
  

Abstract—Rehabilitation (Rehab) exercise can benefit cardiac 
patients as it can promote the recovery and improve the heart 
wellness. However, heart failure (HF) patients can only take mild 
exercise, since excessive exercise may lead to fatal events. It is 
important to control the exercise intensity at a desired level to 
maximize exercise benefit. Heart Rate (HR) is an essential factor 
for measuring exercise intensity. Mathematical models of HR 
can be used to study exercise physiology. However, HR models 
involve model uncertainty, resulting from model calibration or 
variability in patients. It is important to quantify the effect of 
uncertainty on HR prediction for optimizing exercise intensity, 
such as treadmill speed. A probabilistic model-based control 
design is presented in this work to obtain an optimal treadmill 
speed for Rehab exercise in the presence of uncertainty. To 
obtain a computationally tractable formulation, the generalized 
polynomial chaos (gPC) theory is used to propagate uncertainty 
via a model to HR predictions, and predict slow-acting responses 
such as peripheral local metabolism that can be used to evaluate 
exercise outcome for individual patients. The speed control of 
treadmill is formulated as an optimization problem that can 
maximize the exercise outcome, while minimizing the slow-
acting effects. The effectiveness of the proposed control design 
was experimentally verified with simulations, showing potentials 
in the exercise control of individual patients. 

I. INTRODUCTION 

Automatic exercise system is important for rehabilitation 
and analysis of cardio respiratory kinetics [1], for which heart 
rate (HR) is a common physiological parameter that can be 
used for exercise protocol design [2, 3]. During exercise, the 
cardiovascular system will increase the delivery of blood and 
oxygen to muscles as the metabolic demand increases, which 
can result in an increase in HR response and stroke volume. 
Mathematical models, describing the cardiovascular system 
during exercise, have been developed to understand exercise 
physiology and investigate etiology of HR response [1, 3]. 

A major challenge of cardiac rehabilitation is the design of 
optimal exercise protocol for patients in different conditions, 
in order to maintain the HR at desired levels. Several control 
strategies have been proposed, including PID control [4] and 
model reference control [5]. However, most of these control 
methods are based on linear models of the HR response during 
exercise, which cannot provide an optimal exercise protocol, 
due to the nonlinear characteristic of HR response [6]. It is 
useful to optimize the exercise protocol and study the control 
of HR response with nonlinear models. 

Model uncertainty is another challenge for the design and 
control of HR. Such an uncertainty may originate from model 
calibration using noisy data or may result from variability of 
individual patients such as cardiovascular fitness. To improve 
the reliability and accuracy of model-based control design, it 
is necessary to account for uncertainty and evaluate its effect 
on HR during exercise. Monte Carlo (MC) simulations-based 
uncertainty analysis is one of the most popular techniques, but 
MC is computationally demanding, since it generally requires 
many simulation-runs to obtain an accurate result. Recently, 
the generalized polynomial chaos (gPC) expansion has been 
studied by a few authors in different disciplines [7, 8, 9], which 
can provide a probabilistic description of uncertainty and its 
effect on model predictions such as HR [10]. 

This paper aims to design an optimal exercise protocol via 
robust control of HR with nonlinear model in the presence of 
parametric uncertainty. A probabilistic approach is developed 
to optimize treadmill speed, which can find a tradeoff between 
maximizing the exercise outcome and minimizing the slow-
acting effects on individual patients. The paper is organized as 
follows. In Section II, the non-linear dynamic models of HR 
response and the theoretical background of gPC are given. A 
nonlinear optimization problem for treadmill speed design is 
presented in Section III, followed by results in Section IV and 
a brief conclusion in Section V. 

