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Abstract: A robust adaptive controller is developed for a chemical process using a generalized Polynomial 
Chaos (gPC) expansion-based Markov decision model, which can account for time-invariant probabilistic 
uncertainty and overcome computational challenge for building Markov models. To calculate the transition 
probability, a gPC model is used to iteratively predict probability density functions (PDFs) of system’s 
states including controlled and manipulated variables. For controller tuning, these PDFs and controller 
parameters are discretized to a finite number of discrete states for building a Markov model. The key idea 
is to predict the transition probability of controlled and manipulated variables over a finite future control 
horizon, which can be further used to calculate an optimal sequence of control actions. This approach can 
be used to optimally tune a controller for set point tracking within a finite future control horizon. The 
proposed method is illustrated by a continuous stirred tank reactor (CSTR) system with stochastic 
perturbations in the inlet concentration. The efficiency of the proposed algorithm is quantified in terms of 
control performance and transient decay. 
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1. INTRODUCTION 
Adaptive control provides a systematic approach for automatic 
adjustment of controller parameters to maintain a desired level 
of control system performance. The basic idea is to recursively 
identify a best model of the process from the closed loop input-
output data and to subsequently adjust controller parameters 
based on the identified model and an adaptation law. However, 
the model cannot be always identified with certainty, since 
noisy data are used for model calibration and the process can 
change unpredictably in time, e.g., unmeasured disturbance. 
This can result in uncertainty in the process model that may 
deteriorate the control performance. 

Markov decision models based control is one of the recently 
reported approaches for adapative control in the presence of 
uncertainty (Ikonen, et al., 2016). The controller tuning with 
Markov model can concern the closed loop performance and 
account for uncertainty in various system components. The 
basic idea of Markov models based control is that, using the 
first principle models of a process, the state variables, e.g., 
controlled and manipulated variables, are discretized into a 
finite set of discrete states within their effective dynamic 
ranges, and the evolution between states is described with  
transition probabilities (Negenborn, et al., 2005). Based on this 
predicted evolution in time, a control action can be calculated 
from an optimization problem defined over a finite future 
control horizon as done in model predictive control algorithms. 
Such Markov models based strategy can be used for predicting 
the outputs in nonlinear dynamic problems in the presence of 

uncertainty. However, this technique is difficult for real-time 
implementation, since the formulation of transition probability 
between states requires numerous simulations, thus it may be 
computationally prohibitive (Lee & Lee, 2004). 

This paper addresses these computational limitations by the 
use of the generalized Polynomial Chaos (gPC) expansions. 
The idea is to develop a robust adaptive control algorithm, 
using a Markov decision model and uncertainty quantification 
techniques. Our objective is to build a basic framework to 
integrate the Markov model with uncertainty quantification for 
nonlinear process control, when only an inaccurate process 
model is available. The key in this work is to approximate the 
probability density function (PDF) of uncertainty in a process 
and propagate it onto manipulated and controlled variables. 
The PDFs to be calculated online by using gPC models can be 
discretized into a finite number of discrete states in a Markov 
model. Based on this discretization results, the transition 
probability between states can be readily calculated from the 
PDFs, thus eliminating the need for numerous simulations. 
Finally, using the transition probability, an optimization that 
minimizes a sequence of cost in the future control horizon can 
be defined for online controller tuning. Moreover, since a 
Markov model is used, the optimization can be converted into 
an iterative dynamic programming problem to avoid excessive 
simulation runs within the optimization search. 

Since our objective is to adjust control parameters online, it is 
crucial to propagate uncertainty onto measured quantities in a 
computationally efficient manner and then build a Markov 



 
 

     

 

model in real-time. Although sampling-based methods such as 
Monte Carlo (MC) simulations could be used, they are time 
prohibitive for online implementation. Thus, the generalized 
polynomial chaos (gPC) expansion (Xiu, 2009) is used. The 
advantage of the gPC is that it can efficiently propagate the 
probabilistic uncertainty onto the predictions of measured 
quantities and quickly approximate their corresponding PDFs 
(Du, et al., 2017), which can be discretized to calculate the 
transition probability used for controller tuning. The rapid 
calculation of the transition probability is the key element in 
the proposed approach, since it is the main challenge to apply 
Markov models for control. 

