




The selection of L0 and R must ensure that even in a fully

collapsed state, the outer membranes from opposite side of

the actuator do not meet in the middle and restrict airflow.

The most contracted actuator at the bottom of Fig. 2 shows

this situation: the inner membranes are almost touching in

the center of the actuator. The constraint L0 < 2R ensures

that airflow throughout the inner chamber is possible. We

will limit our analysis to the case where Pouter > Pinner,

otherwise the structure behaves as an inflated beam, as the

volume of the outer chamber will be zero. We also assume

that Pouter > Patm, which ensures that the outer membrane

always forms a cylinder of radius r. If Pouter < Patm, the

outer membrane will bulge inwards.

III. MODELING

We develop a model of the actuator by first relating the

changes in pressures and volumes of the inner and outer

chambers through the principal of virtual work. To determine

the change in volumes, we analyze the membrane shape, and

then use the assumed membrane shape to analyze the length

and stiffness of an actuator with known pressure inputs.

A. Virtual Work

We use the principle of virtual work to determine the force

and displacement relationships for the actuator. To do so, we

imagine an infinitesimal axial displacement of the actuator,

and equate to zero the sum of the work done by an applied

axial load and the work done by the inner and outer pressure

chambers

FdL+ PinnerdVinner + PouterdVouter = 0. (1)

F = −Pinner
dVinner

dL
− Pouter

dVouter

dL
(2)

In the case of this actuator, where the combined inner and

outer chambers always form a cylinder, Vinner = πR2L −

Vouter. Thus, we can write

dVinner

dL
= πR2

−

dVouter

dL
(3)

F = −PinnerπR
2 + (Pinner − Pouter)

dVouter

dL
(4)

This expression shows that for a fixed length and applied

outer force, the relationship between Pinner and Pouter is

linear, meaning that a constant length can be maintained as

pressures are changing in a linear relationship.

We can take the derivative of Eq. 4 with respect to length

to obtain an expression for the stiffness.

∂F

∂L
= (Pinner − Pouter)

d2Vouter

dL2
(5)

This analysis has shown that it is possible to achieve the

same lengths with different pressures, and that increasing

the difference between the inner and outer pressure increases

the stiffness. Next we compute dVouter

dL and d2Vouter

dL2 , which

requires identification of the membrane shape.
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Fig. 3: The shapes of the membrane that minimize the internal volume (the
solution to the boundary value problem), compared to circular arc of length
L0=3.81 and R=2.54 with the same end conditions. Each pair of curves
represents the solutions for different lengths of the actuator.

B. Membrane Shape

To compute the enclosed volume of the inner and outer

chambers, we must first determine the membrane shape. If

Pouter > Pinner, then the membrane will take a shape that

maximizes the volume of the outer chamber, and minimizes

the volume of the inner chamber. Assuming that the material

is inextensible and the actuator is axi-symmetric, the problem

becomes one of finding a curve of fixed length that satisfies

the boundary conditions imposed by the actuator geometry

and minimizes the volume enclosed when the curve is

revolved about the center axis (minimizing the volume of

the inner chamber and maximizing the volume in the external

chamber). A 2D representation of the problem can be seen

in Fig. 2(b). Using a calculus of variations approach from

[8], finding such a curve y(x) is equivalent to solving the

boundary value problem:

y′′(x) =
2πy(x)(1 + y′(x)2)3/2

λ
(6)

y′(0) = 0, y

(

L

2

)

= R

∫ L/2

0

√

1 + y′(x)2dx =
L0

2

where λ is an unknown parameter. While in [8] this expres-

sion is used to compute the maximum volume curve, the

expression is for any extremal curve, meaning a curve that

either maximizes or minimizes volume. Whether the solver

converges to the maximal or minimal volume solution will

depend largely on the initial condition. To solve this problem

numerically, we define a new state, v(y) =
√

1 + y(x)2,

with the accompanying boundary conditions v(0) = 0,

v(L
2
) = L0

2
. This results in a third-order boundary value

problem with one unknown parameter, λ, and 4 boundary

conditions. We solve this problem numerically using Mat-

lab’s BVP4C solver. This numerical solving technique is

sensitive to initial condition, so the initial guess of the system

was given as the circular arc with positive concavity of length

L0 that satisfies the boundary conditions. We compare the

resulting membrane shape to the circular arc used as an initial

guess in Fig. 3. For this case of L0=3.81 cm and R=2.54 cm,











Fig. 14: Demonstration of a length-controlled bending device where the
outer chamber is separated into three chambers that run the length of the
device. One of these three outer chambers is pressurized. On the left, the
pressure in the inner chamber is positive, while on the right the pressure in
the inner chamber is negative. When the device is long, the pressurized outer
chamber exerts a contractile force; when the device is short, the inflated
outer chamber exerts a pushing force, reversing the curvature.

F. Soft Bending Device

As a variation on this actuator design, we created a

device where the outer chamber is divided into three separate

chambers that run the length of the actuator. Actuation of

these individual cavities applies asymmetric forces to the

actuator, which cause it to bend. An interesting behavior

occurs if one outer cavity is inflated, and the inner cavity is

changed from positive pressure to negative pressure. When

the inner chamber is at a positive pressure, L > Lcrit, and

the pressure in the one outer chamber exerts an contracting

force on the device. This results in bending toward the one

inflated outer chamber. When vacuum is applied to the inner

chamber, L < Lcrit, and the one outer chamber exerts an

extending force, switching the direction of the curvature.

This demonstrates that pressure in the outer chamber can lead

to either pushing or pulling forces, depending on actuator

length.

VI. CONCLUSION

The APAM has the ability to independently control stiff-

ness and length over a large extension range while either

pushing or pulling, making this actuator valuable for a variety

of applications. One target application is the construction

of robots made up of a large number of linear actuators

connected into a network. The large extension ratio of this ac-

tuator, as well as its ability to control stiffness independently

of length, would greatly increase the capabilities of truss

robots. A computational model is presented that relates how

the pressure inputs correspond to rest length and stiffness. We

have demonstrated this actuator in a grounded tetrahedron

robot, and as a soft bending device. One limitation of this

approach is that, like all all pneumatic devices, a pressure

source is required, meaning that a mobile robot will be

required to carry either a pump, a compressed air cartridge,

or some other source of pressure. The APAM also requires

vacuum, which can be delivered either through a pump

or a Venturi mechanism. Another consideration is that the

APAM is not completely soft. This is the case for many soft

robots, and must be taken into account when designing for

specific applications. Versions using compliant superelastic

Nitinol wire formed into loops as replacements for the

acrylic discs could allow for a more robust and fully flexible

APAM. Future work will analyze the bending and buckling

stiffnesses of the APAM, as well as integrate these actuators

into mobile compliant truss robots.
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