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Abstract

Registration of curves is a necessary component of sta-

tistical shape analysis. The goal of registration is to align

collections of shapes so that common features are appro-

priately matched for further comparison and subsequent

analyses. Traditional methods for registration typically rely

on optimizing an energy functional over a set of appropri-

ate shape-preserving transformations (i.e., rotations and re-

parameterizations). These functionals typically rely on the

standard L
2 metric. In certain applications, it may make

sense to use a more flexible metric which can align shapes

most preferably with respect to a local shape feature (i.e.,

a certain curve segment selected from the overall shape).

In this work, we define a weighted shape metric which al-

lows for emphasis on local shape features. Registration can

be performed with respect to this metric. We demonstrate

the registration procedure using simulated curves as well as

real data, and show the dependence of the optimal rotation

and re-parameterization on the specified weights, as well as

the resulting deformation path from one shape to another.

1. Introduction

Statistical shape analysis is the study of data sets which

consist of outlines of objects, generally extracted from im-

ages. This type of data is available in numerous applica-

tions, including computer vision, biology, anatomy, med-

ical imaging, biometrics, and forensic analysis. A major

challenge in shape analysis is establishing equivalence of

shape, which can be defined as a property which is un-

changed after applying various shape-preserving transfor-

mations (generally translation, scale, and rotation). In order

to analyze shape data, one must respect these invariances,

as objects which appear different can still be identically-

shaped. Thus, developing a suitable shape representation

is crucial to shape analysis. Once found, a metric between

shapes is defined, allowing for further statistical inference.

The two most general classes of shape representations

are landmark-based and function-based. Landmark meth-

ods represent a shape using a finite set of labeled points,

known as landmarks [6, 4, 12, 2]. These points are se-

lected mathematically (e.g., points of extreme curvature)

and/or anatomically (as meaningful points to the function of

the object of interest). This allows for a finite-dimensional

approximation of shape, and opens up multivariate analy-

sis techniques for statistical inference. More recently, re-

searchers have worked on function-based methods, since an

object’s shape is generally thought of as a function rather

than a discrete set of points. By treating the outline of an ob-

ject as a continuous function, shape can also be thought of

as being preserved even if the function is re-parameterized.

Parameterization-invariance can be introduced by standard-

izing all parameterizations to arc-length; however, this has

been shown to be sub-optimal, as it forces a correspondence

of features between shapes that may not necessarily be ap-

propriate [20, 7]. An alternative approach is to optimize

over the space of valid re-parameterization functions. This

allows for more appropriate shape matching (known as reg-

istration), and underlies what are known as elastic represen-

tations of shape [19, 10, 13].

Recently, Strait et al. [18] combined the two approaches

discussed into a landmark-constrained elastic shape repre-

sentation (also see [1, 9] for related methods). This allows

for treatment of an object’s outline as a function, while also

providing for subject expertise input in the way of anno-

tated landmarks on the outline. In medical imaging, land-

marks often represent important anatomical features to the

structure; marking them places extra emphasis on these fea-

tures of interest. Strait et al. [18] showed improvements

in statistical performance in cases where landmarks provide

useful information. Marking landmarks on an outline seg-

ments the shape into “pieces”, which are then used for sub-

sequent registration steps. Registration relies on the L2 met-

ric between square root velocity functions (defined in [13]),

which is rewritten into a sum of integrals over each shape

segment. Naturally, one might wonder if allowing for flexi-

ble weighting of each of these integrals over particular seg-

ments can further improve statistical performance. By up-

weighting the outline of a bird’s beak, perhaps one can see
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improvements in identifying bird species with vastly differ-

ent beak structures. Our goal is to formulate a method for

registration of full shapes dominated by smaller-scale (i.e.,

local) features, and induce a distance which scrutinizes the

highly-weighted local features of interest.

In this paper, we introduce a metric which allows for

flexible weighting of local features, based on the landmark-

constrained representation in [18]. In Section 2, we outline

the landmark-constrained representation and introduce the

weight function. We show how this impacts registration of

shapes as well as the shape metric and geodesic. Section

3 demonstrates weighted registration on four sets of simu-

lated curves. We then apply this new framework to three

sources of real shape data in Section 4, and conclude with

summarizing remarks and future directions in Section 5.

