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Abstract—Photoplethysmography (PPG) signals collected
from wearable sensing devices during physical exercise are
easily corrupted by motion artifact (MA), which poses greatly
challenge on heart rate (HR) estimation. This paper proposes a
new framework to accurately estimate HR using two leads of
PPG signals in combination with accelerometer (ACC) data in
the present of MA. A moving time window is first used to
segment PPG signals and ACC signals. Then, MA are attenuated
by joint sparse spectrum reconstruction in each time window,
where maximum spectrum frequencies of ACC are subtracted
from the spectrum frequency of PPG signals. Further, HR for
each cleansed PPG is estimated from the frequency with
maximum amplitude in the sparse spectrum. The actual HR is
determined using spectral band powers calculated from each
reconstructed PPG signals. The proposed method was validated
using the 2015 IEEE Signal Processing Cup dataset. The average
absolute error is 1.15 beats per minutes (BPM) (standard
deviation: 2.00 BPM), and the average absolute error percentage
is 0.95% (standard deviation: 1.86%). The proposed method
outperforms the previously reported work in terms of accuracy.

I. INTRODUCTION

Physical exercise can greatly benefit cardiac patients for
effective post-operative management of heart health and
improving patients’ quality of life (QoL). However, it is
important to closely monitor patients’ condition during the
exercise to ensure safety and prevent life threatening events.
Electrocardiogram (ECG) is a traditional measurement of
cardiac activity, where multiple sensors are attached to chest
and arms to record the electrical activity of the heart. However,
wearing the electrodes is not comfortable, and the procedure is
hard to operate by patients themselves at home. Wearable
monitors such as wristband become a promising alternative for
physical exercise monitoring of cardiac patients in home
environment because they are small, convenient, and at low
cost. The monitors can provide multiple leads of Photoplethy-
smography (PPG) signals, which are obtained using a pulse
oximeter that illuminates the skin and measures changes in
light absorption [1]. The PPG signals can be effective
parameters for estimating HR. However, PPG recordings are
often contaminated by different factors, e.g., environmental
artifacts, experimental error, and physiological artifacts [2].
Environmental artifacts can be easily eliminated using filters,
but experimental errors and physiological artifacts are caused
by subjects’ motion, which are hard to separate.

Many techniques have been developed to remove motion
artifact (MA). Given the fact that there are frequency overlaps
between the clean PPG signals and MA, studies have been
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done to eliminate MA while minimizing the data lose.
Common techniques include adaptive filtering [2, 3],
empirical mode decomposition [2], Kalman filtering [4], and
spectrum subtraction [5, 6]. Noted that most of these
techniques only apply to signals with weak MA. To address
the limitation, Zhang [7] proposed a new MA removal method
based on Joint Sparse Spectrum reconstruction (JOSS), which
assumes that the spectra of PPG signals and simultaneous
ACC signals have the same structure. Multiple measurement
vector (MMV) model was used to estimate sparse spectra of
the combination of each PPG signal and ACC signals. This
helps to recover unique solution and identify spectral peaks
with smaller error comparing to the single measurement vector
model. In this paper, we adopted JOSS technique to remove
MA. However, to improve the HR estimation, we propose to
use two lead PPG signals to jointly track HR.

Although JOSS is efficient in removing MA, there are still
residual MA in the PPG signals, which still challenges HR
monitoring. Therefore, efficient HR monitoring techniques are
demanded. Various HR estimation algorithms have been
developed in the literature, which include zero-crossing count
[8], dominant frequency detection [8], and adaptive frequency
tracking [3], spectral peak detection based on sparse signal
reconstruction [6] and Bayesian decision theory [5]. Zero-
crossing count and dominant frequency detection are not
robust when MA interfere is strong. Adaptive frequency
tracking can track instantaneous frequency, but the results
depend greatly on filter parameters and initial conditions.
Spectral peak detection based on Bayesian decision theory [5]
overcomes some drawbacks of traditional power spectrum
estimation. However, it relies too much on previous estimated
HR. In addition, [7] has the same limitations and involves too
many arbitrarily defined constraints.