II. THEORETICAL BACKGROUND 

A. Nonlinear models of human heart rate response 
The deterministic nonlinear state space model of the HR 

response during treadmill exercise is described as [1]: 
�̇�1 = −𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎6𝑢

2 (1.a) 
�̇�2 = −𝑎3𝑥2 + 𝜙(𝑥1)  

 

(1.b) 
𝐻𝑅(𝑡) = 4.0𝑥1 +𝐻𝑅𝑟𝑒𝑠𝑡  (1.c) 

where the initial condition is defined as 𝑥1(0) = 𝑥2(0) = 0, 
and the function 𝜙(∙) is given as follows: 

𝜙(𝑥1) =
𝑎4𝑥1

1 + exp(−(𝑥1 − 𝑎5))
 (1.d) 

The 𝐻𝑅𝑟𝑒𝑠𝑡  is the resting HR response and equals to 74 bpm 
(beats per minute) in this current work. The input 𝑢 is the speed 
of the treadmill in km/h that needs to be adjusted so that the 
output 𝐻𝑅(𝑡) matches a desired HR response. The variable 𝑥1 
describes the change in HR due to Rehab exercise. The second 
variable 𝑥2 is used to describe the complex slow-acting effects, 
including hormonal systems, peripheral local metabolism, and 
dehydration. For example, the accumulation of metabolic 
byproducts in the case of peripheral local metabolism, e.g., K+, 
H+, PO4

3-, lactic acid, and other metabolites, can cause the 
vasodilatation and hyperemia in muscles [11]. This will cause 
a reduction in total peripheral resistance that further induces a 
decrease in arterial blood pressure. To adjust blood pressure, 
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cardiac outputs need to be increased, which means that the 
stroke volume and HR will be increased via the baroreceptor 
reflex [12]. Consequently, variable 𝑥2, e.g., the metabolites 
from peripheral local metabolisms, can affect the HR during 
exercise. Parameters in (1) can be calibrated with parameter 
estimation technique such as Levenberg-Marquardt [1]. Table 
I shows the calibration results, where the mean value of �̂�𝑖, and 
the standard deviation 𝛿�̂�𝑖 (𝛿=0.05) are given. The confidence 
interval of a parameter �̂�𝑖 is defined as [�̂�𝑖 − 𝛿�̂�𝑖 , �̂�𝑖 + 𝛿�̂�𝑖]). 
TABLE I.  ESTIMATION OF PARAMETERS AND THEIR UNCERTAINTY 

(CONFIDENCE INTERVAL=[�̂�
𝑖
− 𝛿�̂�𝑖, �̂�𝑖 + 𝛿�̂�𝑖]) 

Para 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 
�̂�𝑖 1.84 24.32 6.36×10-2 3.21×10-3 8.32 0.38 
𝛿�̂�𝑖 0.36 4.36 1.95×10-2 6.84×10-4 0.44 0.019 

 

B. Sensitivity analysis with Sobol index 
Some parameters in the HR model may have significant 

effect on model predictions. The Sobol sensitivity index is first 
used to identify these parameters [13], which is a fractional 
contribution of the variance in HR. This calculates the total 
sensitivity index that measures the main effects of a given 
parameter and all the interactions involving this parameter. For 
instance, if three parameters are studied, i.e., a1, a2, and a3. The 
total effect of a1 on HR, i.e., y=x1, is calculated as: 

𝑆𝑇𝑎1 = 𝑆𝑎1 + 𝑆𝑎1,𝑎2 + 𝑆𝑎1,𝑎3 + 𝑆𝑎1,𝑎2,𝑎3  (2) 
where 𝑆𝑇𝑎1  is the total sensitivity index (total effect) of a1, 𝑆𝑎1  
is the 1st order sensitivity index (main effect), 𝑆𝑎1,𝑎2  and 𝑆𝑎1,𝑎3  
are the 2nd order sensitivity index. The 3rd order sensitivity 
index 𝑆𝑎1,𝑎2,𝑎3  defines the interaction among all parameters. 

To quantify the effect of parametric uncertainty on HR, 
i.e., y=x1 in (1), the sensitivity index can be calculated as: 

𝑣 = 𝑉𝑝𝑖[𝐸(𝑦|𝑎𝑖)] 𝑉(𝑦)⁄  (3) 
where 𝑎𝑖is the ith parameter, 𝐸(𝑦|𝑎𝑖) is the mean value of 𝑦 
conditioned on 𝑎𝑖, and 𝑉(𝑦) is the total variance in HR. 