This paper is organized as follows. Section 2 presents the 
principal techniques used in this work.The proposed adaptive 
control strategy is presented in Section 3. The control strategy 
is illustrated for an endothermic continuous stirred tank reactor 
(CSTR) in Section 4. Analysis and discussion of the results are 
given in Section 5 followed by conclusions in Section 6. 

2. THEORETICAL BACKGROUND AND PROBLEM 
FORMULATION 

2.1  Process models 

Markov models based control typically requires first principle 
models. Let assume a nonlinear system can be defined as: 

ẋ = f (t, x, u; g) + v1(t) (1) 

y = h (t, x) + v2(t) (2) 

, where f and h are nonlinear functions and 0 ≤ t ≤ tf. x∈Rn 
contains the system states (including controlled variables) with 
initial conditions x(0) = x0 over time domain [0, tf], u denotes 
the manipulated variable, y is the process outputs, v1 and v2 are 
random vectors respresenting noise, and g∈Rng is an unknown 
time varying input vector representing the uncertainty in the 
process. Such an uncertainty is common in chemical processes 
generally due to materials variablity or imperfect control. The 
control objective is to find an optimal tuning parameters such 
that controlled variables can optimally track their set points 
over a finite future horizon. For instance, a PID controller can 
be used as follows: 

u = us+ Kpe + (Kp/ τi) ∫ e  t
0 dt' + Kpτd  

de
dt

  (3) 

, where e is the error, i.e., the difference between set point and 
measurement of controlled variable, Kp, τi and τd are controller 
parameters, solved with an adjusting criterion. Although, for 
simplicity, we have only considered PID controllers in this 
work, the proposed method can be similarly extended to a state 
feedback controller, such as certain model predictive control 
(MPC) formulations (Kothare, et al., 1996; Wan & Kothare, 
2002), where the gain matrix elements will be self-tuned. 

2.2  Markov decision models 

Markov decision models are applicable in processes involving 
uncertain state transitions and can enable sequential decision 
making. A first order Markov model is used in this work, for 
which the future states only depend on the current states. 
Additionally, it is assumed that dynamic ranges of measured 

quantities, i.e., x and u, can be approximated with a finite sets 
of values. For example, the state variables x can be discretized 
into S disjoint regions {χi}, i.e., χ=⋃ χi

S
i=1  and χi ⋂ χj=ϕ, where 

i, j=1, 2, …S, and each region represents a state. Details about 
this discretization step will be discussed in Section 3. In this 
way, the continuous variables such as x in (1) can be described 
with discrete transitions {χi}. Since uncertainty such as time 
vaying input g and measurement noise are considered in this 
work, the evolution between χi and χj is stochastic, i.e., a state 
χi can evolve to χj in some time intervals, while at other time 
intervals χi may evolve to χj’ rather than χj. This is conveniently 
described by a transition matrix P={pi, j}, i.e., a (S×S) matrix, 
where pi, j is the probability that χi can evolve to χj. The process 
outputs y can be discretized in a similar way. 

Since the transitions occur under closed loop control, the 
evoltuion is dependent on the controller parameters such as Kp, 
τi and τd in (3). For control implementation, it is necessary to 
discretize the space defined by a controller. The discretization 
is relative to state variables x, and a set of states of controller 
parameters can be defined, i.e., ca∈C={c1, c2, …,cnA}, a=1, 2, 
…nA. The discretization of controller parameters is analogous 
to generating a look-up table, which provides all the possible 
control actions. Subsequently, nA transition matrices can be 
defined, i.e., Pa={pi, j

a }, and each matrix provides the transition 
probability between states at two consecutive time intervals for 
a particular controller setting ca. 