2. Mathematical Framework

In this section, we describe the main shape representa-

tion framework used throughout this work; further details

can be found in [13, 18]. Once the representation is devel-

oped, methods for shape registration and computation of a

shape metric and geodesic are introduced.

2.1. Square Root Velocity Function

Let β : D → R
d be the absolutely continuous curve

representing the object of interest’s outline. D is the curve

domain, taken to be [0, 1] for open curves and S
1 for closed

curves. For the time being, we will focus on open curves

in d = 2 dimensions (i.e., planar curves); however, there

are natural extensions of this method to closed curves and

curves of higher dimension. A popular shape representation

for β is the square root velocity function (SRVF) [13]:

q(t) =





β̇(t)√
|β̇(t)|

if β is differentiable at t and |β̇(t)| 6= 0

0 otherwise
,

(1)

where | · | is the Euclidean norm and β̇ is the time-derivative

of β. The SRVF has numerous benefits. First, q encodes

all local information about β: the instantaneous speed and

direction of β can be written explicitly in terms of q. In

addition, given starting point β(0) of β, there is a smooth

bijection between q and β: β(t) = β(0)+
∫ 1

0
q(s)|q(s)| ds.

Since the SRVF is a function of β̇, it is automatically in-

variant to translation. Scale invariance can be introduced

by re-scaling β to unit length. In particular, if the unit

length constraint
∫ 1

0
|β̇(t)| dt =

∫ 1

0
|q(t)|2 dt = 1 is im-

posed, the space of corresponding SRVFs is the infinite-

dimensional unit Hilbert sphere, called the pre-shape space

C = {q : [0, 1] → R
2|
∫ 1

0
|q(t)|2 dt = 1}. If one wishes

to analyze size-and-shape of an object, the re-scaling step

is skipped, and SRVFs lie in the pre-size-and-shape space

Cs = {q : [0, 1] → R
2} (i.e., the space of all square inte-

grable functions). For this work, we consider SRVFs in the

ambient space Cs. In order to proceed, we must introduce

rotation and re-parameterization invariance.

2.2. Weighted Metric on Cs
Suppose that we are provided an open curve β with k

landmark locations marked, denoted {β(θ1), . . . , β(θk)} ∈
R

2. Without loss of generality, assume 0 < θ1 < . . . <
θk < 1. Specifying k landmarks splits β into k + 1 curve

segments. These can be identified by partitioning the curve

domain D: define S1 = [0, θ1), S2 = [θ1, θ2), . . . , Sk =
[θk−1, θk), Sk+1 = [θk, 1]. Notice that these sets do form a

partition, as D =
⋃k+1

i=1 Si and Si∩Sj = ∅ for i 6= j. Then,

the ith curve segment of β is the absolutely continuous func-

tion β(i) : Si → R
2 defined as the restriction β(i) := β|Si

(with corresponding SRVF segment q(i)). In practice, land-

marks are specified manually by the researcher to capture

important local shape features, using a discretized curve

which is arc-length parameterized; see [18] for further de-

tails. In the case where landmark locations are unknown,

automatic detection may be necessary; see [11, 16, 15, 3].

To weight curve segments, define weight function

w : [0, 1] → R by w(t) = wi✶{t∈Si}, with wi >
0 ∀ i,

∑
i wi = k + 1. This assigns weight wi to segment

β(i). Note that this weight function is discretely defined; a

continuous weight function may be desirable in certain ap-

plications, and is left as future work. Also note the weight

sum restriction, which is one way to standardize weights

(and allows for equally weighted segments to be a special

case). We require weights to be non-negative for mathe-

matical reasons described below. Weights can be selected

to emphasize local shape features that are of interest, and

impacts shape registration, as described in the next section.

Given two curves β1, β2 with corresponding SRVFs

q1, q2 ∈ Cs and common landmark locations θ1, . . . , θk,

define the weighted L
2 inner product between their SRVFs,

〈〈q1, q2〉〉(w) :=

∫ 1

0

w(t)〈q1(t), q2(t)〉 dt

=
k+1∑

i=1

wi

∫

Si

〈q1(t), q2(t)〉 dt,
(2)

where 〈·, ·〉 is the Euclidean inner product. This in-

duces the weighted landmark-constrained pre-size-and-

shape (WLCP) metric:

d
(w)
Cs

(q1, q2) =

(
k+1∑

i=1

wi

∫

Si

|q1(t)− q2(t)|2 dt
)1/2

, (3)

Notice that when wi = 1 ∀ i, d
(w)
Cs

(q1, q2) = dCs
(q1, q2)

(i.e., the original, unweighted L
2 metric defined in [18]).
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The WLCP metric satisfies required properties for distance

functions only if wi are strictly non-negative for all i.

