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Abstract

The Leiter International Performance Scale-Revised (Leiter-
R) is a standardized cognitive test that seeks to “provide a
nonverbal measure of general intelligence by sampling a wide
variety of functions from memory to nonverbal reasoning.”
Understanding the computational building blocks of nonver-
bal cognition, as measured by the Leiter-R, is an important
step towards understanding human nonverbal cognition, espe-
cially with respect to typical and atypical trajectories of child
development. One subtest of the Leiter-R, Form Comple-
tion, involves synthesizing and localizing a visual figure from
its constituent slices. Form Completion poses an interesting
nonverbal problem that seems to combine several aspects of
visual memory, mental rotation, and visual search. We de-
scribe a new computational cognitive model that addresses
Form Completion using a novel, mental-rotation-friendly im-
age representation that we call the Polar Augmented Resolu-
tion (PolAR) Picture, which enables high-fidelity mental ro-
tation operations. We present preliminary results using actual
Leiter-R test items and discuss directions for future work.

Introduction

The Leiter International Performance Scale-Revised (Leiter-
R) is a standardized test of human cognition that seeks to
“provide a nonverbal measure of general intelligence by
sampling a wide variety of functions from memory to non-
verbal reasoning.” (Kaplan and Roid 2010) It consists of
twenty subtests, all administered non-verbally, with subtest
variants intended for individuals ranging from children as
young as 2 years of age to adults. Examples of specific sub-
tests include (Roid and Miller 1997): Figure Ground (FG),
finding a figure/object embedded in an arbitrarily complex
background; Form Completion (FC), synthesizing and local-
izing an object from its constituent slices; and Repeated Pat-
terns (RP), filling in blanks with previously-seen elements.

Nonverbal, and especially visuospatial, cognition, is a
critical factor in child development. Atypical patterns of
nonverbal cognitive development characterize many condi-
tions such as autism (Dawson et al. 2007), dyslexia (Smith-
Spark et al. 2003), and others, and furthermore, visuospa-
tial ability is increasingly recognized as a key contributor
to STEM education and career success (Wai, Lubinski, and
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Benbow 2009). Thus, improving methods for measuring and
understanding nonverbal human cognition is an important
area of need for current research.

Neuropsychological tests like the Leiter-R, where a per-
son’s performance is measured in behavioral terms, still
represent the state-of-the-art in measuring human cogni-
tion. While advances in neuroimaging have certainly yielded
many important insights into brain functioning, neuroimag-
ing by itself does not directly tell us about a person’s cogni-
tive functions. On tests like the Leiter-R, then, it is important
to understand exactly what cognitive strategies are indicated
by particular behavioral patterns of performance. AI systems
that simulate problem solving on such tests can be used as a
research tool to investigate the extent to which these cogni-
tive tests are, in fact, testing the constructs they claim to be
testing. While computational experiments with an AI sys-
tem cannot directly tell us what strategies a person is using,
they can be very informative about the space of cognitive
strategies that are possible on a given test.

For example, the Leiter-R developers argue that the
Figure-Ground (FG) subtest relies on a discriminative ap-
proach, whereas Form Completion (FC) is more genera-
tive/synthesizing. The FC literature indicates that examinees
create a mental image of the fragments and rotate them to
complete the full object. However, we hypothesize that FC
can also be solved with a discriminative matching procedure
a la FG, modulo rotation. If different individuals solve FC in
different ways—some using a discriminative approach and
some using a generative approach—then similar FC scores
in two different individuals could in fact have very different
cognitive interpretations.

