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Abstract: A robust adaptive controller is developed for a chemical process using a generalized Polynomial
Chaos (gPC) expansion-based Markov decision model, which can account for time-invariant probabilistic
uncertainty and overcome computational challenge for building Markov models. To calculate the transition
probability, a gPC model is used to iteratively predict probability density functions (PDFs) of system’s
states including controlled and manipulated variables. For controller tuning, these PDFs and controller
parameters are discretized to a finite number of discrete states for building a Markov model. The key idea
is to predict the transition probability of controlled and manipulated variables over a finite future control
horizon, which can be further used to calculate an optimal sequence of control actions. This approach can
be used to optimally tune a controller for set point tracking within a finite future control horizon. The
proposed method is illustrated by a continuous stirred tank reactor (CSTR) system with stochastic
perturbations in the inlet concentration. The efficiency of the proposed algorithm is quantified in terms of
control performance and transient decay.
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1. INTRODUCTION

Adaptive control provides a systematic approach for automatic
adjustment of controller parameters to maintain a desired level
of control system performance. The basic idea is to recursively
identify a best model of the process from the closed loop input-
output data and to subsequently adjust controller parameters
based on the identified model and an adaptation law. However,
the model cannot be always identified with certainty, since
noisy data are used for model calibration and the process can
change unpredictably in time, e.g., unmeasured disturbance.
This can result in uncertainty in the process model that may
deteriorate the control performance.

Markov decision models based control is one of the recently
reported approaches for adapative control in the presence of
uncertainty (Ikonen, et al., 2016). The controller tuning with
Markov model can concern the closed loop performance and
account for uncertainty in various system components. The
basic idea of Markov models based control is that, using the
first principle models of a process, the state variables, e.g.,
controlled and manipulated variables, are discretized into a
finite set of discrete states within their effective dynamic
ranges, and the evolution between states is described with
transition probabilities (Negenborn, et al., 2005). Based on this
predicted evolution in time, a control action can be calculated
from an optimization problem defined over a finite future
control horizon as done in model predictive control algorithms.
Such Markov models based strategy can be used for predicting
the outputs in nonlinear dynamic problems in the presence of

uncertainty. However, this technique is difficult for real-time
implementation, since the formulation of transition probability
between states requires numerous simulations, thus it may be
computationally prohibitive (Lee & Lee, 2004).

This paper addresses these computational limitations by the
use of the generalized Polynomial Chaos (gPC) expansions.
The idea is to develop a robust adaptive control algorithm,
using a Markov decision model and uncertainty quantification
techniques. Our objective is to build a basic framework to
integrate the Markov model with uncertainty quantification for
nonlinear process control, when only an inaccurate process
model is available. The key in this work is to approximate the
probability density function (PDF) of uncertainty in a process
and propagate it onto manipulated and controlled variables.
The PDFs to be calculated online by using gPC models can be
discretized into a finite number of discrete states in a Markov
model. Based on this discretization results, the transition
probability between states can be readily calculated from the
PDFs, thus eliminating the need for numerous simulations.
Finally, using the transition probability, an optimization that
minimizes a sequence of cost in the future control horizon can
be defined for online controller tuning. Moreover, since a
Markov model is used, the optimization can be converted into
an iterative dynamic programming problem to avoid excessive
simulation runs within the optimization search.

Since our objective is to adjust control parameters online, it is
crucial to propagate uncertainty onto measured quantities in a
computationally efficient manner and then build a Markov



model in real-time. Although sampling-based methods such as
Monte Carlo (MC) simulations could be used, they are time
prohibitive for online implementation. Thus, the generalized
polynomial chaos (gPC) expansion (Xiu, 2009) is used. The
advantage of the gPC is that it can efficiently propagate the
probabilistic uncertainty onto the predictions of measured
quantities and quickly approximate their corresponding PDFs
(Du, et al., 2017), which can be discretized to calculate the
transition probability used for controller tuning. The rapid
calculation of the transition probability is the key element in
the proposed approach, since it is the main challenge to apply
Markov models for control.

