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Abstract—Photoplethysmography (PPG) signals collected 
from wearable sensing devices during physical exercise are 
easily corrupted by motion artifact (MA), which poses greatly 
challenge on heart rate (HR) estimation. This paper proposes a 
new framework to accurately estimate HR using two leads of 
PPG signals in combination with accelerometer (ACC) data in 
the present of MA. A moving time window is first used to 
segment PPG signals and ACC signals. Then, MA are attenuated 
by joint sparse spectrum reconstruction in each time window, 
where maximum spectrum frequencies of ACC are subtracted 
from the spectrum frequency of PPG signals. Further, HR for 
each cleansed PPG is estimated from the frequency with 
maximum amplitude in the sparse spectrum. The actual HR is 
determined using spectral band powers calculated from each 
reconstructed PPG signals. The proposed method was validated 
using the 2015 IEEE Signal Processing Cup dataset. The average 
absolute error is 1.15 beats per minutes (BPM) (standard 
deviation: 2.00 BPM), and the average absolute error percentage 
is 0.95% (standard deviation: 1.86%). The proposed method 
outperforms the previously reported work in terms of accuracy. 

I. INTRODUCTION 

Physical exercise can greatly benefit cardiac patients for 
effective post-operative management of heart health and 
improving patients’ quality of life (QoL). However, it is 
important to closely monitor patients’ condition during the 
exercise to ensure safety and prevent life threatening events. 
Electrocardiogram (ECG) is a traditional measurement of 
cardiac activity, where multiple sensors are attached to chest 
and arms to record the electrical activity of the heart. However, 
wearing the electrodes is not comfortable, and the procedure is 
hard to operate by patients themselves at home. Wearable 
monitors such as wristband become a promising alternative for 
physical exercise monitoring of cardiac patients in home 
environment because they are small, convenient, and at low 
cost. The monitors can provide multiple leads of Photoplethy-
smography (PPG) signals, which are obtained using a pulse 
oximeter that illuminates the skin and measures changes in 
light absorption [1]. The PPG signals can be effective 
parameters for estimating HR. However, PPG recordings are 
often contaminated by different factors, e.g., environmental 
artifacts, experimental error, and physiological artifacts [2]. 
Environmental artifacts can be easily eliminated using filters, 
but experimental errors and physiological artifacts are caused 
by subjects’ motion, which are hard to separate.  

Many techniques have been developed to remove motion 
artifact (MA). Given the fact that there are frequency overlaps 
between the clean PPG signals and MA, studies have been 

done to eliminate MA while minimizing the data lose. 
Common techniques include adaptive filtering [2, 3], 
empirical mode decomposition [2], Kalman filtering [4], and 
spectrum subtraction [5, 6]. Noted that most of these 
techniques only apply to signals with weak MA. To address 
the limitation, Zhang [7] proposed a new MA removal method 
based on Joint Sparse Spectrum reconstruction (JOSS), which 
assumes that the spectra of PPG signals and simultaneous 
ACC signals have the same structure. Multiple measurement 
vector (MMV) model was used to estimate sparse spectra of 
the combination of each PPG signal and ACC signals. This 
helps to recover unique solution and identify spectral peaks 
with smaller error comparing to the single measurement vector 
model. In this paper, we adopted JOSS technique to remove 
MA. However, to improve the HR estimation, we propose to 
use two lead PPG signals to jointly track HR.  

Although JOSS is efficient in removing MA, there are still 
residual MA in the PPG signals, which still challenges HR 
monitoring. Therefore, efficient HR monitoring techniques are 
demanded. Various HR estimation algorithms have been 
developed in the literature, which include zero-crossing count 
[8], dominant frequency detection [8], and adaptive frequency 
tracking [3], spectral peak detection based on sparse signal 
reconstruction [6] and Bayesian decision theory [5]. Zero-
crossing count and dominant frequency detection are not 
robust when MA interfere is strong. Adaptive frequency 
tracking can track instantaneous frequency, but the results 
depend greatly on filter parameters and initial conditions.  
Spectral peak detection based on Bayesian decision theory [5] 
overcomes some drawbacks of traditional power spectrum 
estimation. However, it relies too much on previous estimated 
HR. In addition, [7] has the same limitations and involves too 
many arbitrarily defined constraints.  

