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Abstract: In this work, a new algorithm is developed to identify stochastic faults in the Tennessee Eastman 
(TE) process, which integrates Ensemble Empirical Mode Decomposition (EEMD), Principal Component 
Analysis (PCA), Cumulative Sum (CUSUM), and half-normal probability plot to detect three particular 
faults that could not be properly detected with previously reported techniques. This algorithm includes 
three steps: measurements pre-filtering, sensitivity analysis, and fault detection. Measured variables are 
first decomposed into different scales using the EEMD-based PCA for extracting fault signatures, from 
which a subset of variables that are sensitive to faults are selected with the half-normal probability plot. 
Based on the specific variables, CUSUM-based statistics are further used for improved fault detection. The 
algorithm can successfully identify three particular faults in the TE process with small time delay. 
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1. INTRODUCTION 
An important aspect for safe operation in chemical processes 
is the early detection of abnormal events and malfunctions that 
are defined as faults (Gerlter, 1998). For a detectable fault, the 
fault detection and diagnosis (FDD) algorithms can provide 
symptomatic finger-prints to identify the root cause of the 
anomalous behaviour. Many methods have been developed, 
which can be generally classified into three groups (Isermann, 
2005): (i) Analytical methods that are solely based on first-
principle models of process (Du, et al., 2015; Wong & Lee, 
2010); (ii) surrogate (empirical) modelling methods such as 
multivariate statistical analysis that use the historical process 
data (Kim, et al., 2016; Chiang, et al., 2015); and (iii) Semi-
empirical algorithms that combine first-principles’ and 
surrogate models (Feng, et al., 2016; Jiang, et al., 2016). 

Each of these modelling techniques has its own advantages and 
disadvantages. It is recognized that surrogate models are easier 
to formulate, however, first-principles models have superior 
extrapolation ability (Isermann, 2006). This work focuses on 
the development of a surrogate model. Since data in chemical 
processes often exhibit high correlation and cross-correlation 
among variables, multivariate statistical analysis (MVSA) 
such as principal component analysis (PCA) are used to reduce 
model complexity, thus leading to improved accuracy 
(Chiang, et al., 2015). The main drawback of the MVSA is the 
interpretability, since it depends on subspaces that typically 
involve linear transformations of the original physical states. 
To improve the interpretability, a half-normal probability plot 
is used here to identify variables that are sensitive to faults. 

Chemical processes can be operated at different scales (Misra, 
et al., 2002). For instance, stochastic perturbations may exhibit 
various energy spectrum and measurement noise may have 

different frequency ranges. A multiscale interpretation of 
measurements at different scales can provide signatures for 
improved FDD. Wavelet transform is one of the most popular 
multiresolution analysis tools (Sheriff, et al., 2017). However, 
wavelet transformation may provide inaccurate results since it 
uses a linear and non-adaptive transformation with fixed 
wavelet functions. Ensemble empirical mode decomposition 
(EEMD), as an alternative, is a self-adaptive method (Wu & 
Huang, 2009), which can be directly derived from data. Thus, 
the EEMD is more suitable than the wavelet transformation. 

Uncertainty is a key challenge for FDD since empirical model 
based FDD greatly relies on models and data that are often not 
perfect. Generally, the impact of uncertainty on FDD is not 
specified in reported studies, which may lead to a loss of 
accuracy (Du & Du, 2018). Also, it is difficult to identify and 
diagnose faults using models calibrated with data that is 
affected by uncertainty such as noise, since fault fingerprints 
can be camouflaged by noise. To enhance FDD performance, 
EEMD is combined with PCA as a pre-filtering tool in this 
work to extract fault signatures that can be further used to infer 
the occurrence of faults. A salient feature of the EEMD-based 
PCA model is that the extracted fault signatures are more 
compact, thus adding robustness to FDD algorithms. 

Specially, this paper studies the application of EEMD-based 
PCA and the half-normal probability plot to detect three faults 
that were found unobservable by other techniques (Ghosh, et 
al., 2011; Bernal-de-Lazaro, et al., 2016; Ding, et al., 2009; 
Lee, et al., 2004; Hsu, et al., 2010; Shang, et al., 2017; Lee, et 
al., 2006; Chiang, et al., 2015). This paper is organized as 
follows. Section 2 presents the background and the principal 
methodology used in this paper. The proposed fault detection 
algorithm is described in Section 3, followed by results and 
discussion in Section 4 and a brief conclusion in Section 5. 