In this paper, we present a new computational cognitive
model that solves problems from the Leiter-R FC subtest.
Our central claim is that the set of representations and oper-
ations proposed here are sufficient for solving at least some
FC problems. Given that (to our knowledge) no previous
computational models of the Leiter-R test exist, this compu-
tational account by itself provides some scientific value by
helping us understand the information processing require-
ments of the FC subtest. Future work will include making
comparisons to human performance data and also expand-
ing the range of operations and strategies used by the model
to try to capture additional dimensions of cognitive strategy
variation that may be measurable by the FC test.
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Figure 1: Examples of problems representative of those on the Leiter-R Form Completion (FC) subtest. To protect test security,
actual problems are not shown. Terminology of easels, slots, and slices is our own. Left: Single-easel problem, in which each
of two cards containing multiple image “slices” must be matched to their corresponding locations on the original (top) easel
image. Center: Easy multi-slot easel problem, in which each of three cards containing multiple image “slices” must be matched
to their corresponding “slots” on the original (top) divided easel image. Right: Difficult multi-slot problem.

Leiter-R Form Completion (FC)

In the Leiter-R Form Completion (FC) subtest, there are two
main types of problems, labeled here as single-easel and
multi-slot. In the former, examinees are asked to match the
visual content of each one of a set of small answer cards to
where it is found on a larger picture displayed on a tabletop
easel. In the latter, the easel is split into multiple slots requir-
ing examinees to pair each card choice with its correspond-
ing slot. In either type of problem, on each card, the object
of interest has been broken up into slices of arbitrary shape
which have been arbitrarily rotated, scaled, and/or flipped.

See Figure 1 for illustrations of single-easel (left) and
multi-slot (center and right) problems, with corresponding
answer cards and image slices. The actual problems from
the Leiter-R FC subtest range in difficulty levels similar to
these example problems.

The Leiter-R FC subtest is a difficult task that seems to
require a combination of visual memory, mental rotation, vi-
sual search, and more. While the task by itself would not be
difficult for a specialized AI system to solve, we are inter-
ested in using a cognitive modeling approach to better un-
derstand task demands, and to identify combinations of rep-
resentations and reasoning approaches that can yield suc-
cessful performance on the test, or that lead to patterns of
unsuccessful performance.

Related Work in AI

While there is much previous work in AI that models visual
cognitive capabilities as using propositional (i.e., abstract)
representations and operations (see (Glasgow, Narayanan,
and Chandrasekaran 1995) for a review), we follow the al-
ternate approach of modeling visual cognitive capabilities
as being imagistic in nature. Representations are fundamen-
tally image-like, and operations like “mental rotation” are
continuous in time.

This theoretical stance is one espoused by Kosslyn in
seminal work on human visual mental imagery (Kosslyn and
Shwartz 1977) and continued in further AI work in domains
that include reasoning about object stability (Funt 1980),
molecular shape (Glasgow and Papadias 1992), and line
graphs (Tabachneck-Schijf, Leonardo, and Simon 1997).
Our model also shares similarities to template-based ac-
counts of visual search, especially multi-stage search mod-
els (Rao et al. 2002; Kunda and Ting 2016). The ques-
tion of learning operations like mental rotation is an im-
portant one for which the choice of representation is a crit-
ical factor; while we do not address the learning problem
in this paper, we ultimately expect our work to continue in
that direction, expanding on a few approaches that exist in
the AI literature (Mel 1986; Memisevic and Hinton 2007;
Seepanomwan et al. 2013).

With respect to studies of cognitive tests in particular,
previous work in AI has taken both approaches. For exam-
ple, our own work has explored imagery-based strategies
for solving problems from tests such as Raven’s Progres-
sive Matrices (RPM) (Kunda, McGreggor, and Goel 2013),
Block Design (Kunda, El Banani, and Rehg 2016), Em-
bedded Figures (Kunda and Ting 2016), and Paper Folding
(Ainooson and Kunda 2017). Other work in AI focusing on
visuospatial cognitive tests, especially on the RPM test, has
studied the use of propositional, non-imagery-based repre-
sentations and strategies (Carpenter, Just, and Shell 1990;
Lovett, Forbus, and Usher 2010; Rasmussen and Eliasmith
2011; Strannegård, Cirillo, and Ström 2013).