Sobol sensitivity analysis uses decomposition of variance 
to compute sensitivity indices. The key is to rewrite the output 
𝑦 = 𝑓(𝒂) into summands of variance with combinations of 
{𝑎𝑖} in an increasing dimensionality, where 𝒂 is a vector of 
parameters, 𝒂={𝑎𝑖}(𝑖 = 1,⋯ , 𝑘). The output is defined as: 

𝑓(𝒂) = 𝑓0 +∑𝑓𝑖(𝑎𝑖) +∑𝑓𝑖𝑗(𝑎𝑖 , 𝑎𝑗)

𝑘

𝑖<𝑗

𝑘

𝑖=1

 

+⋯+ 𝑓1,⋯,𝑘(𝑎1, ⋯ , 𝑎𝑘) 

(4) 

where 𝑓0 is a constant, and can be calculated as: 

𝑓0 =∫ 𝑓(𝒂)
Ω𝑘

𝑑𝒂 (5) 

where Ω𝑘 is a 𝑘-dimensional parameters space defined by 𝒂. 
The total variance can be calculated as: 

𝑉 = ∫ 𝑓2(𝒂)
Ω𝑘

𝑑𝒂 − 𝑓0
2 (6) 

Based on (6), the total variance can be decomposed in a 
similar way as done for the model output in (4), which gives: 

𝑉(𝑦) = 𝑉 = ∑𝑉𝑖(𝑎𝑖)

𝑘

𝑖

+∑𝑉𝑖𝑗(𝑎𝑖 , 𝑎𝑗)

𝑘

𝑖<𝑗

 (7) 

+⋯+ 𝑉1,⋯,𝑘(𝑎1, ⋯ , 𝑎𝑘) 
where 

𝑉𝑖 = 𝑉𝑎𝑖(𝐸𝑎~𝑖(𝑦|𝑎𝑖)); (8) 
𝑉𝑖𝑗 = 𝑉𝑎𝑖𝑎(𝐸𝑎~𝑖𝑗(𝑦|(𝑎𝑖,𝑎𝑗))) − 𝑉𝑎𝑖(𝐸𝑎~𝑖(𝑦|𝑎𝑖) 
−𝑉𝑎𝑗(𝐸𝑎~𝑗(𝑦|𝑎𝑗)); …… (9) 

In (8) and (9), 𝑉(∗) is the variance, 𝐸 is the mean value, and 
𝑎~𝑖 denotes all parameters except 𝑎𝑖. Analogously, as done 
in (3), the main effect 𝑆𝑎𝑖  for the ith parameter is calculated as: 

𝑆𝑎𝑖 =𝑉𝑎𝑖 𝑉⁄  (10) 
where 𝑆𝑎𝑖  is the main effect of the ith parameter. The total effect 
can be estimated with (2), representing the main effect plus 
higher order effect due to interactions. Sobol sensitivity 
indices, e.g., the main effect and total effect, are approximated 
using techniques such as Monte Carlo (MC) simulations [14]. 

C. Generalized polynomial chaos expansion 
The generalized polynomial chaos (gPC) approximates an 

uncertain parameter as another random variable with a prior 
distribution. Let define the nonlinear HR model as: 

�̇� = 𝑓(𝑡, 𝒙, 𝜽, 𝒑) (11) 
where 𝒙 contains HR change and slow-acting effects with an 
initial value of 𝒙0, 𝜽 is a vector of fixed parameters, and 𝒑 is 
uncertain parameters. To propagate the effect of 𝒑 onto x, 
each parameter 𝑝𝑖  (𝑖=1,2,…,𝑛𝑝) in 𝒑 is approximated with a 
random variable from 𝝃 = {𝜉𝑖} as: 

𝑝𝑖 =𝑝𝑖(𝜉𝑖) (12) 
where 𝜉𝑖 is the 𝑖th random variable. Based on the gPC theory, 
both 𝒑 and 𝒙 = {𝑥𝑗} can be estimated with a set of orthogonal 
polynomial basis functions Φ𝑗(𝝃) as: 

𝑝𝑖(𝜉𝑖) = ∑ �̂�𝑖,𝑘Φ𝑘(𝜉𝑖) ≈

∞

𝑘=0

∑�̂�𝑖,𝑘Φ𝑘(𝜉𝑖)