 
 

     

 

2. THEORETICAL BACKGROUND AND PROBLEM 
FORMULATION 

2.1  Formulation of faults 

Let assume the inputs in the Tennessee Eastman (TE) process 
can be defined as g, i.e., g={g1, g2,…, gn}, where n is the total 
number of inputs. For safe operation and consistent product 
quality, each input should be operated around a specific mean 
value with perturbations. For example, Fig. 1 (a) shows an 
input consisting of perturbations superimposed on two mean 
values, whereas Fig. 1 (b) shows the dynamics of a measured 
variable resulting from the input changes in Fig. 1 (a). 

 
Fig. 1. Illustration of Fault and measured quantity 

In this work, one of the mean values in Fig. 1 (a) is considered 
as a normal operating mode and another represents a fault. The 
objective is to detect the switch in the mean values of inputs. 
It is assumed that an input (fault) gi in g = {g1, g2,…, gn} can 
be defined mathematically as: 

gi,j = ḡi,j + ∆gi (1) 

, where i = 1, …, n,  j = 1, …, ni, {ḡi,j} is the mean values for 
the ith fault gi, ni represents the total number of mean values of 
gi, and {∆gi} are perturbations around each mean value of the 
ith fault, which are assumed to be time invariant. 

2.2  Processing monitoring with PCA 

Principal Component Analysis (PCA) is a linear statistical 
approach to analyse covariance structure of multi-dimensional 
data X ϵ Rm×k, where k is the number of measured quantities 
and m is the total number of measurements for each quantity. 
Using the PCA, it is possible to extract most of the variability 
in the k variables with a lower-dimensional variable space p (p 
« k). Note that, p represents the total number of the principal 
components retained to capture the majority of variability in 
X. The optimal selection of the principal components and the 
calculation of T2 and Q statistics proceed as follows. 

(i) The covariance matrix C of X can be calculated as: 

C = 1
m-1

XTX  (2) 

(ii) The eigenvalues λ={λi} (i=1,⋯,k) in C can be computed 
and rearranged in a decreasing order as: 

det (C - λI ) = 0 (3) 

Λ= [
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λk

]  (4) 

, where {λi} are eigenvalues stored in a decreasing order in Λ. 

(iii) The corresponding eigenvectors {ei} of each eigenvalue λi 
of C can be computed as: 

Cei =λiei  (5) 

Note that an eigenvector matrix can be further defined as: V =
[e1,⋯,ek] with all the eigenvectors obtained from (5). 

(iv) The variance, ϵi, captured with each principal component 
can be approximated using its eigenvalue as: 

ϵi =λi/ ∑ λj
k
j=1 ∙100%  (6) 

(v) The total number of principal components p to be retained 
is decided with a variance threshold ϵt. A transformation 
matrix Vp used to project measurements onto the principal 
components is generated with eigenvectors as: Vp = [e1,⋯,ep]. 

(vi) Using Vp, X can be projected onto a domain defined by 
principal components p and a matrix E of residuals as: 

X =Vp
TX + E  (7) 

From (7), the T2 and Q statistics can be calculated and used for 
pre-filtering as explained below. 

(vii) Using the first p principal components, the T2 statistic and 
its corresponding limit Tlim

 2  can be calculated as: 
T 2 = (xi - mc)

TC -1(xi - mc) (8) 

Tlim
 2  = p(m - 1)(m + 1)

m(m - p)
Fp,(m - p), α  (9) 

, where xi is the ith row in X, mc is the mean value vector of 
each column in X, and Fp,(m - p), α is a F-distribution with p and 
(m-p) degrees of freedom and a level of significance of α. 