The Approach

In this paper, we will present three different computational
models to solve FC. Before we get there we need to intro-
duce a key representational concept: the PolAR Picture.
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The PolAR Picture

We describe here a new image representation that we call
the PolAR (Polar Augmented Resolution) Picture. The in-
spiration for the PolAR Picture is the “WHISPER retina”,
which was a rotation-friendly image representation used to
analyze the stability of “blocks world” structures in early AI
research (Funt 1980).

The main idea behind the PolAR Picture representation
is that, unlike rectangular pixel arrangements, circular pixel
arrangements support high-fidelity circular rotation opera-
tions. While a PolAR Picture is stored using a rectangular
matrix data structure, as standard images are, rows represent
wedges and columns represent concentric rings (Funt 1980).
This not only allows for efficient (albeit discrete) rotation,
but also creates a situation in which inner rings have a higher
resolution over that portion of the visual field than do outer
rings, in loose similarity to the resolution differences in hu-
man vision. Hence, the term Augmented Resolution refers
to this fact that resolution increases (often into the subpixel
regime) towards the center.

As a result of this resolution change, PolAR Pictures have
a central blindspot in the middle, because the resolution in-
crease would otherwise result in an explosive increase in the
number of pixels needed to represent centrally located infor-
mation. (This blindsplot in PolAR Pictures is not so closely
related to the blindspot in human vision, but rather is a con-
straint of this representation that is a feature of interest, but
not one that is intended to be a major theoretical commit-
ment of our models.)

PolAR Pictures are computed from regular, rectangular-
pixel images as follows. Let hj be the height (in pixels) of
any PolAR pixel in ring j. Let n be the number of rings and
ring n be the outermost ring (one-based indexing). The most
important PolAR parameter is the size of the square input
(called “size”, in units of pixels). Other parameters include
hn and “br”, the ratio of the blindspot diameter to the PolAR
Picture diameter. The former fixes the resolution of ring n
and determines the number of wedges (i.e. rows), while the
latter establishes the number of rings (i.e. columns). In all of
our experiments, br = 0.2.

Figure 2 shows an example of Einstein as a PolAR Pic-
ture, varying these two auxiliary parameters. Notice that in-
creasing hn by a factor of two DECREASES both the num-
ber of wedges and rings also by a factor of two.

In actuality, each PolAR pixel is a “pseudo-square”; if hn

= 2, for example, then a PolAR pixel in the outermost ring
will have a width of two and a center length of two pixels as
well. In other words, the length of its inner edge is slightly
less than two and the length of its outer edge is slightly more
than two. Figure 3 provides a closeup of a PolAR picture,
illustrating how the PolAR pixels decrease in size towards
the center.

Equations Determining PoLAR Attributes: Let Rj be
the distance (in pixels) from the PolAR center to the center
of any PolAR pixel in ring j. Let Rbs be radius of the central
blindspot. Let ratio := hj−1/hj = Rj−1/Rj ∀j ∈ [2, n].
Let m be the number of wedges. As before, n is the number
of rings. Then, Algorithm 1 details how the inputs (size, hn,
br) establish the PoLAR Picture’s attributes.

Algorithm 1 Establishing the PolAR Picture’s attributes
procedure CALCPOLARATTRS

midpoint ← 0.5 ∗ (size− 1)
center ← [midpoint,midpoint]
Rideal

n ← 0.5 ∗ (size− hn)
m ← �2πRideal

n /hn�
Rn ← mhn/(2π)
ratio ← 2Rn−hn

2Rn+hn

ring split ← logratio(1− hn/(2Rn))
Rideal

bs ← 0.5 ∗ (br ∗ size)
log ← logratio(R

ideal
bs /Rn)

delta ← log − �log�
if delta < ring split then

n ← �log�+ 1
else

n ← �log�+ 2

Rbs ← ration+ring split−1

PolAR Mappings: With the overall attributes established,
it remains to calculate, for every PolAR pixel, which input
Cartesian pixels map to it. Algorithm 2 details how to deter-
mine the relevant Cartesian “cPix” given a PolAR pixel with
wedge and ring indices (i, j).