Using the discretization result, an equivalent Markov model of 
a continuous process in (1) is defined as: 

q(k+1) = q(k) P ca(k) (4) 

, where k is a discrete time instant, P ca(k) is the transition matrix 
for a particular set of controller parameter ca at k, and q(k) and 
q(k+1) are the probability that a process occupies a set of states 
{χi} at two consecutive time instants k and k+1, respectively. 

The next step is to formulate the probability transition matrix. 
Based on first principle models, the probability is often built 
by counting the number of observed state pairs ({χi}, ca) that 
lead to a particular state χj, and by normalizing the count with 
respect to the total number of transitions in each pair as below: 

pi, j
a = 

# (χj |{χi}, ca) 
# ∑ ({χi}, ca) 

= 
# ({χj(k+1)}|{χi(k)}, ca(k)) 

# ∑ ({χi(k)}, ca(k)) 
 (5) 

, where # indicates the number of active states or the number 
of active transitions. Note that active here means transitions 
with a nonzero probability. 

The computational time to construct the probability transition 
matrix is a main challenge for Markov model-based control, 
and the accuracy of transition probability is related to process 
models. For example, the total number of simulations is 
(S*nA*m), when m samples are used in each state in order to 
calculate a transition probability, since there are S dicrete 
states of x and nA possible control actions in total. Also, the 
transition matrix may have to be repeatedly calibrated in the 
presence of uncertainty arising from unpredictable changes, 
which can complicate the calculations. To accelerate the online 
calculations, a gPC model is used in this work. 



 
 

     

 

2.3  Generalized polynomial chaos (gPC) expansion 

A gPC expansion estimates a random variable as a function of 
another random variable (e.g., ξ) with a prior known PDF (Xiu, 
2009). To preserve orthogonality, the basis functions of gPC 
are selected according to the choice of the distribution of ξ. For 
a process given in (1), each element gi (i=1,2,…,ng) of the 
uncertain input g can be approximated with a gPC model as: 

gi = gi(ξi) (6) 

, where ξi is the ith random variable. The random variables ξ= 
{ξi} are independent and of equal distributions. Note that ξi is 
assumed to follow a standard distribution here, but elements in 
{gi} practically can follow any distributions by including a 
sufficient number of basis functions in the gPC expansion. 

Using gPC, the uncertainties represented by g, system states x 
and manipulated variable u can be approximated in terms of 
polynomial orthogonal basis functions Φk(ξ) as: 

gi(ξ)= ∑ gi,kΦk(ξ)∞
k=0   (7) 

xj(ξ)= ∑ xj,k(t)Φk(ξ)∞
k=0   (8) 

uj(ξ)= ∑ uj,k(t)Φk(ξ)∞
k=0   (9) 

, where{gj,k}, {xj,k} and {uj,k} are the gPC coefficients of the 
jth uncertainty, the jth states x, and the jth manipulated variable, 
respectively. Also, {Φk(ξ)} are multi-dimensional orthogonal 
polynomial basis functions. Uncertainty {gi} are assumed to be 
known approximately, but not accurately. In practice, (7)~(9) 
are often truncated into a finite number of terms. Note that gPC 
coefficients {gj,k} in (7) can be estimated with prior knowledge 
of uncertainty. Using {gj,k}, gPC coefficients {xj,k} and {uj,k} 
can be calculated by substituting (8) and (9) into (1) and by 
using a Galerkin projection with respect to each basis function 
{Φk(ξ)}. For breivty, the steps for the calcualtion of the gPC 
coefficients is not given, but the details can be found in (Du, 
et al., 2017; Xiu, 2009; Du, et al., 2016). Once the coefficients 
of x and u are calculated, their PDFs can be rapidly estimated 
by sampling from distributions of ξ given in (8) and (9). The 
ability to quickly estimate the PDFs is the key to accelerate 
computations of the transition matrix in this work. 