This paper is organized as follows. Section 2 presents the
principal techniques used in this work.The proposed adaptive
control strategy is presented in Section 3. The control strategy
is illustrated for an endothermic continuous stirred tank reactor
(CSTR) in Section 4. Analysis and discussion of the results are
given in Section 5 followed by conclusions in Section 6.

2. THEORETICAL BACKGROUND AND PROBLEM
FORMULATION

2.1 Process models

Markov models based control typically requires first principle
models. Let assume a nonlinear system can be defined as:
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, where fand / are nonlinear functions and 0 < ¢ < #. xeR"
contains the system states (including controlled variables) with
initial conditions x(0) = x, over time domain [0, #], # denotes
the manipulated variable, y is the process outputs, v; and v, are
random vectors respresenting noise, and geR” is an unknown
time varying input vector representing the uncertainty in the
process. Such an uncertainty is common in chemical processes
generally due to materials variablity or imperfect control. The
control objective is to find an optimal tuning parameters such
that controlled variables can optimally track their set points
over a finite future horizon. For instance, a PID controller can
be used as follows:
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, where e is the error, i.e., the difference between set point and
measurement of controlled variable, K, 7; and 74 are controller
parameters, solved with an adjusting criterion. Although, for
simplicity, we have only considered PID controllers in this
work, the proposed method can be similarly extended to a state
feedback controller, such as certain model predictive control
(MPC) formulations (Kothare, et al., 1996; Wan & Kothare,
2002), where the gain matrix elements will be self-tuned.

2.2 Markov decision models

Markov decision models are applicable in processes involving
uncertain state transitions and can enable sequential decision
making. A first order Markov model is used in this work, for
which the future states only depend on the current states.
Additionally, it is assumed that dynamic ranges of measured

quantities, i.e., x and u, can be approximated with a finite sets
of values. For example, the state variables x can be discretized
into S disjoint regions {y;}, i.e., y=U}., y; and x N xj:(/ﬁ, where
i, =1, 2, ...S, and each region represents a state. Details about
this discretization step will be discussed in Section 3. In this
way, the continuous variables such as x in (1) can be described
with discrete transitions {y;}. Since uncertainty such as time
vaying input g and measurement noise are considered in this
work, the evolution between y; and y; is stochastic, i.e., a state
% can evolve to y; in some time intervals, while at other time
intervals x; may evolve to x; rather than ;. This is conveniently
described by a transition matrix P={p; ;}, i.e., a ($xS) matrix,
where p; ; is the probability that y; can evolve to ;. The process
outputs y can be discretized in a similar way.

Since the transitions occur under closed loop control, the
evoltuion is dependent on the controller parameters such as K,
7 and 74 in (3). For control implementation, it is necessary to
discretize the space defined by a controller. The discretization
is relative to state variables x, and a set of states of controller
parameters can be defined, i.e., c.€C={c1, ¢, ...,¢, , }, a=1, 2,
...ny. The discretization of controller parameters is analogous
to generating a look-up table, which provides all the possible
control actions. Subsequently, n, transition matrices can be
defined, i.e., P*= {pfl} , and each matrix provides the transition

probability between states at two consecutive time intervals for
a particular controller setting c,.

Using the discretization result, an equivalent Markov model of
a continuous process in (1) is defined as:

q(k+1) = q(k) P=® (4)

, where £ is a discrete time instant, P <) s the transition matrix
for a particular set of controller parameter ¢, at k, and ¢(k) and
q(k+1) are the probability that a process occupies a set of states
{x;} at two consecutive time instants £ and k+1, respectively.

The next step is to formulate the probability transition matrix.
Based on first principle models, the probability is often built
by counting the number of observed state pairs ({¥;}, c.) that
lead to a particular state y;, and by normalizing the count with
respect to the total number of transitions in each pair as below:

= #0611} €a)  # oD [{6(R)}, ca(k))
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, where # indicates the number of active states or the number

of active transitions. Note that active here means transitions
with a nonzero probability.

)

The computational time to construct the probability transition
matrix is a main challenge for Markov model-based control,
and the accuracy of transition probability is related to process
models. For example, the total number of simulations is
(S*n,*m), when m samples are used in each state in order to
calculate a transition probability, since there are S dicrete
states of x and n, possible control actions in total. Also, the
transition matrix may have to be repeatedly calibrated in the
presence of uncertainty arising from unpredictable changes,
which can complicate the calculations. To accelerate the online
calculations, a gPC model is used in this work.