A question which arises is why this metric involves

SRVFs q1, q2, rather than the original curve func-

tions β1, β2. The L
2 metric between β1 and β2

is not appropriate, as the action of re-parameterization

is not by isometries:
( ∫ 1

0
|β1(t) − β2(t)|2 dt

)1/2
=

( ∫ 1

0
|β1(γ(t)) − β2(γ(t))|2 dt

)1/2
does not hold for all

valid re-parameterization functions γ (defined in the next

section). However, the L
2 metric with SRVFs is invariant

under common re-parameterization. In addition, the metric

involving SRVFs is related to the elastic metric [19, 5, 13],

a Riemannian metric measuring bending and stretching en-

ergies required to deform one curve into another.

2.3. Locally Weighted Registration

One may note that Section 2.2 assumes that a given pair

of curves q1 and q2 share common landmark locations along

their respective arc-length parameterizations. This is gener-

ally not true: if θ
(j)
i is the ith landmark on the jth curve

(for j = 1, 2), then θ
(1)
i 6= θ

(2)
i in most cases. This

means that the integration in Equations 2 and 3 is not well-

defined due to the mismatch in integration bounds. In or-

der to fix this, landmark constraints are initially matched

by finding a suitable re-parameterization function γlm such

that γlm(θ
(1)
i ) = θ

(2)
i for i = 1, . . . , k. This function should

be an element of the group of re-parameterization functions

Γ = {γ : [0, 1] → [0, 1]|γ(0) = 0, γ(1) = 1, 0 < γ̇ < ∞}
(the set of all orientation-preserving diffeomorphisms of the

unit interval). We choose to initialize with a piecewise lin-

ear function (with arc-length parameterization) between the

matched landmarks. While this function is not a mem-

ber of Γ (due to the required differentiability), it is gener-

ally a good approximation. If smoothness is desired, one

can use the initialization step found in [17]. We define the

landmark-matched second SRVF q2,lm := (q2 ◦ γlm)
√

˙γlm.

While the landmarks are now matched, segments be-

tween landmarks are not. To align (or register) the shapes,

we optimally match one shape to the other. This is done

by minimizing the WLCP metric over the set of all valid

rotations and re-parameterizations. We take into account

rotation and re-parameterization invariance by defining the

transformation groups of interest below. Let SO(2) be the

group of 2 × 2 rotation matrices. Since landmarks on both

shapes are now matched, valid re-parameterization func-

tions must fix these points. Thus, define the landmark-

constrained re-parameterization subgroup Γ0 = {γ ∈
Γ|γ(θi) = θi, i = 1, . . . , k}. The actions of O and Γ0 com-

mute (see [14] for proof): applying rotation O ∈ SO(2)
and re-parameterization γ ∈ Γ0 to a SRVF q yields the

transformed SRVF O(q ◦ γ)
√
γ̇. Define the landmark-

constrained size-and-shape space Ss = Cs/(SO(2)× Γ0).

This quotient space consists of equivalence classes [q] =
{O(q ◦ γ)

√
γ̇|q ∈ Cs, O ∈ SO(2), γ ∈ Γ0} which

equate SRVFs that are only different by a rotation and/or

re-parameterization. Thus each equivalence class uniquely

identifies the object’s size-and-shape.

To register q1 and q2,lm, we solve:

(O∗, γ∗) = argmin
O∈SO(2),γ∈Γ0

d
(w)
Cs

(q1, O(q2,lm ◦ γ)
√
γ̇). (4)

Solving Equation 4 is done by fixing q1, and searching

for the rotation and re-parameterization which best matches

q2,lm, with respect to the WLCP metric. The solution can be

approximated marginally, i.e., by finding O∗ and γ∗ sepa-

rately and iterating until a stable solution is obtained.