Algorithm 2 Mapping Cartesian pixels to PolAR pixels
# (i, j) = (wedge index, ring index)
procedure FINDCARTPIX(i,j)

θi ← (2π/nWedges) ∗ (i + 0.5)
v̂ ← [cos θi, sin θi]
Rj ← Rn ∗ ration−j

closest cartP ixel ← round(center +Rj v̂)

# FindNeighbors(i, j, closest cartP ixel)
# performs BFS that begins at closest cartP ixel
# and recursively explores neighbors, adding any
# Cartesian pixels whose closest PolAR pixel is (i, j)
cP ix ← FindNeighbors(i, j, closest cartP ixel)
return cP ix

The PolAR Picture can now be created by averaging the
values of all Cartesian pixels mapping to a particular Po-
lAR pixel (i, j) ∀i ∈ [1,m], j ∈ [1, n]. Ringwise “densities”
(essentially averages which play an integral role in each of
the models) can then be calculated by unioning the mappers
of every PolAR pixel in a given ring for each ring. Further-
more, the variance of Cartesian pixels mapping to PolAR
pixels can also be obtained.

The Models

We are now ready to introduce our three main models:

• Slice Approach (PolAR-S): the entire slice is used in the
search

• Subslice Approach (PolAR-SS): TWO (2) or THREE (3)
sub-regions of a slice are used in a correlated search
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Figure 2: Example of PolAR Pictures of the famous photograph of Einstein, used here in size 250x250 pixels. “hn” refers to
size of the outermost PolAR pixel. “br” refers to ratio of the central blindspot and PolAR Picture diameters. For each PolAR
Picture, (m x n) denotes that it has m wedges and n rings. From left to right: (a) PolAR Picture (hn = 1, br = 0.1, 782 x 287).
(b) PolAR Picture (hn = 1, br = 0.05, 782 x 373). (c) PolAR Picture (hn = 1, br = 0.2, 782 x 201). (d) PolAR Picture (hn = 2,
br = 0.2, 389 x 100). (e) PolAR Picture (hn = 4, br = 0.2, 193 x 50).

Figure 3: Closeup of PolAR Picture near fringes. Each
“pseudo-square” is a PolAR pixel.

• Hybrid Approach (PolAR-H): ONE (1) sub-region is cor-
related with the slice

We will use the harder multi-slot sample problem (Figure
1, right) to illustrate these models.

Algorithms 3, 4, and 5 offer high-level overviews of the
PolAR-S, PolAR-SS, and PolAR-H respectively.

Algorithm 3 PolAR-S
1: Find slice’s transparent pixels
2: Pad slice to make it square
3: Make slice a PolAR Picture
4: Perform ring-based density search with slice
5: Perform rotational search with slice

Algorithm 4 PolAR-SS
1: Find slice’s transparent pixels
2: Find subslices based on non-transparent variance
3: Make subslices PolAR Pictures
4: Perform ring-based density search with primary sub-

slice
5: Perform rotational search with primary subslice
6: Perform correlative search with other subslice(s)

Transparent pixels. Each algorithm begins with finding
the “slice’s transparent pixels”. While the slices on each card
are surrounded by white space, the corresponding region on

Algorithm 5 PolAR-H
1: Find slice’s transparent pixels
2: Find subslice based on non-transparent variance
3: Make subslice and slice PolAR Pictures
4: Perform ring-based density search with subslice
5: Perform rotational search with subslice
6: Perform correlative search with slice

the easel is embedded within a background that is not neces-
sarily white. The pixels comprising this white space that are
mapped to non-white easel pixels are thus dubbed “trans-
parent”. To find these, a subroutine starts in the white corner
of the slice and performs a BFS, which identifies all white
pixels not enclosed by the slice as transparent. Subsequently,
these pixels are ignored by our pixel-based similarity metric.