In our study, we propose a new framework for efficient HR 
monitoring with less arbitrarily defined constraints. 
Reconstructed PPG signals were obtained after MA removal 
using JOSS. HRs of two leads PPG signals in a sliding time 
window were estimated by finding the frequency with 
maximum amplitude in sparse spectra of each reconstructed 
PPG signal in the same time window. Then spectral band 
power is calculated to determine final HR in the same time 
window. To prevent biased HR detection, moving average 
filter [5] and a smoother algorithm [10] were used for post-
processing. The flow chart of the proposed method is shown 
in Figure 1. 

This paper is organized as follows. Section II introduces 
the research method. Experimental results are shown in section 
III, where the efficiency and robustness of proposed method 
will be discussed. Conclusions are drawn in section IV. 
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Figure 1.  Flow chart of proposed framework 

II. METHODS 

A. Data  
The method proposed in this work is developed and 

validated using the 2015 IEEE Signal Processing Cup data [6]. 
This data are composed of 12 training recordings from 12 
subjects. The subjects are at the ages of 18-35 year old. 
Recording for each subject includes one-channel ECG signals, 
two-channel PPG signals, and three-axis ACC signals. All 
signals are sampled at 125Hz. For the 12 training dataset, the 
subjects were required to run at different speeds. Please see [6] 
for detailed speed protocols. 

Before MA removal and HR estimation, all signals were 
first filtered with a band-pass filter at 0.5 and 5 Hz, then down-
sampled to 25 Hz in order to smooth signals and reduce 
computing time. Further, a sliding time window is applied to 
truncate all signals into segments. The length of time window 
is 8 seconds and the moving step is 2 seconds.  MA removal 
and HR estimation were performed in each time window. All 
segments were normalized to same variance to ensure 
consistent energy. 

B. Joint Sparse Reconstruction (JOSS) Using the 
Multiple Measurement Vector (MMV) model  
The sparse spectra of the PPG and the ACC signals were 
estimated using multiple measurement vector (MMV) model 
[7], which is described as follows: 

𝒀 = 𝚽𝑿 + 𝑽 (1) 

where 𝒀 ∈ ℝ𝑀×𝐿  is the matrix consisting of 𝐿 measurement 
vectors, 𝚽 ∈ ℂ𝑀×𝑁is the redundant discrete Fourier  transform 
(DFT) basis, 𝑿 ∈ ℂ𝑁×𝐿 is the desired solution matrix, and 𝑽 ∈
ℝ𝑀×𝐿 is noise matrix. The redundant DFT basis is chosen as: 

Φ𝑚,𝑛 = 𝑒𝑗
2𝜋
𝑁

𝑚𝑛, 𝑚 = 0, … , 𝑀 − 1; 𝑛 = 0, … , 𝑁 − 1 (2) 

where Φ𝑚,𝑛  denotes the element in 𝑚𝑡ℎ row and 𝑛𝑡ℎ column 
of 𝚽 . It is assumed that the solution matrix 𝑿  is row-wise 
sparse, i.e., most rows in 𝑿 are zero.  

In this paper, we combined segments of each PPG signal 
and the corresponding ACC signals to form the measurement 
matrix 𝒀 . Each column of 𝑿 , i.e., 𝒙𝑖 , 𝑖 =1…4, is Fourier 
transform of corresponding signal 𝒚𝑖 , 𝑖=1…4, in 𝒀. 𝑀 is the 
length of segments and 𝑁 is set to be 1024. Regularized M-
FOCUSS algorithm [9] was used to obtain the sparse matrix 

𝑿. We chose M-FOCUSS as it is computationally efficient and 
could provide reliable solution when 𝚽 is highly coherent. 