2.3.1 Optimizing over SO(2)

Given a re-parameterization function γ̃, define q̃2 := (q2,lm◦
γ̃)

√
˙̃γ. The minimizing rotation is,

O∗ = argmin
O∈SO(2)

d
(w)
Cs

(q1, Oq̃2) = argmax
O∈SO(2)

〈〈q1, Oq̃2〉〉(w)

= argmax
O∈SO(2)

∫ 1

0

w(t)〈q1(t), Oq̃2(t)〉 dt

= argmax
O∈SO(2)

tr

([∫ 1

0

q1,w(t)q̃2(t)
⊤ dt

]
O⊤

)
,

(5)

where q1,w(t) := w(t)q1(t). The last line of Equation 5 is

solved by finding the singular value decomposition (SVD)

of A =
∫ 1

0
q1,w(t)q̃2(t)

⊤ dt = UΣV ⊤, where the columns

of U and V are singular vectors with corresponding singular

values (in descending order) in diagonal matrix Σ. Then,

the optimal rotation is given by O∗ = UV ⊤ (with the last

column of V changing sign if det(A) = −1). Note that this

will differ from the optimal rotation under equal weights, as

the SVD is impacted by the weight function w(t) through

the derived “weighted” SRVF q1,w. By introducing variable

weighting along the registered curves, the optimal rotation

is dominated by the highest-weighted segments.

2.3.2 Optimizing over Γ0

Given a rotation Ō, define q̄2 := Ōq2,lm. The optimal re-

parameterization is given by:

γ∗ = argmin
γ∈Γ0

d
(w)
Cs

(
q1, (q̄2 ◦ γ)

√
γ̇
)

= argmax
γ∈Γ0

k+1∑

i=1

wi

∫

Si

〈q1(t), q̄2(γ(t))
√

γ̇(t)〉 dt.
(6)
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Sim 1 Sim 2

Sim 3 Sim 4

Figure 1. Curves β1 and β2 for Simulations 1–4 from Section 3

(size of curves not shown proportionally across simulations); land-

mark denoted by green circle.

The final expression in Equation 6 is linear along each curve

piece, and thus can be optimized by maximizing each inte-

gral over Si separately. This results in the weights drop-

ping out of the optimization, meaning that optimizing over

Γ0 under the WLCP metric is equivalent to the same prob-

lem under the unweighted L
2 metric. The solution can be

obtained by employing a dynamic programming method

for each piece separately, and “gluing” the solutions to-

gether (as discussed in [18]) or through gradient-descent

[17], which ensures that the optimal re-parameterization

is smooth everywhere (including at landmark constraints).

Note that the optimal rotation and re-parameterization de-

pend on each other; different weight functions will produce

varying optimal rotations, which will impact the best cor-

respondence of points between curves. Thus, in practice,

it is suggested that one solves for the optimal rotation first

before finding the optimal re-parameterization.

2.3.3 Weighted Metric on Ss

Once the optimal rotation and re-parameterization pair

(O∗, γ∗) is found (via Sections 2.3.1 and 2.3.2), let q∗2 :=

O∗(q2,lm ◦ γ∗)
√
γ̇∗ be the optimally-aligned second SRVF

to the first SRVF. Since the action on SO(2)×Γ0 commutes

and is by isometries on Cs, Ss inherits the WLCP metric

on Cs, and thus the weighted landmark-constrained size-

and-shape (WLCS) metric between two size-and-shapes

[q1], [q2] is,

d
(w)
Ss

([q1], [q2]) = d
(w)
Cs

(q1, q
∗
2), (7)

i.e., the minimizing distance over all possible rotations and

re-parameterizations in Cs. Note that introducing weights

allows one to meticulously compare shapes according to lo-

cal features. Upweighting certain segments allows for these

features to dominate registration. Then, the weighted dis-

tance calculated in Equation 7 will magnify any shape dif-

ferences along the upweighted segments, allowing one to

further scrutinize local shape differences.

2.4. Geodesic Paths

The WLCS metric can be interpreted as describing the

amount of deformation required to go from one shape to the

other (with respect to the selected weights). One can as-

sociate with this metric a locally shortest path in Ss that

shows how this deformation occurs. Mathematically, let

αq1,q2 : [0, 1] × [0, 1] → R
2 be a path connecting q1 to

q2 in Cs (with the subscript sometimes dropped for conve-

nience), i.e., α(0, t) = q1(t) and α(1, t) = q2(t), and let

P be the space of all paths from q1 to q2 in Cs. Under the

WLCP metric, the geodesic path α̂
(w)
q1,q2 is,

α̂(w)
q1,q2 = argmin

α∈P

∫ 1

0

〈〈α̇(s, ·), α̇(s, ·)〉〉(w) ds

= argmin
α∈P

∫ 1

0

∫ 1

0

w(t)〈α̇(s, t), α̇(s, t)〉 dt ds

= argmin
α∈P

∫ 1

0

w(t)