(viii) The T2 only explains the steady state correlations, but the 
residual matrix E can explain the rest of variances that are not 
captured in principal components. Thus, Q statistics and its 
corresponding limit Qlim as: 

Q = rTr,  where r = (I - VpVp
T)xi (10) 

Qlim = θ1 [
cαh0√2θ2

θ1
+ 1 +

θ2h0(h0 - 1)
θ1

2 ]
1 h0⁄

  (11) 

, where r is the residual, cα is the confidence limit for the (1-α) 
percentile in a standard normal distribution, h0 is defined as 
h0=1-(2θ1θ3)/3θ2

2. Each value of {θf} (f =1, 2, 3) is computed 
with eigenvalues as: θf = ∑ 𝜆i

fk
i=p+1 . The T2 and Q statistics 

obtained from PCA models are used to extract fault features. 

2.3  Ensemble empirical mode decomposition 

For each variable xj (j=1,⋯, k) in X with data collected over 
time domain [0, tf], Empirical mode decomposition (EMD) 
decomposes xj into different scales (or IMFs) as: 

𝒙j = ∑ cj, i(t) + rj(t)K
i = 1   (12) 

Stochastic 
perturbations 

Mean values 
Stochasticity rising 

from fault 

(b) (a) 



 
 

     

 

, where 0 ≤ t≤ tf, cj,i is the ith IMF of the jth variable, K is the 
total number of IMFs, and rj is the residual of EMD. Note that 
{cj,i} are orthogonal to each other and include different 
frequencies varying from high to low, but the performance of 
EMD is jeopardized as mode mixing appears. To overcome the 
drawback, a noise-assisted method, i.e., ensemble empirical 
mode decomposition (EEMD) was developed (Wu & Huang, 
2009), which can reduce the possibility of undue mode mixing. 
The EEMD algorithm proceeds as follows. 

(i) Synthetic measurements of xj, i.e., yj, is generated by adding 
numerical white noise n(t) with a magnitude of σ to the original 
measurements of xj, which gives: 

yj = xj + σn(t)  (13) 

(ii) The conventional EMD defined in (12) is applied to yj in 
(13) to calculate the IMFs {cj,i} of yj. 

(iii) Steps i and ii will be repeated for L times with different 
realizations of noise but the same σ, thus an ensemble of IMFs 
can be obtained and defined as: 

[{cj, i
1 (t)}, {cj, i

 2 (t)}, … , {cj, i
 L (t)}]  (14) 

, where j ϵ [1, k] represents the jth measured variable in X, and 
i ϵ [1, K] denotes the ith IMF of decomposition. 

(iv) The final decomposition results can be calculated with the 
ensemble means of the corresponding IMFs as: 

c̅j, i(t) = 1
L

∑ cj, i
 q (t)L

q = 1   (15) 

Results from (15) can be used to reconstruct xj by combining 
the EEMD with PCA in order to extract fault signatures. 

2.4  Half-normal probability plot 

The half-normal probability plot is a graphical tool to estimate 
which variables are affected by variation in faults significantly. 
The key is to use a normal curve as the reference distribution 
against which the significance of effect is tested. This can be 
calculated as: 

[Φ−1 (0.5 +
0.5[𝑖 − 0.5]

𝑘
) , 𝜀𝑝𝑖

] (16) 

, where i=1,⋯,k is the ith variable xj in X, Φ-1 is the cumulative 
distribution function of a standard normal distribution, {𝜀𝑝𝑖

} 
are organized in an increasing order and can be shown against 
the coordinates based on the half-normal diagram. 

2.4  Cumulative sum (CUSUM) control chart 

CUSUM is an efficient tool to detect small shifts, since it can 
accumulate information (Hawkins & Olwell, 1998). The 
location CUSUM is used, which calculate two statistics as: 

Ci
 += max [0, Ci-1

 +  + xi - (μi,C + h)] (17) 

Ci
 -= max [0, Ci-1

 -  + (μi,C - h) - xi ] (18) 

, where h, μi,C, Ci
 +, and Ci

 – are the slack variable, the in-control 
mean value, and the upper and the lower CUSUM statistics, 
respectively. As seen in (16) and (17), the upper and the lower 
CUSUM statistics can account for accumulated summations of 

any small deviations in measurements. The summations can be 
adaptively corrected with the slack variable and then compared 
to zero through a max operation. Using the CUSUM statistics, 
a process can be identified as out-of-control when either one 
of them exceeds a threshold ε. 

