results summarized in Table 2 show that for range of parameters the generalization error with
de-noising is consistency better than that without de-noising.

Bayesian approach. From the synthetic simulations (figures below), we see that the number of
singular values included in the thresholding process plays a crucial role in the model’s prediction
capabilities. If not enough singular values are used, then there is a significant loss of information
(high bias) resulting in a higher MSE. On the other hand, if we include too many singular values,
then the model begins to overfit to the dataset by misinterpreting noise for signal (high variance). As
emphasized before, the goal is to find the simplest model that both fits the data and is also plausible,
which is achieved when four singular values are employed.

6. Conclusion

The classical synthetic control method is recognized as a powerful and effective technique for causal
inference for comparative case studies. In this work, we motivate a robust synthetic control algorithm,
which attempts to improve on the classical method in the following regimes: (a) randomly missing
data and (b) large levels of noise. We also demonstrate that the algorithm performs well even in
the absence of covariate or expert information, but do not propose ignoring information which may
eliminate “bad” donors. Our data-driven algorithm, and its Bayesian counterpart, uses singular
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(a) Top singular value. (b) Top two singular values. (c) Top four singular values.

(d) Top five singular values. (e) Top 10 singular values. (f) Top 16 singular values.

Figure 12: Bayesian Synthetic Control simulation.

value thresholding to impute missing data and “de-noise” the observations. Once “de-noised”, we
use regularized linear regression to determine the synthetic control. Motivating our algorithm is a
modeling framework, specifically the Latent Variable Model, which is a generalization of the various
factor models used in related work. We establish finite-sample bounds on the MSE between the
estimated “synthetic” control and the latent true means of the treated unit of interest. In situations
with plentiful data, we show that a simple data aggregation method can lead to an asymptotically
consistent estimator. Experiments on synthetically generated data (where the truth is known) and on
real-world case-studies allow us to demonstrate the promise of our approach, which is an improvement
over the classical method.
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Appendix A. Useful Theorems

We present useful theorems that we will frequently employ in our proofs.

Theorem A.1. Perturbation of singular values.
Let A and B be two m× n matrices. Let k = min{m,n}. Let λ1, . . . , λk be the singular values of A
in decreasing order and repeated by multiplicities, and let τ1, . . . , τk be the singular values of B in
decreasing order and repeated by multiplicities. Let δ1, . . . , δk be the singular values of A−B, in any
order but still repeated by multiplicities. Then,

max
1≤i≤k

|λi − τi| ≤ max
1≤i≤k

|δi|.

References for the proof of the above result can be found in Chatterjee (2015), for example.

Theorem A.2. Poincaré separation Theorem.
Let A be a symmetric n× n matrix. Let B be the m×m matrix with m ≤ n, where B = P TAP
for some orthogonal projection matrix P . If the eigenvalues of A are σ1 ≤ . . . ≤ σn, and those of B
are τ1 ≤ . . . ≤ τm, then for all j < m+ 1,

σj ≤ τj ≤ σn−m+j .

Remark A.2.1. In the case where B is the principal submatrix of A with dimensions (n−1)× (n−1),
the above Theorem is also known as Cauchy’s interlacing law.

Theorem A.3. Bernstein’s Inequality.
Suppose that X1, . . . , Xn are independent random variables with zero mean, and M is a constant such
that |Xi| ≤ M with probability one for each i. Let S :=

∑n
i=1Xi and v := Var(S). Then for any

t ≥ 0,

P(|S| ≥ t) ≤ 2 exp

(
− 3t2

6v + 2Mt

)
.

Theorem A.4. Hoeffding’s Inequality.
Suppose that X1, . . . , Xn are independent random variables that are strictly bounded by the intervals
[ai, bi]. Let S :=

∑n
i=1Xi. Then for any t > 0,

P(|S − E[S]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Theorem A.5. Theorem 3.4 of Chatterjee (2015)
Take any two numbers m and n such that 1 ≤ m ≤ n. Suppose that A = [Aij ]1≤i≤m,1≤j≤n is a
matrix whose entries are independent random variables that satisfy, for some δ2 ∈ [0, 1],

E[Aij ] = 0, E[A2
ij ] ≤ δ2, and |Aij | ≤ 1 a.s.

Suppose that δ2 ≥ n−1+ζ for some ζ > 0. Then, for any ω ∈ (0, 1),

P(‖A‖ ≥ (2 + ω)δ
√
n) ≤ C(ζ)e−cδ

2n,

where C(ζ) depends only on ω and ζ, and c depends only on ω. The same result is true when m = n
and A is symmetric or skew-symmetric, with independent entries on and above the diagonal, all other
assumptions remaining the same. Lastly, all results remain true if the assumption δ2 ≥ n−1+ζ is
changed to δ2 ≥ n−1(log n)6+ζ .

Remark A.5.1. The proof of Theorem A.5 can be found in Chatterjee (2015) under Theorem 3.4.
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Appendix B. Useful Lemmas

We begin by proving (and providing) a series of useful lemmas that we will frequently use to derive
our desired results.

Lemma B.1. Suppose C is an m×n matrix composed of an m× p submatrix A and an m× (n− p)
submatrix B, i.e., C =

[
A B

]
. Then, the spectral (operator) norms of A and B are bounded

above by the spectral norm of C,

max{‖A‖, ‖B‖} ≤ ‖C‖.

Proof. Without loss of generality, we prove the case for ‖A‖ ≤ ‖C‖, since the same argument applies
for ‖B‖. By definition,

CTC =

[
ATA ATB
BTA BTB

]
.

Let σ1, . . . , σn be the eigenvalues of CTC in increasing order and repeated by multiplicities. Let
τ1, . . . , τp be the eigenvalues of ATA in increasing order and repeated by multiplicities. By the
Poincaré separation Theorem A.2, we have for all j < p+ 1,

σj ≤ τj ≤ σn−p+j .

Thus, τp ≤ σn. Since the eigenvalues of CTC and ATA are the squared singular values of C and A
respectively, we have

√
τp = ‖A‖ ≤ ‖C‖ =

√
σn.

We complete the proof by applying an identical argument for the case of ‖B‖.

Lemma B.2. Let A be any m by n matrix, and let A† be its corresponding pseudoinverse. Then,
the matrices P1 = AA† and P2 = A†A are projection matrices.

Proof. We first prove that P1 is a projection matrix. In order to show P1 is a projection matrix, we
must demonstrate that P1 satisfies two properties: namely, (1) P1 is symmetric, i.e. P T

1 = P1, and
(2) P1 is idempotent, i.e. P 2

1 = P1.
Let A = Q1ΣQT

2 represent the SVD of A, with the pseudoinverse expressed as A† = Q2Σ
+QT

1 .
As a result,

P1 = AA†

= Q1ΣQT
2 Q2Σ

+QT
1

= Q1ΣΣ+QT
1 .