Variance-based subslice selection. Line 2 of Algorithms
4 and 5 state “Find subslice(s) based on non-transparent
variance”. By default, the square subslices are 35x35 pixels
(unless the slice is too small in which case the subslice size is
the minimum dimension of the slice). The algorithm iterates
through all possible subslices and returns the subslice whose
non-transparent pixel values yield a maximal variance. This
is the “primary subslice” in the case of PolAR-SS and the
sole subslice for PolAR-H. The motivation is that variance is
often a heuristic for identifying “the most interesting” sub-
slices; for instance, boundaries between lighter and darker
regions will tend to be selected. Note: Transparent pixels
are excluded from this analysis because there is no guaran-
tee that their value is white.

PolAR-SS (Algorithm 4) creates two or more subslices.
The primary subslice is chosen as explained above. To fully
leverage the correlative search, we wanted to choose sub-
sequent subslices that were sufficiently far apart from one
another to maximize diversity of information. Thus, the list
of all possible subslices (ordered by variance) is iterated
through until a given subslice is at least a certain distance
from all subslices chosen so far. This process succeeds at
selecting distinct features for each of the chosen subslices.

Figure 4 showcases this process on one of the slices
shown in Figure 1, right.
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Figure 4: Example of variance-based subslice selection.
Left: slice with gray box outlining region with highest non-
transparent variance. Right: the PolAR Picture for this re-
gion.

Ring-based density delta search. This is shared by all
three algorithms. The target region is the entire slice, pri-
mary subslice, or only subslice for PolAR-S, PolAR-SS, and
PolAR-H respectively. For each easel slot, all subregions
with size equal to the target region are iterated through and
a priority queue maintains the “most similar” subregions.
Without the existence of transparent pixels, the “most simi-
lar” heuristic is quite simple: for each ring (and the central
blindspot as well), the search algorithm determines which
Cartesian pixels map to it and calculates its average. This
average can be thought of as a “density”, hence the name of
this subsection. These ring-based densities are calculated for
both the target region and the given easel slot subregion and
the deltas are calculated in between the two. Finally, the re-
sult that is returned is the average of these deltas such that all
rings are uniformly weighted whereas the central blindspot
has double the weight. The blindspot is weighted more heav-
ily because its information cannot be used during the rota-
tional search. As such, it is intuitive to make it a more sig-
nificant factor.

The motivation behind this heuristic is that it is rotation-
invariant; a PolAR picture returns the same set of densities
regardless of its orientation. It also yields more informa-
tion than just a single density representing the average of
all pixels in the rings and blindspot. The rotation-invariance
is key because the alternative is prohibitively expensive; the
algorithm would have to iterate through all orientations for
all possible subregions. With our approach, this initial ring-
based density search chooses the most likely candidates for
each easel slot to then explore more thoroughly in the sub-
sequent rotational search.

Incorporating transparent pixels makes this process
slightly more complex. For each ring (and the blindspot),
the density is calculated assuming that all transparent pixels
are equivalently white (value of 0) or black (value of 1). The
former establishes a lower bound for what the density could
be and the latter a higher bound. Then when calculating the
density deltas, if the corresponding ring (or blindspot) den-
sity for the easel slot subregion is within these bounds, then
the delta is zero; otherwise the delta is the distance between
this density and the closest bound. This allows some flexi-

bility but can also lead to too much ambiguity, as we will
explore in the discussion section.

Rotational search. This is also common to all three al-
gorithms and is performed using the same target region and
the easel slot priority queues described in the preceding ring-
based density search subsection. This part is straightforward.
For each easel slot, the algorithm iterates through each likely
candidate in the priority queue and performs a rotational
analysis. This entails rotating the primary target’s PolAR
picture through all possible orientations (a discrete number
established by the number of wedges) and comparing it to
the candidate’s PolAR picture using a given similarity met-
ric. To reiterate, in this paper the MaxMin metric is used, as
described in the earlier “Notion of Similarity” section. The
analysis returns the orientation of the primary region that
maximizes the similarity metric w.r.t. the candidate.