C. Spectral Subtraction for Motion Artifact Removal  
Sparse spectra of raw PPG signal and ACC signals were 

obtained using MMV model. MA was removed following the 
steps presented blew.  
1. For each frequency bin, maximum spectral coefficient in 

ACC spectra was chosen as spectral coefficient of MA. 
2. For the same frequency bin, spectral coefficient in PPG 

spectrum was subtracted by spectral coefficient of MA. 
3. Negative spectral coefficients in PPG spectrum were set 

to 0 to obtain cleansed PPG spectrum. 

D. Heart Rate Estimation 
There are two steps to estimate HR in each time window. 

First, HR was estimated from each cleansed PPG spectrum. 
Second, spectral band power was calculated to determine 
global HR. Details of each step are given as follows. 

First Step. Following the steps discussed in Section B and 
C, a cleansed PPG spectrum was obtained for each PPC signal 
in a sliding window. The frequency with maximum amplitude, 
i.e., 𝑓𝑖,𝑚𝑎𝑥 , 𝑖=1, 2, was chosen to be the HR frequency of each 
PPG signal. HR was calculated by multiplying HR frequency 
with 60s. There were two channels of PPG signals. 
Correspondingly, two HRs in the same time window were 
identified in this step. The true heart rate will be determined 
based on the two candidate HRs, which will be introduced in 
the second step. 

Second Step. As above mentioned, in each time window, 
two candidate HRs were used to determine the true HR, 
written as 𝐻𝑅𝑡. Let define the two candidate HRs as 𝐻𝑅𝑖, 𝑖= 
1, 2, which was derived from the 𝑖𝑡ℎ PPG signal. In addition, 
a new set of PPG signals was reconstructed from the cleansed 
PPG spectrum obtained in Section C, which was further used 
for HR estimation (See Fig. 2). 

For each reconstructed PPG signal in a sliding time 
window, a parameter 𝜔𝑖 , 𝑖  = 1, 2, was used to indicate the 
quality of the candidate HR estimation from 𝑖th PPG signal. 
The parameter 𝜔𝑖 , was determined by band powers. Two 
frequency bands were defined using the frequency, 𝑓𝑖,𝑚𝑎𝑥 , 
from first step, and a bandwidth of 0.32Hz is applied. As seen 
in Figure 2, the first band covers the frequency range of 
[𝑓1,𝑚𝑎𝑥 -0.16, 𝑓1,𝑚𝑎𝑥 +0.16], and the second band covers the 
frequency range of [𝑓2,𝑚𝑎𝑥 -0.16, 𝑓2,𝑚𝑎𝑥 +0.16]. Further, for 
𝑖𝑡ℎ reconstructed PPG signal, the 𝑗th band power 𝑏𝑖𝑗 , 𝑖=1, 2, 
𝑗=1, 2, was calculated. If the estimated candidate HR value is 
in good quality, 𝜔𝑖 is set to be 1, otherwise, 𝜔𝑖 is set to be 𝜀, 
𝜀 → 0. As shown in Figure 2, 𝜔1 equals to 1 when 𝑏11>𝑏12, 
otherwise, 𝜔1 = 𝜀 . Similarly, 𝜔2  equals to 1 when 𝑏22 >𝑏21 , 
otherwise, 𝜔2= 𝜀. The rationale is that the estimated candidate 
HR value with higher band power is likely to be true. Using 
𝜔𝑖, the true estimated HR value can be determined as 

𝐻𝑅𝑡 =
𝜔1

𝜔1+𝜔2
𝐻𝑅1 +

𝜔2

𝜔1+𝜔2
𝐻𝑅2. 

This procedure was used for the signals in the first six 
sliding time windows to obtain reliable estimation of the HR. 
To reduce the computational time, for the signal in the 
remaining time windows, we assumed that at least one of two 
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candidate HRs was close to true HR, and HR should not 
change dramatically in short time. Therefore, the true HR is 
determined by referencing to the average heart rate, denoted as 
𝐻𝑅̅̅ ̅̅ , of six previous successive time windows. The true HR 
index 𝑘 was found as: 

𝑘 =  min
𝑖=1,2

(𝑎𝑏𝑠(𝐻𝑅𝑖 − 𝐻𝑅̅̅ ̅̅ )) 
where the HR that is closer to the average heart rate 𝐻𝑅̅̅ ̅̅  is 
chosen. If the difference between chosen HR and 𝐻𝑅̅̅ ̅̅  is larger 
than 30 BPM, 𝐻𝑅̅̅ ̅̅  is chosen as true estimated HR. 