[ ∫ 1

0

〈α̇(s, t), α̇(s, t)〉 ds
]
dt

= α̂q1,q2 ,

(8)

where α̇ is the derivative of α with respect to the first ar-

gument s and α̂q1,q2(·, t) = argmin
α∈P

∫ 1

0
〈α̇(s, t), α̇(s, t)〉 ds

is the geodesic path between q1(t) and q2(t) under the un-

weighted metric. We know that this path is linear, and so

the geodesic path in Cs is given by:

α̂(w)
q1,q2(s, ·) = (1− s)q1 + sq2, 0 ≤ s ≤ 1. (9)

The corresponding geodesic path in Ss is α̂
(w)
q1,q∗2

, where

q∗2 is the optimally aligned SRVF defined in Section

2.3.3. The WLCS metric given in Equation 7 is the

geodesic distance, which is the length of the geodesic

path. In practice, visualization of the geodesic path oc-

curs by sampling G equally-spaced points along α̂(w), i.e.,

α̂(w)(0, ·), α̂(w)( 1
G−1 , ·), . . . , α̂(w)(G−2

G−1 , ·), α̂(w)(1, ·).

2.5. Closed Curves

Thus far, the weighted registration framework is defined

for planar open curves. Closed curves impose an extra clo-

sure condition (
∫
S1 β̇(t) dt = 0), which results in a dif-

ferent shape space than for open curves. This occurs be-

cause, unlike open curves, closed curves do not have well-

defined starting and ending points. However, landmark

specification allows one to approximate closed curves as

“unwrapped” open curves, where the first landmark θ1 acts

as a natural “starting point” for the curve β. Specifying k
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Weights Sim 1 Sim 2 Sim 3 Sim 4

[1.9, 0.1] 86.68 88.96 87.62 87.35

[1.5, 0.5] 71.33 83.43 78.18 71.92

[1, 1] 45.08 70.92 58.77 45.35

[0.5, 1.5] 18.86 43.94 29.23 18.77

[0.1, 1.9] 3.53 8.66 5.32 3.34

Table 1. Optimal clockwise rotation angle θ∗ under different

weight settings for Simulations 1–4 (all angles in degrees).

landmarks now splits a closed curve into k segments, which

can be identified by partitioning the curve domain S
1 into

S1 = [θ1, θ2), S2 = [θ2, θ3), . . . , Sk−1 = [θk−1, θk), Sk =
[θk, θ1) (the last segment connects the final specified land-

mark back to the starting point). The curve domain S
1

is commonly identified with the unit interval [0, 1]. The

weight function defined in Section 2.2 is defined similarly to

open curves, except with the constraint
∑

i wi = k, and all

registration procedures are identical. We approximate the

geodesic path for closed curves using Equation 9 for open

curves; however, in general, one can perform path straight-

ening to find the actual solution computationally [13].

3. Simulated Curves

In this section, we illustrate the impact of weighting on

registration of artificial curves. Figure 1 shows four pairs

of two-peaked curves to be compared. All four simula-

tions compare an original curve with both peaks oriented

in the same way, to a second curve where one of the peaks

is rotated by 90 degrees counterclockwise. In Simulation

1, all peaks are of equal size. At least one of the curves

in each of Simulations 2–4 feature a peak which is three

times higher than the other. In Simulation 2, the higher

peak is simply rotated by 90 degrees to produce the sec-

ond curve. Simulation 3 compares equally-sized peaks

to a curve which has the higher peak rotated by 90 de-

grees. Lastly, Simulation 4 rotates the left peak by 90 de-

grees and switches the high and low peaks. For all ex-

amples, one landmark was specified to separate the two

peaks, yielding two curve segments. Curves were not stan-

dardized to remove scale variability (in order to preserve

the magnitude of peaks), so we are interested in compar-

ing size-and-shapes. For all four simulations, registration

was performed under the WLCP metric, under five different

weight settings [w1, w2] corresponding to the two curve seg-

ments: [1.9, 0.1], [1.5, 0.5], [1, 1], [0.5, 1.5], [0.1, 1.9]. The

optimal rotation matrix O∗ =
[ cos(θ∗) sin(θ∗)
− sin(θ∗) cos(θ∗)

]
(with op-

timal clockwise rotation angle θ∗) and re-parameterization

function γ∗ were found. Table 1 shows θ∗ for all simu-

lations under the five weight settings. Figure 2 shows the

corresponding γ∗. Figure 3 shows geodesic paths under the

various weights, with geodesic distances listed in Table 2.