3. SELF-TUNING CONTROL DESIGN 
The controller parameters is adjusted by a tuning algorithm 
using a gPC-based finite Markov state model and a dynamic 
programming in this work. A Proportional-Integral-Derivative 
(PID) is used for algorithm illustration, since it is one of the 
most commonly used controller in industry. 

3.1  Markov modelling using gPC approximation 

Since the process model used in this work is assumed to be an 
inaccurate approximation and includes uncertainty such as g in 
(1), the gPC is used to estimate ranges of the dynamic variables 
and the transition matrix of x. The main feature is to propagate 
unceratinty in (1) onto measured quantities to build a Markov 
model without using excessive computation. To implement the 
algorithm, the PDFs of g are approximated with gPC, but the 

premise is that the exact statistics of the PDFs are unknown, 
i.e., the gPC coefficients {gj,k} in (7) may not be accurate. For 
uncertainty propagation, the gPC coefficients of x are solved 
using Galerkin projection, from which the PDF profiles of x 
are estimated by sampling from the distribution of the random 
variables ξ and by substituting these samples into (8). Fig. 1 
shows a PDF profile of a measured quantity for illustration. 

 
Fig. 1. Markov transition modelling 

The next step for building a Markov model is to discretize the 
state space defined by x in (1). It is assumed that the discrete 
states in a Markov model can be characterized into S disjoint 
regions {χi}, i.e., χ=⋃ χi

S
i=1  and χi ⋂ χj=ϕ, where i, j=1, 2, …S. 

Each region is estimated with a reference centroid xi
ref, which 

represents a state and results in S reference centroids as shown 
in Fig. 1. To assign each sample in the PDFs to a centroid, a 
state index is defined with respect to a mapping (x→i) as: 

i = arg min
i ∈ S

 ‖x - xv
ref

‖ (10) 

, where xv
ref is a reference centroid vector, ‖∙‖ represents the 

Euclidean distance, and i is a state in a Markov model with a 
minimum distance between measurements and all reference 
centroids. For instance, for a given measurement (the blue 
triangle in Fig. 1), the smallest distance can be found with the 
first centroid x1

ref, thus implying that this measurement can be 
represented as state 1 in the Markov model. Due to uncertainty 
arising from model error and measurement noise, the dynamic 
ranges of measured quantities x in (1) have to be extended to 
account for all possible measurements. 

Using the discretization results, the next step is to build the 
probability transition matrix in (5). For each sample in the 
approximated PDF of x, a corresponding state index can be 
found using (10). For example, Fig. 1 indicates that 3 samples 
are found to be in the ith reference centroid, and the probability 
for that state to occur is determined by normalizing 3 with 
respect to the total number of samples used to approximate the 
PDF profile. Note that the ability to calculate gPC coefficients 
and approximate the PDFs at each time instant are the main 
rationale for using the gPC, since it can significantly reduce 
the computational time required for building the transition 
matrix rather than using numerous simulations to calculate 
transition probabilities. To calculate the gPC coefficients of x 
over a finite future control horizon, the states at the current 
time interval are assumed to be measured and used as an initial 
value for the gPC model, otherwise an observer is required. 

For control implementation, the space defined by the controller 
tuning parameters is discretized into discrete states indexed by 
ca∈C= {c1, c2, …, cnA} using a reference vector cA

ref, where a=1, 

Reference centroids of a measured quantity (xi) 
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2, …nA. These states define a look-up control table. Using the 
Markov model and the control table, the control problem is 
formulated with an objective of finding a set of appropriate 
controller parameters from the look-up table to optimize a 
tuning criterion, which is discussed below. 

In this work, it is assumed for simplicity that the space domain 
defined by the controller parameters is finite and exact. To 
ensure stability of controller, the nonlinear model in (1) can be 
linearized and used off-line to obtain stability constraints for 
the controller parameters that result in negative eigenvalues. 