2.5  Tennessee Eastman process 

The Tennessee Eastman (TE) process is used as a benchmark 
process to compare FDD algorithms. The TE process includes 
five major units: a product condenser, a reactor, a product 
stripper, a recycle compressor, and a vapour/liquid separator 
(Downs & Vogel, 1993). There are 41 measured variables, 12 
manipulated variables, and 20 input disturbances that can be 
considered as faults. 

Many FDD methods have been reported for the TE process 
(Chiang, et al., 2015; Sheriff, et al., 2017; Ghosh, et al., 2011; 
Ding, et al., 2009; Shang, et al., 2017; Lee, et al., 2006). They 
demonstrated different capabilities for identifying the majority 
of faults, but most of the previous reported algorithms have 
consistently failed to detect three particular faults as described 
in Table 1, i.e., (i) IDV(3) or a step change in the D feed 
temperature, (ii) IDV(9) or a random variation in the D feed 
temperature, and (iii) IDV(15) or a stiction in the condenser 
cooling water valve. 

Table 1.  Three faults in TE process 

Fault # Characteristics Size 
IDV (3) Step-wise changes 5%→10% 
IDV (9) 
IDV (15) 

Random variations 
Valve stiction 

5%→10% 
2%→7% 

 

These faults may have economics or operational impacts. 
Thus, the incapability to identify there three faults motivates 
the use of the EEMD-based PCA in combination with the half-
normal plot and CUSUM for improved FDD in this work. 

3. FAULT DETECTION ALGORITHM 
The proposed monitoring approach involves pre-filtering with 
EEMD-based PCA, sensitivity analysis using the half-normal 
probability plot, and fault detection with CUSUM statistics. 

3.1  Pre-filtering with EEMD-based PCA models 

The FDD in this work combines the EEMD-based multiscale 
modelling with a PCA-based multivariate statistical analysis. 
The EEMD-based PCA proceeds as a pre-filtering tool, which 
involves four consecutive steps as below. 

Step i: For each measured variable xj (j=1,⋯, k) in X, EEMD 
is used to obtain a family of IMFs {c̅j,i}, where i (i=1, …, K) 
represents the ith IMF (scale) in the decomposition. 

Step ii: The ith IMF of each variable xj is sorted in series to 
build a new multi-dimensional dataset Xi

 ' as: 
Xi

 ' = [ c̅1,i ⋯ c̅j,i ⋯ c̅k,i] (19) 

This will produce a family of datasets, {Xi
 '}, where i=1, …, K. 

Then, the PCA can be applied to each dataset {Xi
 '}, which will 

produce multiple PCA models. 



 
 

     

 

Step iii: For a specified variance threshold ϵt and a confidence 
level α, the T2 and Q statistics limits of a PCA model at each 
scale, Xi

 ', are calculated with (9) and (11). These limits are 
defined as: {Ti, lim

 2 } and {Qi, lim}. Based on (8) and (10), the T2 
and Q statistics for each set of data in {Xi

 '} are calculated, i.e., 
{Ti

 2(t)} and {Qi(t)}, which are further normalized with respect 
to their corresponding limits as: 

Tj, norm(t) = Ti
 2(t) Ti, lim

 2⁄  (20) 

Qj, norm(t) = Qi(t) Qi, lim⁄  (21) 

The T2 or Q statistics at each time t in (19) and (20) can be used 
to decide the contribution of the normalized T2 or Q statistics 
in the reconstruction step below. 
Step iv: The jth measured quantity xj can be reconstructed as: 

x̃j = ∑ γi(t)c̅j, i(t) K
i = 1   (22) 

, where c̅j, i is the ith IMF (scale) of the jth variable calculated 
from (15), and the weighting factor γi(t) can be defined as: 

γi(t)  = {
1                          if  TQlim(t) ≥ 1

[TQlim(t)]
β           otherwise

  (23) 

, where TQlim(t) is described as: 
TQlim(t) = Tj, norm(t) or TQlim(t) = Q

j, norm
(t)   (24) 

The reconstruction of xj in X uses its corresponding IMFs in 
each scale when the {Ti

 2(t)} and/or {Qi(t)} statistics exceed 
the control limits. To retain fault signatures in X, β is chosen 
to be larger than 1. In this way, the reconstructed variable x̃j 
will only contain features relevant to dynamic changes. 