Note that

P T
1 = (Q1ΣΣ+QT

1 )T

= Q1ΣΣ+QT
1

= P1,

which proves that P1 is symmetric. Furthermore,

P 2
1 = (Q1ΣΣ+QT

1 ) · (Q1ΣΣ+QT
1 )

= Q1ΣΣ+ΣΣ+QT
1

= Q1ΣΣ+QT
1

= P1,

which proves that P1 is idempotent. The same argument can be applied for P2.
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Lemma B.3. The eigenvalues of a projection matrix are 1 or 0.

Proof. Let λ be an eigenvalue of the projection matrix P for some eigenvector v. Then, by definition
of eigenvalues,

P v = λv.

However, by the idempotent property of projection matrices (P 2 = P ), if we multiply the above
equality by P on the left, then we have

P (P v) = P (λv)

= λ2v.

Since v 6= 0, the eigenvalues of P can only be members R whereby λ2 = λ. Ergo, we must have that
λ ∈ {0, 1}.

Lemma B.4. Let A =
∑m
i=1 σixiy

T
i be the singular value decomposition of A with σ1, . . . , σm in

decreasing order and with repeated multiplicities. For any choice of µ ≥ 0, let S = {i : σi ≥ µ}.
Define

B̂ =
∑
i∈S

σixiy
T
i .

Let τ1, . . . , τm be the singular values of B in decreasing order and repeated by multiplicities, with
τ∗ = maxi/∈S τi. Then ∥∥∥B̂ −B

∥∥∥ ≤ τ∗ + 2‖A−B‖.

Proof. By Theorem A.1, we have that σi ≤ τi + ‖A−B‖ for all i. Applying triangle inequality, we
obtain ∥∥∥B̂ −B

∥∥∥ ≤ ∥∥∥B̂ −A
∥∥∥+ ‖A−B‖

= max
i/∈S

σi + ‖A−B‖

≤ max
i/∈S

(
τi + ‖A−B‖

)
+ ‖A−B‖

= τ∗ + 2‖A−B‖.

Lemma B.5. Let A =
∑m
i=1 σixiy

T
i be the singular value decomposition of A. Fix any δ > 0 such

that µ = (1 + δ)‖A−B‖, and let S = {i : σi ≥ µ}. Define

B̂ =
∑
i∈S

σixiy
T
i .

Then ∥∥∥B̂ −B
∥∥∥ ≤ (2 + δ)‖A−B‖.

Proof. By the definition of µ and hence the set of singular values S, we have that∥∥∥B̂ −B
∥∥∥ ≤ ∥∥∥B̂ −A

∥∥∥+ ‖A−B‖

= max
i/∈S

σi + ‖A−B‖

≤ (1 + δ)‖A−B‖+ ‖A−B‖
= (2 + δ)‖A−B‖.
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Lemma B.6. Lemma 3.5 of Chatterjee (2015) Let A =
∑m
i=1 σixiy

T
i be the singular value

decomposition of A. Fix any δ > 0 and define S = {i : σi ≥ (1 + δ)‖A−B‖} such that

B̂ =
∑
i∈S

σixiy
T
i .

Then ∥∥∥B̂ −B
∥∥∥
F
≤ K(δ)(‖A−B‖‖B‖∗)

1/2,

where K(δ) = (4 + 2δ)
√

2/δ +
√

2 + δ.

Proof. The proof can be found in Chatterjee (2015).

Appendix C. Preliminaries.

To simplify the following exposition, we assume that |Mij | ≤ 1 and |Xij | ≤ 1. Recall that all entries
of the pre-intervention treatment row are observed such that Y −1 = X−1 = M−1 + ε−1 . On the other
hand, every entry within the pre- and post-intervention periods for the donor units are observed
independently of the other entries with some arbitrary probability p. Specifically, for all 2 ≤ i ≤ N
and j ∈ [T ], we define Yij = Xij if Xij is observed, and Yij = 0 otherwise. Consequently, observe
that for all i > 1 and j,

E[Yij ] = pMij

and

Var(Yij) = E[Y 2
ij ]− (E[Yij ])

2

= pE[X2
ij ]− (pMij)

2

≤ p(σ2 +M2
ij)− (pMij)

2

= pσ2 + pM2
ij(1− p)

≤ pσ2 + p(1− p).

Recall that p̂ denotes the proportion of observed entries in X and σ̂2 represents the (unbiased)
sample variance computed from the pre-intervention treatment row (12). Given the information
above, we define, for any ω ∈ (0.1, 1), three events E1, E2, and E3 as

E1 := {|p̂− p| ≤ ωp/z},
E2 := {

∣∣σ̂2 − σ2
∣∣ ≤ ωσ2/z},

E3 := {‖Y − pM‖ ≤ (2 + ω/2)
√
Tq},

where q = σ2p + p(1 − p); for reasons that will be made clear later, we choose z = 60(σ
2+1
σ2 ). By

Bernstein’s Inequality, we have that

P(E1) ≥ 1− 2e−c1(N−1)Tp,

for appropriately defined constant c1. By Hoeffding’s Inequality, we obtain

P(E2) ≥ 1− 2e−c2Tσ
2

for some positive constant c2. Moreover, by Theorem A.5,

P(E3) ≥ 1− Ce−c3Tq
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as long as q = σ2p+ p(1− p) ≥ T−1+ζ for some ζ > 0. In other words,

p(σ2 + 1) ≥ p(σ2 + (1− p))
≥ T−1+ζ .

Consequently, assuming the event E3 occurs, we require that p ≥ T−1+ζ

σ2+1 for some ζ > 0.
Finally, as previously discussed, we will assume that both N and T grow without bound in our

imputation analysis. However, in our forecasting analysis, only T0 →∞.

Appendix D. Imputation Analysis

In this section, we prove that our key de-noising procedure produces a consistent estimator of
the underlying mean matrix, thereby adroitly imputing the missing entries and filtering corrupted
observations within our data matrix.

Lemma D.1. Let M = [Mij ] be defined as before. Suppose f is a Lipschitz function with Lipschitz
constant L and the latent row and column feature vectors come from a compact space K of dimension
d. Then for any small enough δ > 0,

‖M‖∗ ≤ δ(N − 1)
√
T + C(K, d,L)

√
(N − 1)Tδ−d,

where C(K, d, L) is a constant that depends on K, d, and L.

Proof. The proof is a straightforward adaptation of the arguments from [Chatterjee (2015), Lemma
3.6]; however, we provide it here for completeness. By the Lipschitzness assumption, every entry in
M = [Mij ] = [f(θi, ρj)] is Lipschitz in both its arguments, space (i) and time (j). For any δ > 0, it
is not hard to see that one can find a finite covering P1(δ) and P2(δ) of K so that for any θ, ρ ∈ K,
there exists θ′ ∈ P1(δ) and ρ′ ∈ P2(δ) such that

|f(θ, ρ)− f(θ′, ρ′)| ≤ δ.

Without loss of generality, let us consider the case where P (δ) = P1(δ) = P2(δ). For every latent
row feature θi, let p1(θi) be the unique element in P (δ) that is closest to θi. Similarly, for the latent
column feature ρj , find the corresponding closest element in P (δ) and denote it by p2(ρj). Let
B = [Bij ] be the matrix where Bij = f(p1(θi), p2(ρj)). Using the arguments from above, we have
that for all i and j,

‖M −B‖2F =
∑
i,j

(f(θi, ρj)− f(p1(θi), p2(ρj)))
2 ≤ (N − 1)Tδ2.