2.3 Generalized polynomial chaos (gPC) expansion

A gPC expansion estimates a random variable as a function of
another random variable (e.g., &) with a prior known PDF (Xiu,
2009). To preserve orthogonality, the basis functions of gPC
are selected according to the choice of the distribution of & For
a process given in (1), each element g; (i=1,2,...,n,) of the
uncertain input g can be approximated with a gPC model as:

gi = gi(&) (6)

, where ¢ is the i random variable. The random variables &=
{¢&i} are independent and of equal distributions. Note that & is
assumed to follow a standard distribution here, but elements in
{gi} practically can follow any distributions by including a
sufficient number of basis functions in the gPC expansion.

Using gPC, the uncertainties represented by g, system states x
and manipulated variable # can be approximated in terms of
polynomial orthogonal basis functions @(&) as:

8(9)=2¢08;, k(9 (7)
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s where{gj > k) and {u;} are the gPC coefficients of the

j™ uncertainty, the j" states x, and the /" manipulated variable,
respectively. Also, {®x(¢)} are multi-dimensional orthogonal
polynomial basis functions. Uncertainty {g.} are assumed to be
known approximately, but not accurately. In practice, (7)~(9)
are often truncated into a finite number of terms. Note that gPC
coefficients {gj’k} in (7) can be estimated with prior knowledge

of uncertainty. Using {gj > gPC coefficients {xj,} and {u;}

can be calculated by substituting (8) and (9) into (1) and by
using a Galerkin projection with respect to each basis function
{D(&)}. For breivty, the steps for the calcualtion of the gPC
coefficients is not given, but the details can be found in (Du,
etal., 2017; Xiu, 2009; Du, et al., 2016). Once the coefficients
of x and u are calculated, their PDFs can be rapidly estimated
by sampling from distributions of & given in (8) and (9). The
ability to quickly estimate the PDFs is the key to accelerate
computations of the transition matrix in this work.

3. SELF-TUNING CONTROL DESIGN

The controller parameters is adjusted by a tuning algorithm
using a gPC-based finite Markov state model and a dynamic
programming in this work. A Proportional-Integral-Derivative
(PID) is used for algorithm illustration, since it is one of the
most commonly used controller in industry.

3.1 Markov modelling using gPC approximation

Since the process model used in this work is assumed to be an
inaccurate approximation and includes uncertainty such as g in
(1), the gPC is used to estimate ranges of the dynamic variables
and the transition matrix of x. The main feature is to propagate
unceratinty in (1) onto measured quantities to build a Markov
model without using excessive computation. To implement the
algorithm, the PDFs of g are approximated with gPC, but the

premise is that the exact statistics of the PDFs are unknown,
i.e., the gPC coefficients {gj .} in (7) may not be accurate. For

uncertainty propagation, the gPC coefficients of x are solved
using Galerkin projection, from which the PDF profiles of x
are estimated by sampling from the distribution of the random
variables & and by substituting these samples into (8). Fig. 1
shows a PDF profile of a measured quantity for illustration.

centroids

Probability

Reference centroids of a measured quantity (x;)

Fig. 1. Markov transition modelling

The next step for building a Markov model is to discretize the
state space defined by x in (1). It is assumed that the discrete
states in a Markov model can be characterized into S disjoint
regions {y}, i.e., y=U%, x; and % N xj=¢, where i, j=1, 2, ...S.

Each region is estimated with a reference centroid xfef , which
represents a state and results in S reference centroids as shown
in Fig. 1. To assign each sample in the PDFs to a centroid, a
state index is defined with respect to a mapping (x—+i) as:
. . ref
= min ||x-x
= arg mi -]

(10)

ref - .
, where xvf is a reference centroid vector, ||-|| represents the

Euclidean distance, and i is a state in a Markov model with a
minimum distance between measurements and all reference
centroids. For instance, for a given measurement (the blue
triangle in Fig. 1), the smallest distance can be found with the
first centroid xqef , thus implying that this measurement can be
represented as state 1 in the Markov model. Due to uncertainty
arising from model error and measurement noise, the dynamic
ranges of measured quantities x in (1) have to be extended to
account for all possible measurements.