3.2  Fault detection with half-normal plot and CUSUM 

Models generated with PCA are not interpretable since they 
rely on subspaces that do not have any physical explanation. 
To improve the interpretability, a half-normal probability plot 
is used to identify variables that are sensitive to faults. 

Based on the half-normal probability plot, the CUSUM control 
chart is used for fault detection. When the CUSUMs statistics 
exceed a control limit, fault is detected, otherwise, the process 
will be identified as a normal operating mode. Considering the 
integrating nature, CUSUM statistics may require some time 
before a fault can be detected, especially when the faults lead 
to small variations in process dynamics as studied in this work. 
Thus, the fault detection delay ARLo.c., i.e., out-of-control 
average run length, (Bin Shams, et al., 2010), is studied. 

4. RESULTS AND DISCUSSION 

4.1  Previous attempts for three faults in Table 1 

Comparative studies with multivariate techniques for detecting 
faults in the TE process were previously reported (Yin, et al., 
2012). However, faults IDV(3), IDV(9), and IDV(15) were 
excluded, since either they cannot be identified or the detection 
rate was found to be very low. In this section, we will first 

demonstrate the performance of the conventional PCA method 
for three faults in Table 1 in terms of the fault detectability. 

Fig. 2 shows the fault detection results using the T2 statistics 
without the pre-filtering step proposed in this work. For faults 
IDV(3), IDV(9) and IDV(15), ten samples of inputs were 
simulated in each fault profile. The simulation time of each 
sample was 24 h and the sampling time was set to 6 min. The 
first five samples represent a normal operating mode, while the 
rest samples represent a faulty operating mode. That is, faults 
were introduced after 120 h (i.e.,1200 samples) of a normal 
operating mode. The settings of the normal and faulty modes 
follow the descriptions as explained in Table 1, and stochastic 
perturbations were added to each specific mean value. Also, 
measurements used for fault detection were contaminated by 
white noise of a zero mean and a standard deviation of 0.1. 

 
Fig. 2. Illustration of fault detection with PCA 

In Fig. 2, a vertical line represents the onset of a fault, whereas 
a horizontal line denotes a 99% control limit of the T2. When 
the T2 statistic exceeds the control limits after an occurrence of 
a fault, the fault is considered as detected. However, as seen in 
Fig. 2, the T2 fails to surpass the limits after the onsite of any 
of the faults, which means that these faults cannot be detected 
with the conventional PCA. The limited capability of previous 
methods to identify these faults motivates the development of 
new methods in this work. The Q statistics also fail to detect 
these faults and the result is not given for brevity. 

4.2  Pre-filtering with EEMD-based PCA 

The EEMD-based PCA is used as a pre-filtering tool to extract 
fault signatures. For clarify, a dataset of both normal and faulty 
operating modes with measurements collected over 240 h was 
generated. Since stochastic perturbations are superimposed on 
the mean values, ten samples were used for simulations. The 
simulation time of each sample was 24 h and the sampling time 
was 6 min, i.e., 2400 samples were used to generate EEMD-
based PCA models. To demonstrate the efficiency of the pre-
filtering, Fig. 3 shows the results obtained with the EEMD-
based PCA, in which fault IDV(9) was introduced after 1200 
samples (i.e., 120 h) of a normal operating. To illustrate the 
difficulty associated with the detection of IDV(9), manipulated 
variable XMV(10) is used. This is a critical variable that 
reflects the reactor cooling water flow in the TE process, which 
should be adjusted to eliminate any changes in the reactor 
temperature to remain the conversion level at a desired level. 

As seen in Fig. 3 (a), changes in XMV(10) are camouflaged by 
noise. For an inset in Fig. 3 (a), Fig. 3 (b) shows the results 
with the pre-filtering. As seen, the fault signatures can be 
extracted by comparing Figs. 3 (a) and (b). As expected, fault 
IDV(9) can increase the variability in its correlated measured 
variables as shown in Fig. 3 (b), since it denotes an increase of 
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99% 
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Samples Samples Samples 

IDV(3) IDV(9) IDV(15) 



 
 

     

 

random variation around the mean value of fault. Also, as seen 
in Fig. 3 (b), changes in XMV(10) is insignificant in the 
absence and in the presence of IDV(9). Similar pre-filtering 
results can be obtained for other faults. 