Therefore,

‖M‖∗ ≤ ‖M −B‖∗ + ‖B‖∗
(a)

≤
√
N − 1‖M −B‖F + ‖B‖∗

≤ δ(N − 1)
√
T + ‖B‖∗,

where (a) follows from the fact that ‖Q‖∗ ≤
√

rank(Q)‖Q‖F for any real-valued matrix Q. In
order to bound the nuclear norm of B, note that (by its construction) for any two columns, say
j, j′ ∈ [N − 1], if p2(ρj) = p2(ρ′j) then it follows that the columns of j and j′ of B are identical. Thus,
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there can be at most |P (δ)| distinct columns (and rows) of B. In other words, rank(B) ≤ |P (δ)|.
Ergo,

‖B‖∗ ≤
√
|P (δ)|‖B‖F

≤
√
|P (δ)|

√
(N − 1)T .

Due to the Lipschitzness property of f and the compactness of the latent space, it can be shown
that |P (δ)| ≤ C(K, d,L)δ−d where C(K, d,L) is a constant that depends only on K, d, and L (the
Lipschitz constant of f).

Lemma D.2. (Theorem 1.1 of Chatterjee (2015)) Let M̂ and M be defined as before. Suppose

that p ≥ T−1+ζ

σ2+1 for some ζ > 0. Then using µ as defined in (20)

MSE(M̂) ≤
C1‖M‖∗

(N − 1)
√
Tp

+O
( 1

(N − 1)T

)
,

where C1 is a universal positive constant.

Proof. Let δ > 0 be defined by the relation

(1 + δ)‖Y − pM‖ = (2 + ω)
√
T q̂,

where q̂ = σ̂2p̂+ p̂(1− p̂). Observe that if E1, E2, and E3 happen, then

1 + δ ≥
(2 + ω)

√
T (σ̂2p̂+ p̂(1− p̂))

(2 + ω/2)
√
T (σ2p+ p(1− p))

≥
(2 + ω)

√
1− ω/z

√
(1− ω/z)σ2p+ p(1− p− ωp/z)

(2 + ω/2)
√
σ2p+ p(1− p)

=
(2 + ω)

√
1− ω/z

2 + ω/2

√
1− ω

z

( σ2 + p

σ2 + 1− p

)
≥

(2 + ω)
√

1− ω/z
2 + ω/2

√
1− ω

z

(σ2 + 1

σ2

)
=

(2 + ω)
√

1− ω/z
2 + ω/2

√
1− ω

60

≥ 2 + ω

2 + ω/2

(
1− ω

60

)
≥
(

1 +
ω

5

)(
1− ω

60

)
≥ 1 +

ω

5
− 1

50
.

Let K(δ) be the constant defined in Lemma B.6. Since ω ∈ (0.1, 1), δ ≥ 10ω−1
50 > 0 and

K(δ) = (4 + 2δ)
√

2/δ +
√

2 + δ

≤ 4
√

1 + δ
√

2/δ + 2
√

2(1 + δ) +
√

2(1 + δ)

= (4
√

2/δ + 3
√

2)
√

1 + δ

≤ C1

√
1 + δ
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where C1 is a constant that depends only on the choice of ω. By Lemma B.6, if E1, E2 and E3 occur,
then ∥∥∥p̂M̂ − pM

∥∥∥2

F
≤ C2(1 + δ)‖Y − pM‖‖pM‖∗

≤ C3

√
T q̂‖pM‖∗

≤ C4

√
Tq‖pM‖∗

for an appropriately defined constant C4. Therefore,

p2
∥∥∥M̂ −M

∥∥∥2

F
≤ C5p̂

2
∥∥∥M̂ −M

∥∥∥2

F

≤ C5

∥∥∥p̂M̂ − pM
∥∥∥2

F
+ C5(p̂− p)2‖M‖2F

≤ C6

√
Tq‖pM‖∗ + C5(p̂− p)2(N − 1)T,

where the last inequality follows from the boundedness assumption of M . In general, since |Mij |
and |Yij | ≤ 1, ∥∥∥M̂ −M

∥∥∥
F
≤
∥∥∥M̂∥∥∥

F
+ ‖M‖F

≤
√
|S|
∥∥∥M̂∥∥∥+ ‖M‖F

=

√
|S|
p̂
‖Y ‖+ ‖M‖F

≤ (N − 1)3/2T‖Y ‖+ ‖M‖F
≤ (N − 1)3/2T

√
(N − 1)T +

√
(N − 1)T

≤ 2(N − 1)2T 3/2.

Let E := E1 ∩ E2 ∩ E3. Applying DeMorgan’s Law and the Union Bound,

P(Ec) = P(Ec1 ∪ Ec2 ∪ Ece)
≤ P(Ec1) + P(Ec2) + P(Ec3)

≤ C7e
−c8T (p(N−1)+σ2+q)

= C7e
−c8φT , (48)

where we define φ := p(N − 1) + σ2 + q and C7, c8 are appropriately defined. Observe that

E(p̂−p)2 = p(1−p)
(N−1)T . Thus, by the law of total probability and noting that P(E) ≤ 1 (for appropriately

defined constants),

E
∥∥∥M̂ −M

∥∥∥2

F
≤ E

[∥∥∥M̂ −M
∥∥∥2

F
| E
]

+ E
[∥∥∥M̂ −M

∥∥∥2

F
| Ec

]
P(Ec)

≤ C6p
−1
√
Tq‖M‖∗ + C5p

−1(1− p) + C9(N − 1)4T 3e−c8φT

= C6p
−1/2T 1/2(σ2 + (1− p))1/2‖M‖∗ + C5p

−1(1− p) + C9(N − 1)4T 3e−c8φT .

Normalizing by (N − 1)T , we obtain

MSE(M̂) ≤
C12‖M‖∗

(N − 1)
√
Tp

+
C5(1− p)
(N − 1)Tp

+ C10e
−c11φT .

The proof is complete assuming constants are re-named.
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D.1 Proof of Theorem 4.1

Theorem (4.1). (Theorem 2.1 of Chatterjee (2015)) Suppose that M is rank k. Suppose that

p ≥ T−1+ζ

σ2+1 for some ζ > 0. Then using µ as defined in (20),

MSE(M̂) ≤ C1

√
k

(N − 1)p
+O

( 1

(N − 1)T

)
,

where C1 is a universal positive constant.

Proof. By the low rank assumption of M , we have that

‖M‖∗ ≤
√

rank(M)‖M‖F
≤
√
k(N − 1)T .

The proof follows from a simple application of Lemma D.2.

D.2 Proof of Theorem 4.2

Theorem (4.2). (Theorem 2.7 of Chatterjee (2015)) Suppose f is a L-Lipschitz function.