Using the discretization results, the next step is to build the
probability transition matrix in (5). For each sample in the
approximated PDF of x, a corresponding state index can be
found using (10). For example, Fig. 1 indicates that 3 samples
are found to be in the i reference centroid, and the probability
for that state to occur is determined by normalizing 3 with
respect to the total number of samples used to approximate the
PDF profile. Note that the ability to calculate gPC coefficients
and approximate the PDFs at each time instant are the main
rationale for using the gPC, since it can significantly reduce
the computational time required for building the transition
matrix rather than using numerous simulations to calculate
transition probabilities. To calculate the gPC coefficients of x
over a finite future control horizon, the states at the current
time interval are assumed to be measured and used as an initial
value for the gPC model, otherwise an observer is required.

For control implementation, the space defined by the controller
tuning parameters is discretized into discrete states indexed by

. 7e
¢€C= {c1, 02, ..., ¢, } using areference vector ¢ Af , where a=1,



2, ...ny. These states define a look-up control table. Using the
Markov model and the control table, the control problem is
formulated with an objective of finding a set of appropriate
controller parameters from the look-up table to optimize a
tuning criterion, which is discussed below.

In this work, it is assumed for simplicity that the space domain
defined by the controller parameters is finite and exact. To
ensure stability of controller, the nonlinear model in (1) can be
linearized and used off-line to obtain stability constraints for
the controller parameters that result in negative eigenvalues.

3.2 Dynamic programming

Using the gPC-based Markov model, the goal is to find an
optimal set of controller parameters from the look-up table
given by c.eC= {ci, ¢, ...,¢,,} for minimizing an immediate
cost over a finite future control horizon as:

min J(xo) = Z wr(x(k+k), u(krk’))

K'=1-K

an

, where ¢;eC is a vector of decision variables, i.e., controller
parameters, and x(0) is the initial conditions at current time £,
i.e., measured quantities. #(x(k+k"), u(k+k") is a loss function
that is defined in detail in the following section. The indexes
k' in the summation cover the measured quantities in the future
control horizon, i.e., 1<k'<K. The control tuning is similar to
model predictive control, but the tuning criterion is based on
closed loop information. The weights {z,} in (11) penalize the
contribution of the cost resulting from each future control
horizon k'. The loss function r decides the trade-off between
different control objectives, e.g., a larger probability to reach
the set point in a short period of time versus the probability of
aggressive movements of the manipulated variables.

Due to the transition between states in a Markov model, the
cost at a particular index " is the summation of the immediate
cost 7 at k'+1 and the resulting costs at each future control
horizon after kK'+1, i.e., from k'+2 to k'+K. This yields an
optimization that can be defined recursively by the Bellman
equation as follows:
min J"(xo) = min {r,_(xo. W) +p/ GO} (12)

, where y is an optimization weight for a future control horizon,
and vy is the loss conditioned on state (x,, &), i.e., k' +1, which
has the same tuning mechanism as defined in  explained in
next section. The conversion of (12) leads to an iterative
dynamic programming problem.

3.3 Adaptive predictive control

Based on the optimization problem (12), it is straightforward
to build an adaptive control tuning algorithm. The cost defined
in (12) is minimized in a closed loop system with a fixed
control horizon, i.e., 0<k'<K. The optimization can start in
both backward and forward manners. For instance, we can start
from the last control horizon interval K and calculate the loss
r. Then, we can step backward to control horizon K-1, and
calculate the corresponding loss. The cost of future horizons

for a state and control action pair is now the summation of the
immediate loss 7(x(k+K-1), u(k+K-1) and the loss from its
successor state K. Since the measured quantities x and control
actions only include a finites number of states, the
optimization in (12) will converge to a minimum J*.