 
Figure 2.  Flow chart of HR estimation 

E. Post-processing 
After HR estimation, post-processing was performed to 

correct wrong HR estimation because recorded PPG signals 
may not provide accurate information due to MA and HR 
should not change dramatically in short time for healthy 
subjects. Moving average filter [5] and a smoother algorithm 
[10] were used for this purpose.  

Moving average filter For 𝑖th estimated HR, the average 
heart rate ℎ𝑟𝑖

̅̅̅̅  and standard deviation 𝜎𝑖 are given by: 

ℎ𝑟𝑖
̅̅̅̅ =

1

10
∑ ℎ𝑟𝑖

𝑖+4

𝑗=𝑖−5

 

            𝜎𝑖 = √
1

10
∑ (ℎ𝑟𝑖 − ℎ𝑟𝑖

̅̅̅̅ )𝑖+4
𝑗=𝑖−5 . 

When difference between ℎ𝑟𝑖
̅̅̅̅  and ℎ𝑟𝑖  is greater than 𝜎𝑖, ℎ𝑟𝑖  is 

discarded and replaced by ℎ𝑟𝑖
̅̅̅̅ .  The first five and last four 

estimated true HR values were not checked by moving average 
filter. Therefore, a smoother algorithm was used for these HR 
values, which is described as follows. 

Smoother algorithm For 𝑖th estimated 𝐻𝑅𝑖, the smoother 
algorithm was performed on 𝐻𝑅𝑖 and the subsequent nine HR 
values if 𝐻𝑅𝑖 is from the first five estimated true HR values. 
Otherwise, this algorithm was performed on 𝐻𝑅𝑖 and previous 
nine HR values. If the relative error between 𝐻𝑅𝑖  and 
corresponding smoothed 𝐻𝑅𝑖 was larger than 10%,  𝐻𝑅𝑖 was 
replaced by the corresponding smoothed 𝐻𝑅𝑖. 

III. RESULTS 

A.  Algorithm Validation 
To evaluate the performance of the proposed algorithm, 

two parameters were measured, i.e., average absolute error, 
and average absolute. The average absolute error (in BPM 
(beats per minutes)), is given by: 

𝐸𝑟𝑟𝑜𝑟1 =
1

𝐿
∑ |𝐵𝑃𝑀𝑒𝑠𝑡(𝑖) − 𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)|

𝐿

𝑖=1

 

, and the average absolute error percentage is given by: 

𝐸𝑟𝑟𝑜𝑟2 =
1

𝐿
∑

|𝐵𝑃𝑀𝑒𝑠𝑡(𝑖) − 𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)|

𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)

𝐿

𝑖=1

 

where 𝐵𝑃𝑀𝑒𝑠𝑡(𝑖) was the HR estimated from the proposed 
algorithm, and 𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖) was the true HR estimated from 
subjects’ ECG recordings for validation purpose, 𝐿 was the 
number of HR estimates.   

B. Experimental Results 

 
Figure 3.  Effect of MA removal on data segment. (a) Raw PPG signal and 
PPG signal after MA removal; (b) Sparse spectrum of raw PPG, ACC signals 
and PPG signal after MA removal. 

 
Figure 4.  Comparison of estiamted HR values before and after post-

processing with true HR values  

To show the performance of the MA removal algorithm, 
comparisons of raw PPG and PPG signal after MA removal in 
both time domain and frequency domain were shown in Figure 
3. The red dots represented frequencies with maximum 
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amplitude. ACC signals in frequency domain were also 
provided to show the relationship of PPG and ACC signals. 
From Figure 3, we can see that frequencies of were identified 
and removed from the raw PPG signals. The frequency that is 
not correlated with ACC signals were retained, which provide 
a clear rhythm of PPG signal. 