Suppose that p ≥ T−1+ζ

σ2+1 for some ζ > 0. Then using µ as defined in (20),

MSE(M̂) ≤ C(K, d,L)
(N − 1)−

1
d+2

√
p

+O
( 1

(N − 1)T

)
,

where C(K, d,L) is a constant depending on K, d, and L.

Proof. Since f is Lipschitz, we invoke Lemmas D.1 and D.2 and choose δ = (N − 1)−1/(d+2). This
completes the proof.

Appendix E. Forecasting Analysis: Pre-Intervention Regime

Here, we will bound the pre-intervention `2 error of our estimator in order to measure its prediction
power.

E.1 Linear Regression

In this section, we will analyze the performance of our algorithm when learning β∗ via linear regression,
i.e. η = 0. As a result, we will temporarily drop the dependency on η in this subsection such that
β̂ = β̂(0). To ease the notational complexity of the following Lemma E.1 proof, we will make use of
the following notations for only in this subsection:

Q := (M−)T (49)

Q̂ := (M̂−)T (50)

such that

M−1 := Qβ∗ (51)

M̂−1 := Q̂β̂. (52)

Lemma E.1. Suppose Y −1 = M−1 + ε−1 with E[ε1j ] = 0 and Var(ε1j) ≤ σ2 for all j ∈ [T0]. Let β∗ be

defined as in (6) and let β̂ be the minimizer of (10). Then for any µ ≥ 0 and η = 0,

E
∥∥∥M−1 − M̂−1 ∥∥∥2

≤ E
∥∥∥(M− − M̂−)Tβ∗

∥∥∥2

+ 2σ2|S|. (53)
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Proof. Recall that for the treatment row, Y −1 = M−1 + ε−1 with M−1 = Qβ∗. Since β̂, by definition,

minimizes
∥∥∥Y −1 − Q̂v

∥∥∥ for any v ∈ RN−1, we subsequently have

∥∥∥M−1 − M̂−1 ∥∥∥2

=
∥∥∥(Y −1 − ε

−
1 )− Q̂β̂

∥∥∥2

=
∥∥∥(Y −1 − Q̂β̂) + (−ε−1 )

∥∥∥2

=
∥∥∥Y −1 − Q̂β̂

∥∥∥2

+
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂〉

≤
∥∥∥Y −1 − Q̂β∗

∥∥∥2

+
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂〉

=
∥∥∥(Qβ∗ + ε−1 )− Q̂β∗

∥∥∥2

+
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂〉

=
∥∥∥(Q− Q̂)β∗ + ε−1

∥∥∥2

+
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂〉

=
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ 2
∥∥ε−1 ∥∥2

+ 2〈ε−1 , (Q− Q̂)β∗〉+ 2〈−ε−1 , Y
−
1 − Q̂β̂〉.

Taking expectations, we arrive at the inequality

E
∥∥∥M̂−1 −M−1 ∥∥∥2

≤ E
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ 2E
∥∥ε−1 ∥∥2

+ 2E[〈ε−1 , (Q− Q̂)β∗〉] + 2E[〈−ε−1 , Y
−
1 − Q̂β̂〉].

(54)

We will now deal with the two inner products on the right hand side of equation (54). First, observe
that

E[〈ε−1 , (Q− Q̂)β∗〉] = E[(ε−1 )T ]Qβ∗ − E[(ε−1 )T Q̂]β∗

= −E[(ε−1 )T ]E[Q̂]β∗

= 0,

since the additive noise terms are independent random variables that satisfy E[εij ] = 0 for all i and j

by assumption, and Q̂ := (M̂−)T depends only on the noise terms for i 6= 1; i.e., the construction of

Q̂ := (M̂−)T excludes the first row (treatment row), and thus depends solely on the donor pool.

For the other inner product term, we begin by recognizing that (ε−1 )T Q̂Q̂†ε−1 is a scalar random
variable, which allows us to replace the random variable by its own trace. This is useful since the
trace operator is a linear mapping and is invariant under cyclic permutations, i.e., tr(AB) = tr(BA).
As a result,

E[(ε−1 )T Q̂Q̂†ε−1 ] = E[tr((ε−1 )T Q̂Q̂†ε−1 )]

= E[tr(Q̂Q̂†ε−1 (ε−1 )T )]

= tr
(
E[Q̂Q̂†ε−1 (ε−1 )T ]

)
= tr

(
E[Q̂Q̂†]E[ε−1 (ε−1 )T ]

)
= tr

(
E[Q̂Q̂†]σ2I

)
= σ2E[tr(Q̂Q̂†)]

(a)
= σ2E[rank(Q̂)]

≤ σ2|S|,
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where (a) follows from the fact that Q̂Q̂† is a projection matrix by Lemma B.2. As a result, Q̂Q̂†

has rank(Q̂) eigenvalues equal to 1 and all other eigenvalues equal to 0 (by Lemma B.3), and since

the trace of a matrix is equal to the sum of its eigenvalues, tr(Q̂Q̂†) = rank(Q̂). Simultaneously, by

the definition of Q̂ := (M̂−)T , we have that the rank of Q̂ := (M̂−)T is at most |S|. Returning to

the second inner product and recalling β̂ = Q̂†Y −1 ,

E[〈−ε−1 , Y
−
1 − Q̂β̂〉] = E[(ε−1 )T Q̂β̂]− E[(ε−1 )TY −1 ]

= E[(ε−1 )T Q̂Q̂†Y −1 ]− E[(ε−1 )T ]M−1 − E[(ε−1 )T ε−1 ]

= E[(ε−1 )T Q̂Q̂†]M−1 + E[(ε−1 )T Q̂Q̂†ε−1 ]− E[(ε−1 )T ε−1 ]

(a)
= E[(ε−1 )T ]E[Q̂Q̂†]M−1 + E[(ε−1 )T Q̂Q̂†ε−1 ]− E[(ε−1 )T ε−1 ]

= E[(ε−1 )T Q̂Q̂†ε−1 ]− E
∥∥ε−1 ∥∥2

≤ σ2|S| − E
∥∥ε−1 ∥∥2

,

where (a) follows from the same independence argument used in evaluating the first inner product.
Finally, we incorporate the above results to (54) to arrive at the inequality

E
∥∥∥M̂−1 −M−1 ∥∥∥2

≤ E
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ 2E
∥∥ε−1 ∥∥2

+ 2(σ2|S| − E
∥∥ε−1 ∥∥2

)

= E
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ 2σ2|S|.

Lemma E.2. For η = 0 and any µ ≥ 0, the pre-intervention error of the algorithm can be bounded
as

MSE(M̂−1 ) ≤ C1

p2T0
E
(
λ∗ + ‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

+
2σ2|S|
T0

+ C2e
−cp(N−1)T . (55)

Here, λ1, . . . , λN−1 are the singular values of pM in decreasing order and repeated by multiplicities,
with λ∗ = maxi/∈S λi; C1, C2 and c are universal positive constants.