𝑞

𝑘=0

 (13) 

𝑥𝑗(𝑡, 𝝃) = ∑ �̂�𝑗,𝑘(𝑡)Φ𝑘(𝝃)

∞

𝑘=0

≈∑�̂�𝑗,𝑘(𝑡)Φ𝑘(𝝃)

𝑄

𝑘=0

 (14) 

where �̂�𝑖,𝑘 and �̂�𝑗,𝑘 are the gPC coefficients, and {�̂�𝑖,𝑘} are 
calculated such that 𝑝𝑖(𝜉𝑖) follows a prior distribution of 𝑝𝑖 . 
Coefficients {�̂�𝑗,𝑘} are calculated with nonlinear models (1) 
and a Galerkin projection [10], by projecting (1.a) and (1.b) 
onto each one polynomial chaos basis function {Φ𝑘(𝝃)} as: 

〈�̇�, Φ𝑘(𝝃)〉 =  〈𝑓(𝑡, 𝒙)(𝑡, 𝝃), 𝒑(𝝃), Φ𝑘(𝝃)〉 (15) 
For practical application, (13) is often truncated to a finite 

number of terms, i.e., q. Hence, the total number of terms in 
(14) can be approximated as a function of an arbitrary order 𝑞 
in (13) that is necessary to estimate a priori known distribution 
of 𝒑 and the number (𝑛𝑝) of uncertain parameters in 𝒑 as: 

𝑄 = ((𝑛𝑝 + 𝑞)!/(𝑛𝑝! 𝑞!)) − 1 (16) 
As seen in (16), the number of terms 𝑄 in (14) increases as 

the 𝑞 and/or 𝑛𝑝 increases. Also, the inner product between two 
vectors in (15) is defined as: 

〈𝜓(𝝃), 𝜓′(𝝃)〉 = ∫𝜓(𝝃), 𝜓′(𝝃)𝑊(𝝃)𝑑𝝃 (17) 

where the integration is calculated over the entire domain of 𝝃, 
and 𝑊(𝝃)is the weighting function, i.e., probability density 
function (PDF) of 𝝃. Once the coefficients of gPC expansion 



  

in (14) are available, it is possible to rapidly compute statistical 
moments of x at time 𝑡 as a function of {�̂�𝑗,𝑘} as: 

𝐸 (𝑥𝑗(𝑡)) = 𝐸 (∑�̂�𝑗,𝑖(𝑡)𝜙𝑖

𝑄

𝑖=0

) 

= 𝒙𝑗,𝑖(𝑡)𝐸(𝜙𝑖) +∑𝐸(𝜙𝑖) =

𝑄

𝑖=1

𝒙𝑗,0(𝑡) 

(18) 

𝑉𝑎𝑟 (𝑥𝑗(𝑡)) = 𝐸 (𝑥(𝑡) − 𝐸 (𝑥𝑗(𝑡))
2

) 

= 𝐸

(

 (∑�̂�𝑗,𝑖(𝑡)𝜙𝑖

𝑄

𝑖=0

− �̂�𝑗,(𝑖=0)(𝑡))

2

)

  
(19) 

= 𝐸 ((∑�̂�𝑗,𝑖(𝑡)𝜙𝑖

𝑄

𝑖=0

)

2

) = ∑�̂�𝑗,𝑖(𝑡)
2

𝑄

𝑖=0

𝐸(𝜙𝑖
2) 

From (18) and (19), the mean of 𝒙 in (1.a) can be calculated 
with gPC coefficient �̂�𝑗,𝑘=0, while the higher order statistical 
moment, e.g., variance, is computed with other coefficients. 
Also, the PDFs of 𝒙(𝑡) can be approximated by sampling from 
the prior distribution of 𝝃, and substituting samples into (14). 
The gPC coefficients ensure the rapid calculation of PDF of 𝒙, 
thus reducing the computational burden for the optimization-
based control design of treadmill speed as discussed below. 