Correlative search. This occurs immediately after the ro-
tational search fixes the orientation of the target region for
a given candidate subregion. For each easel slot, the can-
didate yielding the best “composite” similarity is returned.
This search is found in the PolAR-SS and the PolAR-H.

For PolAR-SS, recall that the target region is the primary
subslice. Thus with the location and orientation of the pri-
mary subslice fixed in the easel slot, the algorithm can then
locate and orient where the secondary subslice should be.
(Note: It accounts for errors arising from using a compu-
tational model that discretizes rotation.) The primary and
secondary subslices are now fixed. If only two subslices are
considered, then the search is done. A composite similar-
ity is calculated that is the average of the primary and sec-
ondary similarities. This average is weighted more heavily
towards the secondary similarity (in this paper, the ratio was
1:5 primary : secondary). The rationale is that while the fea-
ture selected in the primary subslice may be found in many
easel slot subregions, the chances that its corresponding sec-
ondary subslice would also exhibit relatively high similar-
ity are low unless the match is a correct one. Thus, the sec-
ondary subslice is the main deciding factor.

If PolAR-SS considers three subregions, then now the ter-
tiary subslice is located and oriented based upon the location
of the secondary subslice. As per the same rationale as the
two-region case, the composite similarity is computed with
heavier weighting on the auxiliary subslice similarities (in
this paper, the ratio was 1:3:5 primary : secondary : tertiary).

As for PolAR-H, the primary region is the one and only
subslice. With this fixed, the placement of the entire slice
within the easel slot can now be found. (Note: as before, the
algorithm accounts for discrete rotation errors. Additionally,
due to size differences, the PolAR Pictures for the slice and
subslice use a different number of wedges. This means there
is some extra work to locate and orient the slice in the easel.)
The correlative search is similar to that of PolAR-SS. As be-
fore, for each slot, the candidate yielding the best composite
similarity (weighted towards the slice similarity; in this pa-
per, the ratio was 1:5 subslice : slice) is chosen.

The PolAR-S has no additional correlative search. Its pri-
mary region is the slice. With this fixed, the candidate with
the highest similarity is returned for each slot.

Output. At this stage, for each easel slot the most likely
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candidate (i.e. most likely location and orientation of the pri-
mary region in the slot) has been found. A detail that has
been left out is that this process happens twice in parallel:
once for the original slice and another for a mirror image of
the slice. This is because some problems (cannot say exactly
which) feature reflections in addition to rotations. Therefore,
for each slot, there are two most likely candidates: original
and flipped. Whichever yields the best composite similar-
ity remains and the other is discarded. The algorithm then
outputs the slot with the best candidate, as well as all slot
candidates, and visualizes this info.

Note regarding similarity: We have used the term “sim-
ilarity” throughout this section. This concept is ambiguous
and the “correct” metric to use is a context-dependent de-
sign decision. We settled on a pixel-based similarity metric,
dubbed “Max-Min”:

Let A,B be matrices representing grayscale images, each
pixel value normalized to the range 0.0 (white) to 1.0
(black). Here are the three metrics/pseudo-metrics studied
in this paper that yield 0 and 1 for minimum and maximum
similarity respectively:

MaxMin(A,B) :=
sum(min{A,B})
sum(max{A,B})

=

∑m
i=1

∑n
j=1 min{aij , bij}

∑m
i=1

∑n
j=1 max{aij , bij}

We intend to explain our motivations, as well as other ap-
proaches, in a full-length journal paper.

As an example, Figure 5 shows the visual output of
PolAR-H for the slice shown in Figure 4. The easel slot
shown is in fact the correct slot.

Results

Now we present the results of applying our three main
models (PolAR-S, PolAR-SS, PolAR-H) to the Leiter Form
Completion subtest (Problems 03 through 14). (Problems 1
and 2 are intended as simple examples for human test-takers,
and Problem 15 was of a somewhat different type and so
was omitted here.) In actuality, there are four sets of results
because PolAR-SS is split into PolAR-SS2 (two subslices)
and PolAR-SS3 (three subslices). Problem inputs for all the
models were scanned directly from an official copy of the
Leiter-R test. Slices were segmented manually.