Proof. Recall that E1 := {|p̂− p| ≤ ωp
z } for some choice of ω ∈ (0.1, 1). Thus, under the event E1,

p
∥∥∥M̂− −M−

∥∥∥ ≤ C1p̂
∥∥∥M̂− −M−

∥∥∥
≤ C1

(∥∥∥p̂M̂− − pM−
∥∥∥+

∥∥(p̂− p)M−∥∥)
(a)

≤ C1

(∥∥∥p̂M̂ − pM
∥∥∥+

∥∥(p̂− p)M−∥∥)
(b)

≤ C1

(
λ∗ + 2‖Y − pM‖+

∥∥(p̂− p)M−∥∥)
where (a) follows from Lemma B.1 and (b) follows from Lemma B.4. In general, since |Mij | and
|Yij | ≤ 1, ∥∥∥M̂− −M−

∥∥∥ (a)

≤
∥∥∥M̂∥∥∥+

∥∥M−∥∥
=

1

p̂
‖Y ‖+

∥∥M−∥∥
≤ (N − 1)T‖Y ‖+

∥∥M−∥∥
≤ (N − 1)T

√
(N − 1)T +

√
(N − 1)T0

≤ 2((N − 1)T )3/2. (56)
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(a) follows from a simple application of Lemma B.1 and the triangle inequality of operator norms.
By the law of total probability and P(E1) ≤ 1,

E
∥∥∥(M̂− −M−)Tβ∗

∥∥∥2

≤ E
[∥∥∥(M̂− −M−)Tβ∗

∥∥∥2

| E1

]
+ E

[∥∥∥(M̂− −M−)Tβ∗
∥∥∥2

| Ec1
]
P(Ec1)

(a)

≤ E
[∥∥∥M̂− −M−

∥∥∥2

| E1

]
‖β∗‖2 + E

[∥∥∥M̂− −M−
∥∥∥2

| Ec1
]
‖β∗‖2P(Ec1)

≤ C2

p2
E
[(
λ∗ + 2‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

| E1

]
+ C3((N − 1)T )3/2e−cp(N−1)T ,

where (a) follows because the spectral norm is an induced norm, and the last inequality makes use of
the results from above. Note that C2 and C3 are appropriately defined to depend on β∗. Moreover,
for any non-negative valued random variable X and event E with P(E) ≥ 1/2,

E[X | E] ≤ E[X]

P(E)
≤ 2E[X]. (57)

Using the fact that P(E1) ≥ 1/2 for large enough T,N , we apply Lemma E.1 to obtain (with
appropriately defined constants C4, C5, c6)

MSE(M̂−1 ) ≤ 1

T0
E
∥∥∥(M− − M̂−)Tβ∗

∥∥∥2

+
2σ2|S|
T0

≤ C4

p2T0
E
(
λ∗ + ‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

+
2σ2|S|
T0

+ C5e
−c6p(N−1)T . (58)

The proof is completed assuming we re-label constants C4, C5, c6 as C1, C2, and c, respectively.

E.2 Ridge Regression

In this section, we will prove our results for the ridge regression setting, i.e. η > 0. Let us begin by
deriving the closed form expression of β̂(η).

Derivation of β̂(η). We derive the closed form solution for β̂(η) under the new objective function
with the additional complexity penalty term:∥∥∥Y −1 − (M̂−)T v

∥∥∥2

+ η‖v‖2 = (Y −1 )TY −1 − 2vTM̂−Y −1 + vTM̂−(M̂−)T v + ηvT v.

Setting the gradient of the above expression to zero and solving for v, we obtain

∇v

{∥∥∥Y −1 − (M̂−)T v
∥∥∥2

+ η‖v‖2
}
v=β̂(η)

= −2M̂−Y −1 + 2M̂−(M̂−)T v + 2ηv = 0.

Therefore,

β̂(η) =
(
M̂−(M̂−)T + ηI

)−1

M̂−Y −1 .

Remark E.0.1. To ease the notational complexity of the following Lemmas E.3 and E.5 proofs, we
will make use of the following notations for only this derivation: Let

Q := (M−)T (59)

Q̂ := (M̂−)T (60)

such that

M−1 := Qβ∗ (61)

M̂−1 := Q̂β̂. (62)
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Lemma E.3. Let Pη = Q̂(Q̂T Q̂ + ηI)−1Q̂T denote the “hat” matrix under the quadratic regular-
ization setting. Then, the non-zero singular values of Pη are s2

i /(s
2
i + η) for all i ∈ S.

Proof. Recall that the singular values of Y are si, while the singular values of Q̂ are those si ≥ µ.
Let Q̂ = UΣV T be the singular value decomposition of Q̂. Since V V T = I, we have that

Pη = Q̂(Q̂T Q̂ + ηI)−1Q̂T

= UΣV T (V Σ2V T + ηI)−1VΣUT

= UΣV T (V Σ2V T + ηV V T )−1V ΣUT

= UΣV TV (Σ2 + ηI)−1V TV ΣUT

= UΣ(Σ2 + ηI)−1ΣUT

= UDUT ,

where

D = diag

(
s2

1

s2
1 + η

, . . . ,
s2
|S|

s2
|S| + η

, 0, . . . , 0

)
.

Lemma E.4. Suppose Y −1 = M−1 + ε−1 with E[ε1j ] = 0 and Var(ε1j) ≤ σ2 for all j ∈ [T0]. Let β∗ be

defined as in (6), i.e. M−1 = (M−)Tβ∗, and let β̂(η) be the minimizer of (10). Then for any µ ≥ 0
and η > 0,

E
∥∥∥M−1 − M̂−1 ∥∥∥2

≤ E
∥∥∥(M− − M̂−)Tβ∗

∥∥∥2

+ η‖β∗‖2 − ηE
∥∥∥β̂(η)

∥∥∥2

+ 2σ2|S|. (63)

Proof. The following proof is a slight modification for the proof of Lemmas E.1. In particular, observe

that β̂(η) minimizes
∥∥∥Y −1 − Q̂v

∥∥∥+ η‖v‖2 for any v ∈ RN−1. As a result,∥∥∥M−1 − M̂−1 ∥∥∥2

+ η
∥∥∥β̂(η)

∥∥∥2

=
∥∥∥(Y −1 − ε

−
1 )− Q̂β̂(η)

∥∥∥2

+ η
∥∥∥β̂(η)

∥∥∥2

=
∥∥∥(Y −1 − Q̂β̂(η)) + (−ε−1 )

∥∥∥2

+ η
∥∥∥β̂(η)

∥∥∥2

=
∥∥∥Y −1 − Q̂β̂(η)

∥∥∥2

+ η
∥∥∥β̂(η)

∥∥∥2

+
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂(η)〉

≤
∥∥∥Y −1 − Q̂β∗

∥∥∥2

+ η‖β∗‖2 +
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂(η)〉

=
∥∥∥(Qβ∗ + ε−1 )− Q̂β∗

∥∥∥2

+ η‖β∗‖2 +
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂(η)〉

=
∥∥∥(Q− Q̂)β∗ + ε−1

∥∥∥2

+ η‖β∗‖2 +
∥∥ε−1 ∥∥2

+ 2〈−ε−1 , Y
−
1 − Q̂β̂(η)〉

=
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ η‖β∗‖2 + 2
∥∥ε−1 ∥∥2

+ 2〈ε−1 , (Q− Q̂)β∗〉+ 2〈−ε−1 , Y
−
1 − Q̂β̂(η)〉

Taking expectations, we have

E
∥∥∥M̂−1 −M−1 ∥∥∥2

≤ E
∥∥∥(Q− Q̂)β∗

∥∥∥2

+ η
(
‖β∗‖2 − E

∥∥∥β̂(η)
∥∥∥2)