Since Markov models can provide probabilistic information at
each state, the loss function 7 in (12) can be defined using the
transition probability. In addition, 7 is also dependent on both
weighted controlled and manipulated variables as follows:

r(x, W) = {192 ) 5otn) AU s s (13)

, where o and 8 are weights, p?  is the transition probability of
a particular state (reference centroid) that contains the set point
of the controlled variable conditioned on a control action c,,
Xset 18 the set point of controlled variable. For the manipulated
variable, Pa is the transition probability of a specific state that

contains the nominal value u, where the latter may be chosen
as the steady state value of u corresponding to the chosen xyer.

re ref

Further, x,ﬁgx and u,,,, represent a state that have the maximum
probability for each future discrete control horizon ,. By
minimizing the cost, the tuning of controller is to find a set of
controller parameters that can realize the set point tracking in
a finite time, while maximizing the transition probability. Note
that the cost in (13) will not converge to zero in the presence
of a persistent disturbance since u, will not be the true steady
state value corresponding to xs. However, the offset will still
converge to zero due to the use of a controller with integral
action, i.e. a PI in the current study.

4. CASE STUDY

The adaptive tuning strategy is applied to an endothermic
continuous stirred tank reactor (CSTR) system (Du, et al.,
2016) with a PI controller, which can be described as:

. E
V.Cy = (F/p)(Cxp - Cp) - VkyCpeRT

(14)
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0= K,Cp- (K [1)e (16)

, where K, and 7; are the controller gain and integral time
constant, respectively. The controller is used to control the
outlet reactant concentration Ca by manipulating the external
heat Q. To demonstrate the control performance, the inlet
concentration Cy, is assumed to be the uncertainty, i.e., g in
(1), which is operated around a fixed mean with time-invariant
stochastic variations. However, the exact mean and variance
of Cx, are unknown to the controller. The objective is to solve
the optimization problem (12) and execute online tuning of the
controller in the presence of the input uncertainty in Ca,.

5. RESULTS AND DISCUSSION
5.1 Model formulation with gPC

To formulate stability constraints of controllers, the nonlinear
system defined in (14) ~ (16) is linearized using the steady
state measurements. To ensure stability, eigenvalues which are
functions of controller parameters, must be negative. The



application of Galerkin projection for building the gPC model
requires integrating the differential equations with respect to
an appropriate selected polynomial basis function for a
specific random variable. The integral is straightforward for
monominal or polynomial terms. However, the integral of non-
monominal terms such as the Arrhenius term in (16) needs
approximation with a 2" order Taylor series expansion. Due
to the space limitation, details about the stability constraints
and the formulation of gPC model with an approxiamtion are
not given in the current work, which can be found in our
previous work (Du, et al., 2016; Du, et al., 2014).

5.2 Optimal tuning of controller parameters

Using the measurements collected at each time instant ¢, the
cost of the objective function (11) is minimized with respect to
the tuning parameters of the PI controller over a finite future
control horizon. As shown in Fig. 2 (a), the inlet concentration
is assigned with different values between 0.8 and 1.2 gmol/L.
An inset as seen in Fig. 2. (b) is used to illustrate the algorithm.
The mean and variance of the inlet concentration profile of Ca,
in Fig 2 (b) are 1.0 gmol/L and 0.1 gmol/L, respectively. To
intentionally introduce mismatch in the gPC model, the mean
and variance of Cy, are assumed to be 1.1 gmol/L and 0.15
gmol/L, respectively. Based on these values, a gPC model is
generated offline which is function of controller parameters
and initial values of states. This is used to decide the discrete
states in a Markov model and to calculate transition probability
over the finite future control horizon. Also, 1% measurement
noise is added to the measured quantities.
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Fig. 2. Profile of inlet concentration (Cly,)

The control performance was first studied in this work, i.e., set
point tracking within finite time. Fig. 3 shows the simulation
results of the inlet concentration profile Cx, shown in Fig. 2
(b). The control horizon used in this case study is 100, i.e.,
K=100. The control performance is compared to a robust
controller with a set of fixed controller parameters, which was
optimized offline as explained in our previous work (Du, et al.,
2017). These parameters are K,=7.5x10* and 7;=0.50. For the
adaptive control strategy, these values are used as the initial
guesses for tuning of controller parameters. For 16 consecutive
step changes of Cy, in Fig. 2, Fig. 3 (a) shows the results of the
controlled variable (C4). As seen, both control strategies can
realize set point tracking, but the adaptive control algorithm
proposed in this work can reach the set point faster, i.e., shorter
transient decay. This will be further discussed below. Fig. 3 (b)
shows a segment of the simulation results in Fig. 3 (a). It is
observed that there are transient excursions occurring at the
beginning of each switch between two step-changes in Cy,.