3.2  Dynamic programming 

Using the gPC-based Markov model, the goal is to find an 
optimal set of controller parameters from the look-up table 
given by ca∈C= {c1, c2, …,cnA} for minimizing an immediate 
cost over a finite future control horizon as: 

min
ci

  𝐽(x0)  = ∑ μk'r(x(k+k′), u(k+k′))
k′=1,⋯,K

 (11) 

, where ci∈C is a vector of decision variables, i.e., controller 
parameters, and x(0) is the initial conditions at current time k, 
i.e., measured quantities. r(x(k+k′), u(k+k′) is a loss function 
that is defined in detail in the following section. The indexes 
k′ in the summation cover the measured quantities in the future 
control horizon, i.e., 1≤k′≤K. The control tuning is similar to 
model predictive control, but the tuning criterion is based on 
closed loop information. The weights {μk'} in (11) penalize the 
contribution of the cost resulting from each future control 
horizon k′. The loss function r decides the trade-off between 
different control objectives, e.g., a larger probability to reach 
the set point in a short period of time versus the probability of 
aggressive movements of the manipulated variables. 

Due to the transition between states in a Markov model, the 
cost at a particular index k′ is the summation of the immediate 
cost r at k′+1 and the resulting costs at each future control 
horizon after k′+1, i.e., from k′+2 to k′+K. This yields an 
optimization that can be defined recursively by the Bellman 
equation as follows: 

min
ci

  𝐽*(x0)  = min
ci

 {rk'=1(x0, u) +μ𝐽*(γ(x0
' ,u'))} (12) 

, where μ is an optimization weight for a future control horizon, 
and γ is the loss conditioned on state (x0

' , u'), i.e., k′+1, which 
has the same tuning mechanism as defined in r explained in 
next section. The conversion of (12) leads to an iterative 
dynamic programming problem. 

3.3  Adaptive predictive control 

Based on the optimization problem (12), it is straightforward 
to build an adaptive control tuning algorithm. The cost defined 
in (12) is minimized in a closed loop system with a fixed 
control horizon, i.e., 0≤k′≤K. The optimization can start in 
both backward and forward manners. For instance, we can start 
from the last control horizon interval K and calculate the loss 
r. Then, we can step backward to control horizon K-1, and 
calculate the corresponding loss. The cost of future horizons 

for a state and control action pair is now the summation of the 
immediate loss r(x(k+K-1), u(k+K-1) and the loss from its 
successor state K. Since the measured quantities x and control 
actions only include a finites number of states, the 
optimization in (12) will converge to a minimum 𝐽*. 

Since Markov models can provide probabilistic information at 
each state, the loss function r in (12) can be defined using the 
transition probability. In addition, r is also dependent on both 
weighted controlled and manipulated variables as follows: 

𝑟(x, u) = α{(1-pset
a )(xset-xmax

ref )
2
}+β{(1-pus

a )(us-umax
ref )

2
} (13) 

, where α and β are weights, pset
a  is the transition probability of 

a particular state (reference centroid) that contains the set point 
of the controlled variable conditioned on a control action ca, 
xset is the set point of controlled variable. For the manipulated 
variable, pus

a  is the transition probability of a specific state that 
contains the nominal value us where the latter may be chosen 
as the steady state value of u corresponding to the chosen xset. 
Further, xmax

ref  and umax
ref  represent a state that have the maximum 

probability for each future discrete control horizon k,. By 
minimizing the cost, the tuning of controller is to find a set of 
controller parameters that can realize the set point tracking in 
a finite time, while maximizing the transition probability. Note 
that the cost in (13) will not converge to zero in the presence 
of a persistent disturbance since us will not be the true steady 
state value corresponding to xset. However, the offset will still 
converge to zero due to the use of a controller with integral 
action, i.e. a PI in the current study. 