III. TREADMILL SPEED CONTROL DESIGN 

A. Treadmill speed control via optimization 
Using statistical moments of x calculated with (18) and 

(19), the treadmill speed design can be formulated as follows. 
Consider a time index set ℸ = {1, 2,⋯𝑡𝑘}, an optimal speed 
sequence 𝑢∗: = [𝑢1, 𝑢2, ⋯𝑢𝑘]ℸ that finds a tradeoff between 
maximizing exercise objective and minimizing the slow-
acting effects at time instant 𝑡𝑘 can be defined as: 

𝑢∗: = argmin
𝑢∗

{ 𝜔1∑(𝑥1,𝑚(𝑖) − 𝑥1,𝑟𝑒𝑓)
2

𝑡𝑓

𝑖=1

 

+𝜔2∑𝑥1,𝑣(𝑖)

𝑡𝑓

𝑖=1

+𝜔3∑(𝑥2,𝑚(𝑖)

𝑡𝑓

𝑖=1

− 𝑥2,𝑚𝑎𝑥)
2
+𝜔4∑𝑥2,𝑣(𝑖)

𝑡𝑓

𝑖=1

} 

(20) 

 

where 𝑥1,𝑚 is the mean value of HR in (1.a) over time index 
set ℸ, 𝑥1,𝑟𝑒𝑓  is the desired HR which is a given prior, 𝑥1,𝑣 is 
the variance of predicted HR, 𝑥2,𝑚𝑎𝑥  is the allowed maximum 
slow-acting effects such as dehydration, 𝑥2,𝑣 is the variability 
of slow-acting effects, {𝜔𝑖=1,⋯,4} are weights that penalize the 
contribution of each term to the total cost, and 𝑡𝑓 ∈ ℸ. Note 
that all quantities are calculated with gPC coefficients of x. 

B. Constraints for optimization defined in (20) 
The optimization problem (20) is evaluated over the time 

index set ℸ. In addition, absolute value function constraints are 
applied to decision variable (i.e., speed of treadmill) and model 
responses (i.e., HR change and slow-acting effects). 

Using the gPC coefficients, it is possible to compare the 
PDF of model outputs, e.g., 𝑥1, at different time instant in ℸ. 
The overlap can be used as an indicator to determine if model 
predictions have significantly changes. For example, if the 
overlap is very large, see Fig.1 (b), it can be assumed that the 
treadmill speed and uncertainty have not significantly affect 
HR. Thus, the speed can be further changed, vice-versa if the 
overlap is very small, see Fig. 1 (b). For simplicity, heuristic 
approach is used to introduce constraints in (20). 

 
Figure 1.  Demonstration of optimzation constraints 

To avoid dramatic changes in treadmill speed, absolute 
values constraints are used for HR 𝑥1. For two consecutive 
time instants, 𝑡𝑘 and 𝑡𝑘+1, the PDFs of 𝑥1 at 𝑡𝑘 and 𝑡𝑘+1 can 
be estimated with the gPC theory. Let assume the allowable 
changes in speed as ∆u𝑡𝑘,𝑡𝑘+1, then constraints is expressed as: 
|∆u𝑡𝑘,𝑡𝑘+1| ≤ 𝜇𝐴, where 𝜇 is a tuning factor to manipulate the 
allowable change, and A denotes the overlap. Also, hard speed 
constraints of treadmill can be used to ensure exercise safety. 

IV. RESULTS AND DISCUSSION 

A. Parametric Uncertainty Screening with Sobol Index 
To elaborate the effects of parametric uncertainty on model 

predictions, perturbations were used in parameters in Table I. 
For each parameter, 100 samples were randomly generated 
from a confidence region of [�̂�𝑖 − 𝛿�̂�𝑖, �̂�𝑖 + 𝛿�̂�𝑖]) to calculate 
the main and total effect. Based on the Sobol indices, the half-
normal probability diagram [15] was used to show the effect 
of uncertainty on HR, which can be computed as: 

[Φ−1 (0.5 +
0.5[𝑖 − 0.5]

𝑘
) , 휀𝑎𝑖] (21) 

where i=1,⋯,6 is the index of 𝑎𝑖 in Table I, Φ-1 is the inverse 
of the cumulative distribution function of normal distribution, 
{휀𝑎𝑖} is the main or total effect of each parameter from Sobol 
analysis. Fig. 2 shows the total effect of uncertainty on HR 𝑥1 
in (1.a). As seen, it was found that the total effect of 𝑎1 has 
considerable influence on 𝑥1 compared to other parameters. 
Thus, 𝑎1 was chosen as the most sensitive uncertainty in this 
work. It is worth mentioning that same results were observed 
for slow-acting variable 𝑥2, but the result is not shown. 