To evaluate the control performance, Table 1 shows the results
of comparison between the fixed controller versus the adaptive

controller, in terms of the transient decay time and the integral
squared error (ISE) of the controlled variables, for 16
consecutive step changes shown in Fig. 2 (b). For adaptive
tuning strategies, two case scenarios were investigated. A
fixed transition probability in (13) is used to illustrate the
necessity of updating the transition probability in real time.
The improvement obtained with the adaptive controller is very
significant with around 29% reduction in ISE, as compared to
the fixed controller in the second row. Also, as shown in Table
1, the transient decay of the adaptive controller, on average, is
about 16 s shorter than a fixed parameters controller.
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Fig. 3. Illustration of the control performance (noise-free
simulation results are used for clarification)

Table 1. Evaluation of the control performance

Method ISE (C)x10*  Decay (s)
Fixed controller 4.66 97
Adaptive (fixed p;,) 3.71 83
3.30 81

Adaptive controller

In a second study we studied the effect of the horizon length K
on the control performance. Two different values of K are
used, i.e., K=100 and K=500, respectively. Fig. 4 shows the
simulation results of three samples of the inlet concentration.

Similar to the first case study, as seen in Fig. 4 (a), the
controlled variable can reach the set point faster and has a
smaller variability. Fig. 4 (b) and (c) shows the controller
parameters, i.e., K, and z;, when K is 100. For illustration, these
parameters are normalized with respect to initial values used
in simulations. As seen, the controller parameters exhibit high
variations after step changes in Cy,., which is expected due to
the use of relatively coarsely discretized with Markov models.
The controller parameters eventually stabilize at the optimal
values as seen in Fig. 4 (b) and (c).

When K is 500, it was found that both controller parameters
almost remained constant through the simulations, thus
resulting in more conservative control similar to the predictive
controllers with long horizon. The simulation results are not



shown for brevity. Note that a control horizon of 500 indexes
is equivalent to a 50 s simulation in this work. As seen in Fig.
4 (a), the transient decay on average is approximately 80 s for
the adaptive self-tuning control strategy, thus resulting in an
almost constant controller parameter over a long period of
operations. The controller parameters are found to be around
K,=7.55%10* and 7=0.31, repectively. The normalized values
are K;,=1.0066 and ;= 0.62.
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Fig. 4. Normalized tuning parameters of the P/ controller

Fig. 5 shows the probability of the controlled variable Ca that
can be found at a particular discrete state of the Markov model,
which contains the set point. The first step change of Cy, in
Fig. 4 (a) is used, i.e., C4,=0.9806 gmol/L, and K is 100 for the
simulations shown in Fig. 5. As seen, the probability to be in
the neighbourhood of the set point is smaller during the
transients that follow a change in the mean value of the inlet
concentration. After approximately 38 s of the simulation, the
probability increases and eventually stabilizes around 0.94. the
probability is different than one due to measurement noise and
the discretization of the continuous states.
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Fig. 5. Profile of transition probability

In terms of computational efficiency, using the gPC model, the
calculation of the objective function (11) over a future control
horizon is ~0.3 seconds on an Intel® Core™ i7 processor with
dual-core. It was also found that the use of a larger number of
future control horizons (K=500) has negligible effect on the
computational time, which enable the online application.

6. CONCLUSIONS

A methodology is proposed for online adaptive tuning of a PID
controller. The tuning procedure is based on a gPC model and
a Markov model, which can predict the transitions and its
probability between states of the controlled variable. Using the
Markov model, the tuning of controller can be formulated as a
dynamic programming problem. To overcome computational
burden, a gPC model is used to predict the probability density
function (PDF) of the measured quantities, which is discretized
to rapidly calculate the transition probability. The combination
of the Markov model with gPC-based uncertainty propagation
technique is attractive for adaptive model predictive control,
especially when using inaccurate modelling information.
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