4. CASE STUDY 
The adaptive tuning strategy is applied to an endothermic 
continuous stirred tank reactor (CSTR) system (Du, et al., 
2016) with a PI controller, which can be described as: 

Vr𝐶̇A = (𝐹 𝜌⁄ )(CA0 - CA) - Vrk0CAe- E
RT            (14) 

VrρCv𝑇̇ = FCp(T0-T) - Vr∆Hk0CAe- E
RT +Q            (15) 

Q̇ =  Kp𝐶̇A - (Kp/τi)e                                     (16) 

, where Kp and τi are the controller gain and integral time 
constant, respectively. The controller is used to control the 
outlet reactant concentration CA by manipulating the external 
heat Q. To demonstrate the control performance, the inlet 
concentration CA0 is assumed to be the uncertainty, i.e., g in 
(1), which is operated around a fixed mean with time-invariant 
stochastic variations. However, the exact mean and variance 
of CA0 are unknown to the controller. The objective is to solve 
the optimization problem (12) and execute online tuning of the 
controller in the presence of the input uncertainty in CA0. 

5. RESULTS AND DISCUSSION 

5.1  Model formulation with gPC 

To formulate stability constraints of controllers, the nonlinear 
system defined in (14) ~ (16) is linearized using the steady 
state measurements. To ensure stability, eigenvalues which are 
functions of controller parameters, must be negative. The 



 
 

     

 

application of Galerkin projection for building the gPC model 
requires integrating the differential equations with respect to 
an appropriate selected polynomial basis function for a 
specific random variable. The integral is straightforward for 
monominal or polynomial terms. However, the integral of non-
monominal terms such as the Arrhenius term in (16) needs 
approximation with a 2nd order Taylor series expansion. Due 
to the space limitation, details about the stability constraints 
and the formulation of gPC model with an approxiamtion are 
not given in the current work, which can be found in our 
previous work (Du, et al., 2016; Du, et al., 2014). 

5.2  Optimal tuning of controller parameters 

Using the measurements collected at each time instant t, the 
cost of the objective function (11) is minimized with respect to 
the tuning parameters of the PI controller over a finite future 
control horizon. As shown in Fig. 2 (a), the inlet concentration 
is assigned with different values between 0.8 and 1.2 gmol/L. 
An inset as seen in Fig. 2. (b) is used to illustrate the algorithm. 
The mean and variance of the inlet concentration profile of CA0 
in Fig 2 (b) are 1.0 gmol/L and 0.1 gmol/L, respectively. To 
intentionally introduce mismatch in the gPC model, the mean 
and variance of CA0 are assumed to be 1.1 gmol/L and 0.15 
gmol/L, respectively. Based on these values, a gPC model is 
generated offline which is function of controller parameters 
and initial values of states. This is used to decide the discrete 
states in a Markov model and to calculate transition probability 
over the finite future control horizon. Also, 1% measurement 
noise is added to the measured quantities. 

 
Fig. 2. Profile of inlet concentration (CA0) 

The control performance was first studied in this work, i.e., set 
point tracking within finite time. Fig. 3 shows the simulation 
results of the inlet concentration profile CA0 shown in Fig. 2 
(b). The control horizon used in this case study is 100, i.e., 
K=100. The control performance is compared to a robust 
controller with a set of fixed controller parameters, which was 
optimized offline as explained in our previous work (Du, et al., 
2017).  These parameters are Kp=7.5×104 and τi=0.50. For the 
adaptive control strategy, these values are used as the initial 
guesses for tuning of controller parameters. For 16 consecutive 
step changes of CA0 in Fig. 2, Fig. 3 (a) shows the results of the 
controlled variable (CA). As seen, both control strategies can 
realize set point tracking, but the adaptive control algorithm 
proposed in this work can reach the set point faster, i.e., shorter 
transient decay. This will be further discussed below. Fig. 3 (b) 
shows a segment of the simulation results in Fig. 3 (a). It is 
observed that there are transient excursions occurring at the 
beginning of each switch between two step-changes in CA0. 

To evaluate the control performance, Table 1 shows the results 
of comparison between the fixed controller versus the adaptive 

controller, in terms of the transient decay time and the integral 
squared error (ISE) of the controlled variables, for 16 
consecutive step changes shown in Fig. 2 (b). For adaptive 
tuning strategies, two case scenarios were investigated. A 
fixed transition probability in (13) is used to illustrate the 
necessity of updating the transition probability in real time. 
The improvement obtained with the adaptive controller is very 
significant with around 29% reduction in ISE, as compared to 
the fixed controller in the second row. Also, as shown in Table 
1, the transient decay of the adaptive controller, on average, is 
about 16 s shorter than a fixed parameters controller. 