Sim 1 Sim 2

Sim 3 Sim 4

Figure 2. Optimal re-parameterization γ∗ for Simulations 1–4.

Colors for different weight settings: black = [1.9, 0.1], magenta

= [1.5, 0.5], blue = [1, 1], red = [0.5, 1.5], green = [0.1, 1.9].

Weights Sim 1 Sim 2 Sim 3 Sim 4

[1.9, 0.1] 0.573 0.565 1.574 1.694

[1.5, 0.5] 1.234 1.288 1.811 2.226

[1, 1] 1.468 1.756 1.954 2.460

[0.5, 1.5] 1.233 1.823 1.704 2.224

[0.1, 1.9] 0.581 1.035 0.842 1.690

Table 2. Geodesic distance d
(w)
Ss

([q1], [q2]) under different weight

settings for Simulations 1–4.

In Simulation 1, the optimal rotation is approximately

45◦ for equal weighting. This is clear, since neither peak

dominates registration, meaning the best rotational align-

ment of the second curve is equally impacted by the perfect

alignment of the second peak and the 90◦ rotation of the first

peak. However, due to the symmetry of the matching, as the

weight of one of the peaks is increased, the optimal rotation

is pulled to match that particular peak (e.g., for w1 = 1.9,

the second shape is rotated by 86.68◦ to align with the first

peak of the first shape). Also notice that the optimal re-

parameterization function γ∗ changes due to the weights.

The blue line (with equal weighting) is roughly similar be-

fore and after the separation point of the two peaks. How-

ever, increasing a peak’s weight pushes γ∗ to be almost lin-

ear for parameter values corresponding to that peak, and

drastically changes it for the other peak to compensate. The

geodesic paths found in Figure 3 suggest that deformation

occurs differently depending on the weights as well. Con-

stant weighting preserves peak structures equally well. Up-

weighting one peak forces the deformation path to preserve
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Weights Sim 1 Sim 2

[1.9, 0.1]

[1.5, 0.5]

[1, 1]

[0.5, 1.5]

[0.1, 1.9]

Weights Sim 3 Sim 4

[1.9, 0.1]

[1.5, 0.5]

[1, 1]

[0.5, 1.5]

[0.1, 1.9]

Figure 3. Geodesic paths for Simulations 1–4 under different weight settings; G = 7 sampled points along the path are displayed.

that particular peak as well as possible, while sacrificing the

structure of the downweighted peak (e.g., notice how the

second peak for w1 = 1.9 shrinks and becomes asymmetric

before growing and regaining symmetry towards the end).

Since the left peak is much larger in Simulation 2, this

segment does not have to be weighted as strong as in Simu-

lation 1 in order to optimally align this feature – w1 = 1.5
recovers most of the rotation required to go from the first

to second curve. However, in order to align with respect

to the smaller feature, the segment must be upweighted

strongly to overcome the first peak’s contribution to the op-

timal registration. Notice that again, γ∗ varies by choice

of weights. Finally, a result of note in Simulation 2 oc-

curs when w1 = 0.5. In all of the other simulations,

the variable-weighted geodesic distance is smaller than the

equally-weighted geodesic distance, but in this case it is

not. The optimal rotational alignment found does not match

shapes very well at this setting, and so both peaks are quite

different between the two curves. This raises an important

point: the weighted metric is not guaranteed to be smaller

than the unweighted metric, as the optimal rotation and re-

parameterization functions will change! Thus, it does not

make sense to compare distances across different weight

settings, as changing weights influences registration.

In Simulations 3 and 4, peak sizes vary between the two

curves. For Simulation 3, we again observe that the optimal

rotation is mainly impacted by the dominant left peak in the

second curve. As the left peak is upweighted, the optimal

rotation will approach 90◦; however, this does not occur

as “quickly” as in Simulation 2, since the first curve does
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not have the same left-peak dominance. Notice the change

point in the optimal re-parameterization which occurs at the

point between the two peaks. This makes sense, since a

larger portion of the second overall curve must be traversed

in the same amount of time as the first half of the first curve.