 
Figure 2.  Half-normal plot of the total effects of model parameters on HR 
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B. Generation of gPC model for Optimization 
The inner product in (17) is possible for monomial or 

polynomial terms, but approximation is needed, when the 
model is non-monomial, e.g., the nonlinear function 𝜙(𝑥1) in 
(1.d). Note that 𝜙(𝑥1) is approximately zero when 𝑥1 is small, 
whereas 𝜙(𝑥1) can be defined with a linear function, i.e., 𝑎4𝑥1. 
Thus, a piecewise function is used to approximate 𝜙(𝑥1) to 
facilitate rapid calculations of gPC coefficients. 

𝜙(𝑥1) = {

0.01𝑎4𝑥1 𝑥1 < 5

𝑎4𝑥1(0.16𝑥1 − 0.45) 5 ≤ 𝑥1 ≤ 10
𝑎4𝑥1 𝑥1 > 10

 

C. Treadmill Speed Control Design 
Consider parameter 𝑎1 as the uncertainty, for any specific 

time index set ℸ = {1, 2,⋯𝑡𝑘}, the cost in (20) is minimized 
with respect to the treadmill speed. In this case study, hard 
speed constraints are applied to the treadmill speed, i.e., the 
speed can be varied within 2 km/h and 7 km/h. For the absolute 
value constraints, 𝜇 is 0.1, and equal weights are used in (20). 

TABLE II.  EVALUATION OF CONTROL PERFORMANCE 

Control strategy Speed (km/h) Cost Variability 

Without optimization 5 1029 8.32 

Optimization (k =100) 4.8432 4.04 2.13 

Optimization (k =20) 3.2289 1.22 0.44 
 

Table II shows the results for three speed control strategies. 
In the first case study, a constant speed (i.e., 5 km/h) was used, 
while the optimization (20) was used in the second and third 
case studies. For the second case study, 100 time instants were 
used, i.e., k =100, whereas k is 20 in the third case study. For 
comparison, the cost in (20) and the variability in slow-acting 
effect 𝑥2 were calculated. As seen in Table II, in the presence 
of uncertainty in 𝑎1, the improvement with optimization (20) 
is significant. Also, it was found that when a smaller number 
of time instants was used in ℸ, the speed obtained from (20) is 
smaller, since the variability in slow-acting effect is smaller 
when the speed is lower. The reduced speed will increase the 
exercise time, thus increases the contribution of the first term 
in (20) to the total cost. This shows the tradeoff between the 
exercise objective and the slow-acting effects. 

C. Computational Efficiency 
As aforementioned, model uncertainty is inevitable due to 

intrinsic variability resulting from individual patients. Since 
the objective here is to extend the proposed method to online 
tuning of treadmill speed for each patient, it is important to 
assess the computational cost. The optimization problem (20) 
can be solved with Monte Carlo (MC) simulations. It was 
found that the optimization of (20) can be finished in ~1-2 
seconds with the gPC model on an Intel Core i7 desktop and 
the search of optimum was completed approximately with 50-
60 evaluations. On the other hand, using MC simulations, 
about 1 min was required to evaluate (20) with 100 samples 
of uncertain parameter 𝑎1. Thus, 50-60 function evaluations 
of (20) may take about an hour, which is significantly higher, 
as compared to the proposed gPC-based optimization. 

V. CONCLUSION 
A gPC expansion-based method is proposed to propagate 

uncertainty in model parameter onto an objective function of 
a robust optimization problem, which can be used to control 
the speed of treadmill during exercise of rehabilitation. The 
proposed method is proved to be more efficient than Monte 
Carlo simulations-based method, thus making it is attractive 
for online control of treadmill speed. In addition, the method 
can be applied to more complicated model of the heart rate 
(HR) response, where more than more or even all parameters 
are uncertain. However, this is left for further work. 
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