+ 2E
∥∥ε−1 ∥∥2

+ 2E〈ε−1 , (Q− Q̂)β∗〉+ 2E〈−ε−1 , Y
−
1 − Q̂β̂(η)〉.
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As before, we have that E〈ε−1 , (Q− Q̂)β∗〉 = 0 by the zero-mean and independence assumptions of
the noise random variables. Similarly, note that

E[(ε−1 )T Q̂β̂(η)] = E[(ε−1 )T Q̂(Q̂T Q̂ + ηI)−1Q̂TY −1 ]

= E[(ε−1 )T Q̂(Q̂T Q̂ + ηI)−1Q̂T ]M−1 + E[(ε−1 )T Q̂(Q̂Q̂T + ηI)−1Q̂T ε−1 ]

= E[(ε−1 )T Q̂(Q̂T Q̂ + ηI)−1Q̂T ε−1 ]

= E[tr((ε−1 )T Q̂(Q̂T Q̂ + ηI)−1Q̂T ε−1 )]

= E[tr(Q̂(Q̂T Q̂ + ηI)−1Q̂T ε−1 (ε−1 )T )]

= tr(E[Q̂(Q̂T Q̂ + ηI)−1Q̂T ε−1 (ε−1 )T ])

= tr(E[Q̂(Q̂T Q̂ + ηI)−1Q̂T ]E[ε−1 (ε−1 )T ])

= σ2E[tr(Q̂(Q̂T Q̂ + ηI)−1Q̂T )]

(a)

≤ σ2E[tr(Q̂Q̂†)]

(b)
= σ2rank(Q̂)

≤ σ2|S|,

where (a) follows from Lemma E.3, and as before, (b) follows because Q̂Q̂† is a projection matrix.

Lemma E.5. For any η > 0 and µ ≥ 0, the pre-intervention error of the regularized algorithm can
be bounded as

MSE(M̂−1 ) ≤ C1

p2T0
E
(
λ∗ + ‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

+
2σ2|S|
T0

+
η‖β∗‖2

T0
+ C2e

−cp(N−1)T .

Here, λ1, . . . , λN−1 are the singular values of pM in decreasing order and repeated by multiplicities,
with λ∗ = maxi/∈S λi; C1, C2 and c are universal positive constants.

Proof. The proof follows the same arguments as that of Lemma E.2.

E.3 Combining linear and ridge regression.

E.3.1 Proof of Theorem 4.3

Theorem (4.3). For any η ≥ 0 and µ ≥ 0, the pre-intervention error of the algorithm can be bounded
as

MSE(M̂−1 ) ≤ C1

p2T0
E
(
λ∗ + ‖Y − pM‖+

∥∥(p̂− p)M−∥∥)2

+
2σ2|S|
T0

+
η‖β∗‖2

T0
+ C2e

−cp(N−1)T .

Here, λ1, . . . , λN−1 are the singular values of pM in decreasing order and repeated by multiplicities,
with λ∗ = maxi/∈S λi; C1, C2 and c are universal positive constants.

Proof. The proof follows from a simple amalgamation of Lemmas E.2 and E.5.

E.3.2 Proof of Corollary 4.1

Corollary (4.1). Suppose p ≥ T−1+ζ

σ2+1 for some ζ > 0. Let T ≤ αT0 for some constant α > 1. Then
for any η ≥ 0 and using µ as defined in (20), the pre-intervention error is bounded above by

MSE(M̂−1 ) ≤ C1

p
(σ2 + (1− p)) +O(1/

√
T0),

where C1 is a universal positive constant.
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Proof. Since the singular value threshold µ = (2 + ω)
√
T q̂, let us define δ so that

(1 + δ)‖Y − pM‖ = (2 + ω)
√
T q̂,

where q̂ = σ̂2p̂+ p̂(1− p̂); recall that q = σ2p+ p(1− p). If E3 happens, then we know that δ ≥ 0.
Therefore, assuming E1, E2, and E3 happens, Lemma B.5 states that∥∥∥p̂M̂ − pM

∥∥∥ ≤ (2 + δ)‖Y − pM‖

≤ 2(1 + δ)‖Y − pM‖

= (4 + 2ω)
√
T q̂

≤ C1

√
Tq (64)

for an appropriately defined constant C1. Therefore,

p
∥∥∥M̂− −M−

∥∥∥ ≤ C2p̂
∥∥∥M̂− −M−

∥∥∥
≤ C2

(∥∥∥p̂M̂− − pM−
∥∥∥+

∥∥(p̂− p)M−∥∥)
(a)

≤ C2

(∥∥∥p̂M̂ − pM
∥∥∥+

∥∥(p̂− p)M−∥∥)
≤ C2

(
C1

√
Tq +

∥∥(p̂− p)M−∥∥) (65)

where (a) follows from Lemma B.1. Applying the logic that led to (56), we have that, in general,∥∥∥M̂− −M−
∥∥∥ ≤ 2((N − 1)T )3/2. (66)

Let E := E1 ∩ E2 ∩ E3. Further, using the same argument that led to (48), we have

P(Ec) ≤ C3e
−c4φT

where we define φ := p(N − 1) + σ2 + q and C3, c4 are appropriately defined. Thus, by the law of
total probability and noting that P(E) ≤ 1,

E
∥∥∥(M̂− −M−)Tβ∗

∥∥∥2

≤ E
[∥∥∥(M̂− −M−)Tβ∗

∥∥∥2

| E
]

+ E
[∥∥∥(M̂− −M−)Tβ∗

∥∥∥2

| Ec
]
P(Ec)

(a)

≤ E
[∥∥∥M̂− −M−

∥∥∥2

| E
]
‖β∗‖2 + E

[∥∥∥M̂− −M−
∥∥∥2

| Ec
]
‖β∗‖2P(Ec)

≤ C5

p2
E
[(√

Tq +
∥∥(p̂− p)M−∥∥)2

| E
]

+ C6((N − 1)T )3e−c4φT , (67)

where (a) follows because the spectral norm is an induced norm and the last inequality makes use of
the results from above. Note that C5 and C6 are appropriately defined to depend on β∗. Using the
fact that P(E) ≥ 1/2 for large enough T,N , we apply Lemmas E.1 and E.5 as well as (57) to obtain
(with appropriately defined constants C7, C8, c9)

MSE(M̂−1 ) ≤ 1

T0
E
∥∥∥(M− − M̂−)Tβ∗

∥∥∥2

+
2σ2|S|
T0

+
η‖β∗‖2

T0

≤ C7

p2T0
E
(√

Tq +
∥∥(p̂− p)M−∥∥)2

+
2σ2(N − 1)

T0
+
η‖β∗‖2

T0
+ C8e

−c9φT . (68)
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From Jensen’s Inequality, E|p̂− p| ≤
√

Var(p̂) where Var(p̂) = p(1−p)
(N−1)T . Therefore,

E
(√

Tq
∥∥(p̂− p)M−∥∥) ≤ q1/2

√
p(1− p)√
N − 1

∥∥M−∥∥
≤
√
qp(1− p)T0.