In our study, we propose a new framework for efficient HR
monitoring with less arbitrarily defined constraints.
Reconstructed PPG signals were obtained after MA removal
using JOSS. HRs of two leads PPG signals in a sliding time
window were estimated by finding the frequency with
maximum amplitude in sparse spectra of each reconstructed
PPG signal in the same time window. Then spectral band
power is calculated to determine final HR in the same time
window. To prevent biased HR detection, moving average
filter [5] and a smoother algorithm [10] were used for post-
processing. The flow chart of the proposed method is shown
in Figure 1.

This paper is organized as follows. Section II introduces
the research method. Experimental results are shown in section
III, where the efficiency and robustness of proposed method
will be discussed. Conclusions are drawn in section IV.
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Figure 1. Flow chart of proposed framework

II. METHODS

A. Data

The method proposed in this work is developed and
validated using the 2015 IEEE Signal Processing Cup data [6].
This data are composed of 12 training recordings from 12
subjects. The subjects are at the ages of 18-35 year old.
Recording for each subject includes one-channel ECG signals,
two-channel PPG signals, and three-axis ACC signals. All
signals are sampled at 125Hz. For the 12 training dataset, the
subjects were required to run at different speeds. Please see [6]
for detailed speed protocols.

Before MA removal and HR estimation, all signals were
first filtered with a band-pass filter at 0.5 and 5 Hz, then down-
sampled to 25 Hz in order to smooth signals and reduce
computing time. Further, a sliding time window is applied to
truncate all signals into segments. The length of time window
is 8 seconds and the moving step is 2 seconds. MA removal
and HR estimation were performed in each time window. All
segments were normalized to same variance to ensure
consistent energy.

B. Joint Sparse Reconstruction (JOSS) Using the
Multiple Measurement Vector (MMYV) model

The sparse spectra of the PPG and the ACC signals were
estimated using multiple measurement vector (MMYV) model
[7], which is described as follows:

Y=0X+V (1)

where ¥ € RM*L is the matrix consisting of L measurement
vectors, ® € CY*Nis the redundant discrete Fourier transform
(DFT) basis, X € CV*! is the desired solution matrix, and V €
RM*L is noise matrix. The redundant DFT basis is chosen as:
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where @, ,, denotes the element in m*® row and n** column

of ®. It is assumed that the solution matrix X is row-wise
sparse, i.e., most rows in X are zero.

In this paper, we combined segments of each PPG signal
and the corresponding ACC signals to form the measurement
matrix ¥. Each column of X, i.e., x;, i=1...4, is Fourier
transform of corresponding signal y;, i=1...4, in Y. M is the
length of segments and N is set to be 1024. Regularized M-
FOCUSS algorithm [9] was used to obtain the sparse matrix

X. We chose M-FOCUSS as it is computationally efficient and
could provide reliable solution when @ is highly coherent.

C. Spectral Subtraction for Motion Artifact Removal

Sparse spectra of raw PPG signal and ACC signals were
obtained using MMV model. MA was removed following the
steps presented blew.

1. For each frequency bin, maximum spectral coefficient in
ACC spectra was chosen as spectral coefficient of MA.

2. For the same frequency bin, spectral coefficient in PPG
spectrum was subtracted by spectral coefficient of MA.

3. Negative spectral coefficients in PPG spectrum were set
to 0 to obtain cleansed PPG spectrum.

D. Heart Rate Estimation

There are two steps to estimate HR in each time window.
First, HR was estimated from each cleansed PPG spectrum.
Second, spectral band power was calculated to determine
global HR. Details of each step are given as follows.

First Step. Following the steps discussed in Section B and
C, acleansed PPG spectrum was obtained for each PPC signal
in a sliding window. The frequency with maximum amplitude,
i.e., fi max> I=1, 2, was chosen to be the HR frequency of each
PPG signal. HR was calculated by multiplying HR frequency
with 60s. There were two channels of PPG signals.
Correspondingly, two HRs in the same time window were
identified in this step. The true heart rate will be determined
based on the two candidate HRs, which will be introduced in
the second step.

Second Step. As above mentioned, in each time window,
two candidate HRs were used to determine the true HR,
written as HR;. Let define the two candidate HRs as HR;, i=
1, 2, which was derived from the it"* PPG signal. In addition,
a new set of PPG signals was reconstructed from the cleansed
PPG spectrum obtained in Section C, which was further used
for HR estimation (See Fig. 2).