Also note that in the geodesic paths, the size of the first

peak drastically changes in comparison to the second peak

as the first peak is weighted higher; however, upweighting

the second peak results in much slower evolution of the rel-

ative peak sizes. Simulation 4 alters the size of both the

first and second peaks; optimal rotations reflect what is ex-

pected with the specified weights, and the geodesic paths

display some symmetry (after rotation is factored out) with

respect to weighting of the two peaks.

4. Examples

In this section, we perform pairwise weighted registra-

tion on objects from real data sets. As we are interested in

shape (rather than size-and-shape), all objects are rescaled

to lie on the unit Hilbert sphere C. However, the extrinsic

WLCS metric (Equation 7) is still used for comparison.

4.1. MPEG­7 Shapes from Computer Vision

We first demonstrate the impact of weighted registration

on shapes from the MPEG-7 data set1, which features com-

plex shapes from computer vision. Figure 4 shows two sets

of shapes for comparison: bones, with one “healthy” and

one fractured bone, and half-circles, where there is approxi-

mate symmetry in one versus asymmetry in the other. In the

bone example, k = 6 landmarks were selected, as shown at

the top of the figure. Registration and geodesic calculation

was done using three weight settings: (1) [1, 1, 1, 1, 1, 1]
(equal weights), (2) [1.9, 1.9, 0.1, 0.1, 0.1, 1.9] (right side),

and (3) [0.1, 0.1, 1.9, 1.9, 1.9, 0.1] (fractured left side). No-

tice that while the equal weight geodesic path looks like a

natural deformation, perhaps it makes more sense to regis-

ter with respect to the healthy part of the bone or the frac-

ture. In real settings, this may allow a doctor to diagnose

the severity of the fracture with more confidence. The ro-

tational alignment differs significantly depending on which

bone segment is upweighted (and this is also reflected in

the optimal re-parameterizations). Notice that (2) seems to

fix the healthy part of the bone and only slowly bend the

left part to create the bend fracture. Optimal rotation angles

are θ∗ = 0.66◦, 9.53◦, and 15.41◦, respectively. For the

half-circle, k = 3 landmarks were selected and weight set-

tings were as follows: (1) [1, 1, 1], (2) [2.8, 0.1, 0.1], and

(3) [0.1, 2.8, 0.1]. The equally-weighted geodesic shows

some rotational alignment in order to match the asymmetry

of the left side more closely, while sacrificing the flat seg-

ment at the base. However, if the flat segment is upweighted

1http://www.dabi.temple.edu/ shape/MPEG7/dataset.html

Wts Geodesic Dist

(1) 0.392

(2) 0.248

(3) 0.383

(1) 0.193

(2) 0.066

(3) 0.205

Figure 4. Top: Bone and half-circle shapes being compared – seg-

ments between landmarks are labeled. Bottom: Geodesic path and

distance for different weight settings.

(as in (2)), this feature is preserved and the asymmetry is

formed with respect to this feature. (3) upweights the left

side, which forces a stronger rotational alignment in order

to match the curvature of this segment as much as possible.

Optimal rotation angles for (1), (2), and (3) are θ∗ = 9.18◦,

0.76◦, and 16.97◦, respectively. The left panel of Figure 6

shows optimal re-parameterizations for this example.

4.2. Mice Vertebrae

This section looks at shape of the second thoracic verte-

bra of mice from the ‘shapes’ package in R, developed and

referenced by [4]. Further discussion of vertebra anatomy

and grouping of mice can be found in [18]. A comparison of

two mice vertebrae is shown in Figure 5, with k = 2 land-

marks specified to separate the neural spine (the “tail” on

the right side) from the rest of the structure. Weighted regis-

tration was performed using weights (1) [1, 1], (2) [1.9, 0.1]
(ignoring neural spine), and (3) [0.1, 1.9] (favoring neural

spine alignment). Notice that in cases (1) and (2), since

the neural spine is a small-scale feature as compared to the

full shape, the optimal rotation is found to match the rest of

the vertebrae (θ∗ = 19.25◦ and 21.87◦, respectively). This

seems to ignore the tilt difference in the neural spine. How-

ever, by upweighting the neural spine, we are able to align

based on this local shape feature (θ∗ = 9.35◦), allowing the

researcher to compare the vertebrae most predominantly us-

ing the neural spine. By aligning according to this feature,

one could potentially form clusters of mice vertebrae based

on the neural spine’s tilt, allowing for improved symmetry

analysis of the structure.
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Wts Geodesic Dist

(1) 0.179

(2) 0.163

(3) 0.151

(1) 0.282

(2) 0.339

(3) 0.273

Figure 5. Top: Mice vertebrae and signatures being compared –

segments between landmarks are labeled. Bottom: Geodesic path

and distance for different weight settings.