At the same time,

E
∥∥(p̂− p)M−∥∥2

= E(p̂− p)2 ·
∥∥M−∥∥2

≤ p(1− p)T0

T
≤ p(1− p).

Putting everything together, we arrive at the inequality

MSE(M̂−1 ) ≤ C7

p2T0

(
qT + p(1− p) + 2

√
qp(1− p)T0

)
+

2σ2(N − 1)

T0
+
η‖β∗‖2

T0
+ C8e

−c9φT

=
C10q

p2
+
C7(1− p)

pT0
+
C11(q(1− p))1/2

p3/2
√
T0

+
2σ2(N − 1)

T0
+
η‖β∗‖2

T0
+ C8e

−c9φT

=
C10

p
(σ2 + (1− p)) +O(1/

√
T0).

The proof is complete assuming we re-label C10 as C1.

E.3.3 Proof of Theorem 4.4

Theorem (4.4). Fix any γ ∈ (0, 1/2) and ω ∈ (0.1, 1). Let ∆ = T
1
2 +γ

0 and µ = (2+ω)
√
T 2γ

0 (σ̂2p̂+ p̂(1− p̂)).

Suppose p ≥ T−2γ
0

σ2+1 is known. Then for any η ≥ 0,

MSE( ˆ̄M−1 ) = O(T
−1/2+γ
0 ).

Proof. To establish Theorem 4.4, we shall follow the proof of Corollary 4.1, using the block partitioned

matrices instead. Recall that τ = T0/∆ where ∆ = T
1/2+γ
0 . For analytical simplicity, we define the

random variable

Dit =

{
1 w.p. p,

0 otherwise,

whose definition will soon prove to be useful. As previously described in Section 4, for all i > 1 and
j ∈ [∆], we define

X̄ij =
1

τ

∑
t∈Bj

Xit ·Dit

and

M̄ij =
p

τ

∑
t∈Bj

Mit.

Let us also define Ē− = [ε̄ij ]2≤i≤N,j≤∆ with entries

ε̄ij =
1

τ

∑
t∈Bj

εit ·Dit. (69)
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For the first row (treatment unit), since we know p by assumption, we define for all j ∈ [∆]

X̄1j =
p

τ

∑
t∈Bj

X1t (70)

=
p

τ

∑
t∈Bj

(M1t + ε1t)

=
p

τ

∑
t∈Bj

M1t +
p

τ

∑
t∈Bj

ε1t

= M̄1j + ε̄1j , (71)

whereby M̄1j = p
τ

∑
t∈Bj M1t and ε̄1j = p

τ

∑
t∈Bj ε1t. Under these constructions, the noise entries

remain zero-mean random variables for all i, j, i.e. E[ε̄ij ] = 0. However, the variance of each noise
term is now rescaled, i.e. for i = 1

Var(ε̄1j) =
p2

τ2

∑
t∈Bj

Var(ε1t)

=
σ2

τ
,

and for i > 1,

Var(ε̄ij) =
1

τ2

∑
t∈Bj

Var(εit ·Dit)

(a)

≤ 1

τ2

∑
t∈Bj

(σ2p(1− p) + σ2p2)

≤ σ2

τ
.

(a) used the fact that for any two independent random variables, X and Y , Var(XY ) = Var(X)Var(Y )+
Var(X)(E[Y ])2 + Var(Y )(E[X])2. Thus, for all i, j, Var(ε̄ij) ≤ σ2/τ := σ̄2.

We now show that the key assumption of (6) still holds under this setting with respect to the
newly defined variables. In particular, for every partition j ∈ [∆] of row one,

M̄1j =
p

τ

∑
t∈Bj

M1t

=
p

τ

∑
t∈Bj

( N∑
k=2

β∗kMkt

)

=
N∑
k=2

β∗k

(p
τ

∑
t∈Bj

Mkt

)

=
N∑
k=2

β∗kM̄kj .

As a result, we can express M̄−1 = (M̄−)Tβ∗ for the same β∗ as in (6).
Following a similar setup as before, we define the matrix Ȳ − = [Ȳij ]2≤i≤N,j≤∆. Since we have

assumed that each block contains at least one observed entry, we subsequently have that Ȳij = X̄ij

for all i and j. We now proceed with our analysis in the exact same manner with the only difference
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being our newly defined set of variables and parameters. For completeness, we will highlight certain
details below.

To begin, observe that E[Ȳij ] = M̄ij while

Var(Ȳij) ≤
σ2p+ p(1− p)

τ
.

Consequently, we redefine the event E3 := {
∥∥Ȳ − − M̄−

∥∥ ≤ (2 +ω)
√

∆q̄} for some choice ω ∈ (0.1, 1)

and for q̄ = σ2p+p(1−p)
τ . By Theorem A.5, it follows that P(E3) ≥ 1− C ′e−cq̄∆.

Similar to before, let δ be defined by the relation

(1 + δ)
∥∥Ȳ − − M̄−∥∥ = (2 + ω)

√
∆ˆ̄q,

where ˆ̄q = σ̂2p̂+p̂(1−p̂)
τ . Letting E = E1 ∩ E2 ∩ E3 and using arguments ((64), (65), (56)) that led us

to (67), we obtain

E
∥∥∥( ˆ̄M− − M̄−)Tβ∗

∥∥∥2

≤ E
[∥∥∥( ˆ̄M− − M̄−)Tβ∗

∥∥∥2

| E
]

+ E
[∥∥∥( ˆ̄M− − M̄−)Tβ∗

∥∥∥2

| Ec
]
P(Ec)

≤ C1∆q̄ + C2e
−c3φ∆,

where φ := p(N − 1) + σ2 + q̄. Utilizing Lemmas E.1 and E.5 gives us (for appropriately defined
constants and defining q = σ2p+ p(1− p) as before such that q̄ = q/τ)

MSE( ˆ̄M−1 ) ≤ C1q̄ +
2σ̄2k

∆
+
η‖β∗‖2

∆
+ C4e

−c5φ∆.

=
C1q

τ
+

2σ2k

τ∆
+
η‖β∗‖2

∆
+ C4e

−c5 qτ ∆

=
C1q

T
1/2−γ
0

+
2σ2k

T0
+
η‖β∗‖2

T
1/2+γ
0

+ C4e
−c5qT 2γ

0

= O(T
−1/2+γ
0 ).

This concludes the proof.

Appendix F. Forecasting Analysis: Post-Intervention Regime

We now bound the post-intervention `2 error of our estimator.

F.1 Proof of Theorem 4.5

Theorem (4.5). Let (6) hold for some β∗ ∈ RN−1. Let rank(M−) = rank(M). Then M+
1 =

(M+)Tβ∗.