For each reconstructed PPG signal in a sliding time
window, a parameter w;, i = 1, 2, was used to indicate the
quality of the candidate HR estimation from i PPG signal.
The parameter w;, was determined by band powers. Two
frequency bands were defined using the frequency, f; nax,
from first step, and a bandwidth of 0.32Hz is applied. As seen
in Figure 2, the first band covers the frequency range of
[f1max-0-16, fi max+0.16], and the second band covers the
frequency range of [f,max-0.16, fo max+0.16]. Further, for
it" reconstructed PPG signal, the jth band power b; i, =1, 2,
j=1, 2, was calculated. If the estimated candidate HR value is
in good quality, w; is set to be 1, otherwise, w; is set to be &,
& = 0. As shown in Figure 2, w; equals to 1 when b;;>b;,,
otherwise, w;= €. Similarly, w, equals to 1 when b,,>b,,,
otherwise, w,= €. The rationale is that the estimated candidate
HR value with higher band power is likely to be true. Using
w;, the true estimated HR value can be determined as

w1 w2

HR, =

HR, + HR,.

w1twy w1twy

This procedure was used for the signals in the first six
sliding time windows to obtain reliable estimation of the HR.
To reduce the computational time, for the signal in the
remaining time windows, we assumed that at least one of two
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candidate HRs was close to true HR, and HR should not
change dramatically in short time. Therefore, the true HR is
determined by referencing to the average heart rate, denoted as
HR, of six previous successive time windows. The true HR
index k was found as:

k= imir%(abs(HRi — HR))

where the HR that is closer to the average heart rate HR is
chosen. If the difference between chosen HR and HR is larger
than 30 BPM, HR is chosen as true estimated HR.

Spectrum of PPG 1 Spectrum of PPG 2
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fl,max f2, max fl, max

)
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Figure 2. Flow chart of HR estimation

E. Post-processing

After HR estimation, post-processing was performed to
correct wrong HR estimation because recorded PPG signals
may not provide accurate information due to MA and HR
should not change dramatically in short time for healthy
subjects. Moving average filter [5] and a smoother algorithm
[10] were used for this purpose.

Moving average filter For ith estimated HR, the average
heart rate hr; and standard deviation g; are given by:

i+4

o Zit g (hr = ).

When difference between hr; and hr; is greater than o;, hr; is
discarded and replaced by hr,. The first five and last four
estimated true HR values were not checked by moving average
filter. Therefore, a smoother algorithm was used for these HR
values, which is described as follows.

Smoother algorithm For ith estimated HR;, the smoother
algorithm was performed on HR; and the subsequent nine HR
values if HR; is from the first five estimated true HR values.
Otherwise, this algorithm was performed on HR; and previous
nine HR values. If the relative error between HR; and
corresponding smoothed HR; was larger than 10%, HR; was
replaced by the corresponding smoothed HR;.

III. RESULTS

A. Algorithm Validation
To evaluate the performance of the proposed algorithm,
two parameters were measured, i.e., average absolute error,
and average absolute. The average absolute error (in BPM
(beats per minutes)), is given by:
L

1
Errorl =1 ) [BPMy(D) = BPMye (0]

i=1

, and the average absolute error percentage is given by:

L . .
Error2 = lz |BPMest(L) - BPMtrue(")l
L i=1 BPMtrue(i)

where BPM,, (i) was the HR estimated from the proposed
algorithm, and BPM,,.,. (i) was the true HR estimated from
subjects’ ECG recordings for validation purpose, L was the
number of HR estimates.

B. Experimental Results
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Figure 3. Effect of MA removal on data segment. (a) Raw PPG signal and

PPG signal after MA removal; (b) Sparse spectrum of raw PPG, ACC signals
and PPG signal after MA removal.
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Figure 4. Comparison of estiamted HR values before and after post-
processing with true HR values

To show the performance of the MA removal algorithm,
comparisons of raw PPG and PPG signal after MA removal in
both time domain and frequency domain were shown in Figure
3. The red dots represented frequencies with maximum
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amplitude. ACC signals in frequency domain were also
provided to show the relationship of PPG and ACC signals.
From Figure 3, we can see that frequencies of were identified
and removed from the raw PPG signals. The frequency that is
not correlated with ACC signals were retained, which provide
a clear rhythm of PPG signal.