To display performance of HR estimation, the estimated 
HRs for an entire PPG signal before and after post-processing 
were provided for comparison. As shown in Figure 4 (a), the 
black solid line shows the true HR, and the blue circles show 
the HR estimated using the proposed algorithm. In Figure 4 
(b), we presented the post-processed HRs (i.e., red dots) and 
the true HR (i.e., black solid line). As seen in the Figure, our 
estimations match well with the true HR, which validates the 
effectiveness of the proposed framework.  

TABLE I. ERROR 1 AND ERROR 2 RESULTS 

Record 
ERROR 1 (BPM) ERROR 2 (%) 

JOSS 
[7] [3] OUR 

WORK 
JOSS 

[7] [3] OUR 
WORK 

1 1.33 1.75 1.38 1.19 1.59 1.25 
2 1.75 1.94 1.41 1.66 1.99 1.38 
3 1.47 1.17 1.37 1.27 1.02 1.22 
4 1.48 1.67 1.20 1.41 1.51 1.08 
5 0.69 0.95 0.97 0.51 0.75 0.77 
6 1.32 1.22 1.18 1.09 1.05 0.94 
7 0.71 0.91 0.80 0.54 0.72 0.60 
8 0.56 1.17 0.93 0.47 1.04 0.84 
9 0.49 0.87 0.84 0.41 0.76 0.74 

10 3.81 2.95 1.59 2.43 1.93 1.03 
11 0.78 1.15 1.22 0.51 0.79 0.84 
12 1.04 1.00 0.95 0.81 0.79 0.71 

Average 1.28 1.40 1.15 1.01 1.16 0.95 
Total 
SD 

2.61  2.00 2.29  1.86 

To evaluate proposed method, the average absolute error 
(Error 1) and average absolute error percentage (Error 2) on 
training dataset were compared with Error 1 and Error 2 in [7] 
and [3], which were shown in Table I. SD is standard deviation 
of estimated HR values over all datasets, and average shows 
mean error of the 12 records. As see in Table I, our algorithm 
provides lower errors as compared to JOSS in [7] and adaptive 
filter with frequency tracking in [3]. The absolute estimation 
error (Error 1) of our work was 1.15±2.00 BPM (mean ± 
standard deviation) and error percentage (Error 2) was 
0.95%±1.86%. In contrast, Error 1 and Error 2 of JOSS [7] was 
1.28±2.61 BPM and 1.01%±2.29%. Error 1 and Error 2 in [3] 
was 1.40 BPM and 1.16%. The SD was not provided in [3].  

 
Figure 5.  Scatter plot between true HR values and estimated HR values 

with fitted line.  

To further demonstrate the effectiveness of our method, the 
scatter plot of true HR and estimated HR over all datasets was 

shown in Figure 5. A straight line, i.e., 𝑌 = 0.9982𝑋 + 0.0071 
was fitted to the scatter points, where 𝑋 was true HR and 𝑌 
was estimated HR. R square was measured as 0.9933 in our 
work, which is slightly better as compared to the R square of 
0.993 in [7]. The closer the coefficient of 𝑋 is to one, the better 
the estimated HR values are. Note that the coefficient of 𝑋 in 
[7] were 0.991, which is smaller than our coefficients of 
0.9982. This further demonstrated the superior performance of 
the proposed method. 

IV. CONCLUSION 
In this study, a new HR estimation algorithm using wrist-

type PPG during physical exercise was presented. First, joint 
sparse spectrum reconstruction was used to remove MA. 
Second, HR was estimated based on multiple reconstructed 
PPG signals. Third, post-processing procedure is applied to 
correct wrong estimations. The proposed algorithm was 
compared with a recent study, which showed superior 
performance. There are only a few arbitrary defined 
constraints in our method. It focused more on information 
from recorded signals themselves and could reduce arbitrary 
error and improve reliability of results. In addition, the data 
was down-sampled and HR estimation process was 
computationally efficient. Therefore, it has the potential for 
online monitoring. In other words, this method reduces signal 
processing time and could be applied to wearable devices. One 
limitation of the proposed method is that average heart rate of 
previous consecutive windows was used as reference for 
current estimation. Therefore, the HR tracking accuracy could 
be affected by previous estimations. 
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