4.3. Handwriting Samples

Figure 5 also shows a comparison of a signature for the

name ‘Ren.’ This type of data is relevant in forensic anal-

ysis, where the goal is to discriminate between legitimate

signatures and forgeries. The data used here come from the

SVC 2004 data set2, which contains 40 samples of 40 sig-

natures each (including legitimate ones and forgeries) – see

[8] for further details. Signatures can benefit from weighted

registration, as in the unweighted case, registration may be

dominated by a single large letter (e.g., the first one in a

name); this could lead to misalignment of the full signature.

By downweighting the first letter, we can align based on the

majority of the letters in the signature and scrutinize those

letters more carefully. For this example, the first signature is

legitimate, while the second is a forgery. One landmark was

placed at the end of the letter ‘R’, and we compute optimal

registrations and geodesics under weight settings (1) [1, 1],
(2) [1.9, 0.1] (emphasizing ‘R’ matching), and (3) [0.1, 1.9]
(emphasizing ‘en’ matching). Notice that in the unweighted

case (1), the rotational alignment appears off (θ∗ = 14.11◦)

because the first letter dominates. As expected, upweighting

the first letter will induce a stronger rotation (θ∗ = 21.35◦)

to improve that letter’s alignment even more. However,

downweighting the first letter (as in (3)) corrects for the

overcompensation due to the first letter, and better aligns

the rest of the signature (θ∗ = 5.60◦). The right panel of

Figure 6 shows optimal re-parameterization functions for

the weight settings; notice the similarities since the opti-

mal rotational alignments are fairly similar across weights.

Even when accounting for variability in orientation due to

2http://www.cse.ust.hk/svc2004/download.html

Figure 6. Optimal re-parameterization γ∗ for half-circle (L) and

signature (R) examples. Colors for different weight settings, re-

spectively: magenta = [2.8, 0.1, 0.1] (L)/[1.9, 0.1] (R), blue =

[1, 1, 1] (L)/[1, 1] (R), black = [0.1, 2.8, 0.1] (L)/[0.1, 1.9] (R).

the first letter, we still obtain a relatively large distance, indi-

cating that the two signatures are different. Further scrutiny

of individual letters in a signature can be done by manu-

ally placing landmark(s) to segment the particular letter of

interest.

5. Summary and Future Work

In this work, we have demonstrated the ability to register

shapes via local features by introducing a weight function.

The optimal registration depends on selected landmarks and

weights. By finding the optimal alignment, one can then

compute pairwise distances between shapes (or size-and-

shapes) using a weighted L
2 metric between SRVFs. This

metric also minimizes the registration energy, and produces

a weighted geodesic path which illustrates shape deforma-

tions. For shapes with significant features that are rotation-

ally misaligned, introducing weights can alter the optimal

rotation by a large amount, which then impacts the opti-

mal re-parameterization function. We demonstrated this on

simulated curves where rotational misalignments were arti-

ficially introduced. Noticeable differences are also found in

real shape data.

As this is an introduction to weighted registration, there

are ample opportunities for future work. A natural concern

is of choice of weights. Alternatively, one could learn the

weights, given selected landmarks, by optimizing over a

task of interest (e.g., classification performance). By do-

ing this, the researcher can infer the most important local

features as those with the highest weights. Establishing a

weighted metric opens up the ability to look at mean calcu-

lation, variability assessment, and further inference under

this new metric, and examine robustness to the choice of

weights. Notice that in some examples, certain weight set-

tings do not significantly impact registration. If any selec-

tion of weight yields a similar optimal rotation and align-

ment, then this could be thought of as a way of assess-

ing heterogeneity in a population of shapes. The seam-

less incorporation of automatic landmark detection (in cases

where landmarks are not pre-specified) for classes of similar

shapes is also an important future direction for this work.
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