 
Fig. 3. Illustration of the control performance (noise-free 

simulation results are used for clarification) 

Table 1.  Evaluation of the control performance 

Method ISE (CA)×10-4 Decay (s) 
Fixed controller 4.66 97 

Adaptive (fixed pset
a ) 

Adaptive controller 
3.71 
3.30 

83 
81 

 
In a second study we studied the effect of the horizon length K 
on the control performance. Two different values of K are 
used, i.e., K=100 and K=500, respectively. Fig. 4 shows the 
simulation results of three samples of the inlet concentration. 

Similar to the first case study, as seen in Fig. 4 (a), the 
controlled variable can reach the set point faster and has a 
smaller variability. Fig. 4 (b) and (c) shows the controller 
parameters, i.e., Kp and τi, when K is 100. For illustration, these 
parameters are normalized with respect to initial values used 
in simulations. As seen, the controller parameters exhibit high 
variations after step changes in CA0., which is expected due to 
the use of relatively coarsely discretized with Markov models. 
The controller parameters eventually stabilize at the optimal 
values as seen in Fig. 4 (b) and (c). 

When K is 500, it was found that both controller parameters 
almost remained constant through the simulations, thus 
resulting in more conservative control similar to the predictive 
controllers with long horizon. The simulation results are not 

(a) inset shown in (b) 
Step changes of inset in (a) 

  

(b) 

Step changes used in Fig.3 

(a) 

(b) 

  

inset a 

Time (s) 

  

excursions 



 
 

     

 

shown for brevity. Note that a control horizon of 500 indexes 
is equivalent to a 50 s simulation in this work. As seen in Fig. 
4 (a), the transient decay on average is approximately 80 s for 
the adaptive self-tuning control strategy, thus resulting in an 
almost constant controller parameter over a long period of 
operations. The controller parameters are found to be around 
Kp = 7.55×104 and τi=0.31, repectively. The normalized values 
are 𝐾𝑝

′ =1.0066 and 𝜏𝑖
′= 0.62. 

 
Fig. 4. Normalized tuning parameters of the PI controller 

Fig. 5 shows the probability of the controlled variable CA that 
can be found at a particular discrete state of the Markov model, 
which contains the set point. The first step change of CA0 in 
Fig. 4 (a) is used, i.e., CA0=0.9806 gmol/L, and K is 100 for the 
simulations shown in Fig. 5. As seen, the probability to be in 
the neighbourhood of the set point is smaller during the 
transients that follow a change in the mean value of the inlet 
concentration. After approximately 38 s of the simulation, the 
probability increases and eventually stabilizes around 0.94. the 
probability is different than one due to measurement noise and 
the discretization of the continuous states. 

 
Fig. 5. Profile of transition probability 

In terms of computational efficiency, using the gPC model, the 
calculation of the objective function (11) over a future control 
horizon is ~0.3 seconds on an Intel® CoreTM i7 processor with 
dual-core. It was also found that the use of a larger number of 
future control horizons (K=500) has negligible effect on the 
computational time, which enable the online application. 

6. CONCLUSIONS 
A methodology is proposed for online adaptive tuning of a PID 
controller. The tuning procedure is based on a gPC model and 
a Markov model, which can predict the transitions and its 
probability between states of the controlled variable. Using the 
Markov model, the tuning of controller can be formulated as a 
dynamic programming problem. To overcome computational 
burden, a gPC model is used to predict the probability density 
function (PDF) of the measured quantities, which is discretized 
to rapidly calculate the transition probability. The combination 
of the Markov model with gPC-based uncertainty propagation 
technique is attractive for adaptive model predictive control, 
especially when using inaccurate modelling information. 
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