Proof. Suppose we begin with only the matrix M−, i.e. M = M−. From the assumption that
M−1 = (M−)Tβ∗, we have for t ≤ T0

M1t =
N∑
j=2

β∗jMjt.

Suppose that we now add an extra column to M− so that M is of dimension N × (T0 + 1). Since
rank(M−) = rank(M), we have for j ∈ [N ]

Mj,T0+1 =

T0∑
t=1

πtMjt,
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for some set of weights π ∈ RT0 . In particular, for the first row we have

M1,T0+1 =

T0∑
t=1

πtM1t

=

T0∑
t=1

πt

( N∑
j=2

β∗jMjt

)

=
N∑
j=2

β∗j

( T0∑
t=1

πtMjt

)

=
N∑
j=2

β∗jMj,T0+1.

By induction, we observe that for any number of columns added to M− such that rank(M−) =
rank(M), we must have M+

1 = (M+)Tβ∗ where M+ = [Mit]2≤i≤N,T0<t≤T .

F.2 Proof of Theorem 4.6

Theorem (4.6). Suppose p ≥ T−1+ζ

σ2+1 for some ζ > 0. Suppose
∥∥∥β̂(η)

∥∥∥
∞
≤ ψ for some ψ > 0. Let

α′T0 ≤ T ≤ αT0 for some constants α′, α > 1. Then for any η ≥ 0 and using µ as defined in (20),
the post-intervention error is bounded above by

RMSE(M̂+
1 ) ≤ C1√

p
(σ2 + (1− p))1/2 +

C2‖M‖√
T0

· E
∥∥∥β̂(η)− β∗

∥∥∥+O(1/
√
T0),

where C1 and C2 are universal positive constants.

Proof. We will prove Theorem 4.6 by drawing upon techniques and results from prior proofs. We
begin by applying triangle inequality to obtain∥∥∥M̂+

1 −M
+
1

∥∥∥ =
∥∥∥(M̂+)T β̂(η)− (M+)Tβ∗

∥∥∥
=
∥∥∥(M̂+)T β̂(η)− (M+)Tβ∗ + (M+)T β̂(η)− (M+)T β̂(η)

∥∥∥
≤
∥∥∥(M̂+ −M+)T β̂(η)

∥∥∥+
∥∥∥(M+)T (β̂(η)− β∗)

∥∥∥.
Taking expectations and using the property of induced norms gives

E
∥∥∥M̂+

1 −M
+
1

∥∥∥ ≤ E
[∥∥∥M̂+ −M+

∥∥∥ · ∥∥∥β̂(η)
∥∥∥]+

∥∥M+
∥∥ · E∥∥∥β̂(η)− β∗

∥∥∥
≤
√
Nψ · E

∥∥∥M̂+ −M+
∥∥∥+

∥∥M+
∥∥ · E∥∥∥β̂(η)− β∗

∥∥∥, (72)

where the last inequality uses the boundedness assumption of β̂(η). Observe that the first term on
the right-hand side of (72) is similar to that of (53) and (63) with the main difference being (72) uses

the post-intervention submatrices, M̂+ and M+, as opposed to the pre-intervention submatrices,
M̂− and M−, in (53) and (63). Therefore, using (57) and the arguments that led to (67), it follows
that (with appropriate constants C1, C2, c3)

E
∥∥∥M̂+ −M+

∥∥∥ ≤ C1

p
E
(√

Tq +
∥∥(p̂− p)M+

∥∥)+ C2((N − 1)T )3/2e−c3φT ,
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where the slight modification arises due to the fact that we are now operating in the post-intervention

regime. In particular, ‖M+‖ ≤
√

(N − 1)(T − T0) and
∥∥∥M̂+

∥∥∥ ≤ ((N − 1)T )3/2. Further, note that

q and φ are defined exactly as before, i.e. q = σ2p+ p(1− p) and φ = p(N − 1) + σ2 + q. Following
the proof of Corollary 4.1, we apply Jensen’s Inequality to obtain

E
∥∥(p̂− p)M+

∥∥ = E|p̂− p| ·
∥∥M+

∥∥
≤

√
p(1− p)

(N − 1)T
·
√

(N − 1)(T − T0)

≤
√
p(1− p).

Putting the above results together, we have (for appropriately defined constants)

RMSE(M̂+
1 ) ≤ C1

√
Nψ

p
√
T − T0

(√
Tq +

√
p(1− p)

)
+
‖M+‖√
T − T0

· E
∥∥∥β̂(η)− β∗

∥∥∥+ C4e
−c5φT

(a)

≤
C6
√
q

p
+
C7

√
1− p√
pT0

+
C8‖M‖√

T0

· E
∥∥∥β̂(η)− β∗

∥∥∥+ C4e
−c5φT

=
C6√
p

(σ2 + (1− p))1/2 +
C8‖M‖√

T0

· E
∥∥∥β̂(η)− β∗

∥∥∥+O(1/
√
T0),

where (a) follows from Lemma B.1. Renaming constants would provide the desired result.

Appendix G. A Bayesian Perspective

Derivation of posterior parameters.

The following is based on the derivation presented in Section 2.2.3 of Bishop (2006), and is
presented here for completeness. Suppose we are given a multivariate Gaussian marginal distribution
p(x) paired with a multivariate Gaussian conditional distribution p(y | x) – where x and y may
have differing dimensions – and we are interested in computing the posterior distribution over x, i.e.
p(x | y). We will derive the posterior parameters of p(x | y) here. Without loss of generality, suppose

p(x) = N (x | µ,Λ−1)

p(y | x) = N (y |Ax+ b,Σ−1),

where µ,A, and b are parameters that govern the means, while Λ and Σ are precision (inverse
covariance) matrices.

We begin by finding the joint distribution over x and y. Ignoring the terms that are independent
of x and y and encapsulating them into the “const.” expression, we obtain

ln p(x, y) = ln p(x) + ln p(y | x)

= −1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)TΣ(y −Ax− b) + const.

= −1

2
xT (Λ + ATΣA)x− 1

2
yTΣy +

1

2
xTATΣy + const.

= −1

2

[
x
y

]T [
Λ + ATΣA −ATΣ
−ΣA Σ

] [
x
y

]
+ const.

= −1

2
zTQz + const.,
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where z = [x, y]T , and

Q =

[
Λ + ATΣA −ATΣ
−ΣA Σ

]
is the precision matrix. Applying the matrix inversion formula, we have that the covariance matrix
of z is

Var(z) = Q−1 =

[
Λ−1 Λ−1AT

AΛ−1 Σ−1 + AΛ−1AT

]
.

After collecting the linear terms over z, we find that the mean of the Gaussian distribution over z is
defined as

E[z] = Q−1

[
Λµ−ATΣb

Σb

]
.

Now that we have the parameters over the joint distribution of x and y, we find that the posterior
distribution parameters over x are

E[x | y] = (Λ + ATΣA)−1{ATΣ(y − b) + Λµ}
Var(x | y) = (Λ + ATΣA)−1.
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