To display performance of HR estimation, the estimated
HRs for an entire PPG signal before and after post-processing
were provided for comparison. As shown in Figure 4 (a), the
black solid line shows the true HR, and the blue circles show
the HR estimated using the proposed algorithm. In Figure 4
(b), we presented the post-processed HRs (i.e., red dots) and
the true HR (i.e., black solid line). As seen in the Figure, our
estimations match well with the true HR, which validates the
effectiveness of the proposed framework.

TABLE I. ERROR 1 AND ERROR 2 RESULTS

ERROR 1 (BPM) ERROR 2 (%)
Record [ jog55 OUR JOSS OUR
7] Bl | work 7] Bl | work
1 133 | 175 | 138 119 | 159 | 125
2 1.75 1.94 1.41 1.66 1.99 1.38
3 147 1.17 1.37 1.27 1.02 1.22
4 148 | 1.67 | 1.20 1.41 1.51 1.08
5 0.69 0.95 0.97 0.51 0.75 0.77
6 1.32 1.22 1.18 1.09 1.05 0.94
7 0.71 0.91 0.80 0.54 0.72 0.60
8 0.56 1.17 0.93 0.47 1.04 0.84
9 0.49 0.87 0.84 041 0.76 0.74
10 3.81 2.95 1.59 2.43 1.93 1.03
11 0.78 1.15 1.22 0.51 0.79 0.84
12 1.04 1.00 0.95 0.81 0.79 0.71
Average 1.28 1.40 1.15 1.01 1.16 0.95
Total 2.61 2.00 2.29 1.86

To evaluate proposed method, the average absolute error
(Error 1) and average absolute error percentage (Error 2) on
training dataset were compared with Error 1 and Error 2 in [7]
and [3], which were shown in Table I. SD is standard deviation
of estimated HR values over all datasets, and average shows
mean error of the 12 records. As see in Table I, our algorithm
provides lower errors as compared to JOSS in [7] and adaptive
filter with frequency tracking in [3]. The absolute estimation
error (Error 1) of our work was 1.15+2.00 BPM (mean +
standard deviation) and error percentage (Error 2) was
0.95%=+1.86%. In contrast, Error 1 and Error 2 of JOSS [7] was
1.28+2.61 BPM and 1.01%=+2.29%. Error 1 and Error 2 in [3]
was 1.40 BPM and 1.16%. The SD was not provided in [3].
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Figure 5. Scatter plot between true HR values and estimated HR values

with fitted line.

To further demonstrate the effectiveness of our method, the
scatter plot of true HR and estimated HR over all datasets was

shown in Figure 5. A straight line, i.e., Y = 0.9982X + 0.0071
was fitted to the scatter points, where X was true HR and Y
was estimated HR. R square was measured as 0.9933 in our
work, which is slightly better as compared to the R square of
0.993 in [7]. The closer the coefficient of X is to one, the better
the estimated HR values are. Note that the coefficient of X in
[7] were 0.991, which is smaller than our coefficients of
0.9982. This further demonstrated the superior performance of
the proposed method.

IV. CONCLUSION

In this study, a new HR estimation algorithm using wrist-
type PPG during physical exercise was presented. First, joint
sparse spectrum reconstruction was used to remove MA.
Second, HR was estimated based on multiple reconstructed
PPG signals. Third, post-processing procedure is applied to
correct wrong estimations. The proposed algorithm was
compared with a recent study, which showed superior
performance. There are only a few arbitrary defined
constraints in our method. It focused more on information
from recorded signals themselves and could reduce arbitrary
error and improve reliability of results. In addition, the data
was down-sampled and HR estimation process was
computationally efficient. Therefore, it has the potential for
online monitoring. In other words, this method reduces signal
processing time and could be applied to wearable devices. One
limitation of the proposed method is that average heart rate of
previous consecutive windows was used as reference for
current estimation. Therefore, the HR tracking accuracy could
be affected by previous estimations.
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