 
Fig. 3. Illustration of pre-filtering to extract fault features 

4.3  Sensitivity analysis with half-normal probability plot 

Since the multivariate analysis cannot provide a desired fault 
detection results for three faults in Table 1 and each fault may 
have different effect on the measured quantities, we propose to 
use the half-normal probability plot to find a univariate that is 
sensitive to a specific fault. The relationship between the faults 
and their corresponding manipulated variables that can be used 
for fault detection in shown in Fig. 4. Note that the half-normal 
probability analysis can be also applied to measured variables. 
As shown in Fig. 4, the manipulated variable with the highest 
sensitivity will be used to identify each fault. For example, it 
was observed that IDV(3), i.e., small step-wise changes in feed 
concentration, can induce changes in the manipulated variable 
XMV(10). Since IDV(3) affects the steady state in the reactor, 
and the reaction is highly exothermic, the manipulated variable 
XMV(10) should be adjusted to eliminate changes in the mean 
of the steady state reactor temperature. 

4.4  Fault detection with CUSUM 

Since the CUSUM based statistics is especially suitable for 
detecting small changes in the process mean, it is applied to 
manipulated variables that can be significantly affected by 
faults in Table 1. Note that the application of CUSUM to 
measured variables is not given for brevity. Fig. 5 shows the 
FDD results for three faults in this work. 

For all simulations in Fig. 5, the faults were introduced after 
1200 samples, i.e., after 24 h of normal operations. The set-up 
of simulation follows the description given in Table 1. The 
horizontal line in each subplot means the CUSUM statistical 
threshold, while the vertical line denotes the onsite of faults. 
As seen, the proposed method can successfully detect these 
faults that were not observable in previous reported works. 

4.5  Comparison of ARLo.c 

The algorithm resembles the technique developed in the work 
by (Bin Shams, et al., 2010) in terms of the incorporation of 
the CUSUM. However, there are significant differences and 
extensions. The faults in this work are defined as perturbations 
superimposed on mean values of process inputs, while the 
previous work only dealt with deterministic faults such as step-
wise changes. In addition, the pre-filtering in this work can 
efficiently extract fault signatures and improve the detection 

efficiency. For comparison, Table 2 shows the results in terms 
of the out-of-control average run length (ARLo.c), which is the 
required detection time before a fault can be identified due to 
the integrating nature of the CUSUM. 

 
Fig. 4. Illustration of the effect of faults on manipulated 

variables (XMV) in the TE process 

 
Fig. 5. Fault detection results of three particular faults 

As seen in Table 2, there is a longer detection delay for these 
faults in Table 1 with the previously reported technique. For 
example, the ARLo.c of IDV(3) was approximately 114.8 h, 
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while only 3.9 h is required using the method developed in this 
work. Note that the slow detection is preferable, as compared 
to no detection at all in previously reported works. 

Table 2.  Evaluation of the control performance 

ARLo.c (hour) previous current 
IDV(3) 114.8 3.9 
IDV(9) 
IDV(15) 

142.2 
65.3 

32.7 
30.3 

 

5. CONCLUSIONS 
A new FDD algorithm using the multiscale and multivariate 
analysis is developed in this current work. The efficiency of 
the algorithm is demonstrated with a subset of faults in the 
Tennessee Eastman (TE) process that have been consistently 
found unobservable or undistinguishable with other previously 
reported techniques. A pre-filtering tool, using the Ensemble 
Empirical Mode Decomposition (EEMD) and the Principal 
Component Analysis (PCA), can efficiently extract fault 
signatures and reduce the effect of noise on the fault detection. 
The half-normal probability plot can identify variables that are 
sensitive to faults. The algorithm can successfully identify 
three particular faults in the TE process with small time delay. 
It is important to note that the measurement noise is assumed 
to small in this work, enhancements of the pre-filtering step 
may be required for FDD when the measurement noise is big. 
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