Figure 6 (left) displays the problem-wise accuracies of the
models in localizing the slices associated with that prob-
lem. Recall that Problems 03 through 08 are single-easel
which means that the model just has to locate where the
slice is in the easel and how it is oriented to be correct.
For Problems 09 through 14, however, there are multiple
easel slots to choose from. To be correct, the model has to
identify the proper easel slot and then find the proper loca-
tion/orientation of the slice within that slot. We would give a
more a detailed breakdown if not for the necessity of main-
taining the Leiter‘s test privacy.

Figure 6 (right) offers a different metric of accuracy that is
more lenient. Each problem has a certain number of choices
and each choice has a certain number of slices. Given a

Figure 5: Output of PolAR-H for the slice in Figure 4. Top
row: easel slot overlaid with dark gray box and lighter gray
box representing the locations of the slice and subslice re-
spectively. Middle row: PolAR Picture for easel slot sub-
region where slice is located (left); rotated PolAR Picture
of original slice surrounded by “sea” of transparent pixels
(right). Bottom row: PolAR Picture for easel slot subregion
where subslice is located (left); rotated PolAR Picture of
original subslice (right).

choice, if at least one of its slices is correctly located, then
that choice is also considered to be correctly located.

Lastly, it should be noted that with regard to the hard sam-
ple multi-slot problem (Figure 1, right), all four models lo-
calize the slices and choices with 100% accuracy.

Discussion

At first glance, the results admittedly do not look terribly
promising. The multi-slot Problems 09 through 14 have four
to five easel slots. Thus a model that randomly tries to pair
slices with the correct slot would be 20% to 25% accurate.
However, within each slot, there are on the order of a million
combinations of location and orientation. Thus, the slice ac-
curacies shown in Figure 6, although seemingly low, are as-
tronomically better than random. The single-easel Problems
03 through 08 have similarly many combinations.

What these numbers do not convey are all the near-misses.
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Figure 6: Left: Displays the problem-wise accuracies of the models in localizing slices among all the easel slots. Right: Displays
the problem-wise percentages of choices where the models successfully locate AT LEAST ONE of the choice‘s slices.

For example, often the models will find the slices in their
correct slots for the multi-slot problems. However, another
incorrect slot might have a candidate with a slightly bet-
ter composite similarity and thus this incorrect slot gets
chosen. This was especially prominent in Problem 09 with
PolAR-SS2. Problem 09 is characterized by simple geomet-
ric shapes (mostly rectangles). Thus there are many identical
right angles that confused PolAR-SS2 (as shown by its rela-
tively poor performance in Figure 6). It would locate a slice
correctly within its slot but due to random aberrations in
printing, right angles in another slot are considered to have a
slightly greater similarity. With this in mind, it makes sense
then that PolAR-SS3 (i.e. the inclusion of a third subslice)
performed significantly better than PolAR-SS2; three sub-
slices entails three corners (because corners have the great-
est variance) which defines an entire rectangle, whereas two
subslices can only define a more generic line segment with
corners at either end.

The most striking performance hit is seen with many of
the earlier single-easel Problems 03 through 08. In partic-
ular, no model succeeded in locating ANY slices for Prob-
lems 04, 05, and 08. Even though the same scanner and set-
tings were used for both the slices and the easels, the colors
came out differently; there are differences in printing on the
publisher‘s end. The color differences meant that the correct
locations were not even ending up in the priority queues.
Ideally, the models would be robust enough to identify simi-
larity between two regions with different hues (i.e. a red rect-
angle is similar to a blue rectangle). However, the similarity
metric we used was pixel-based and thus quite sensitive to
these differences.

Another performance hit is related to the transparency
analysis. While it increases the flexibility of searching, it
can also eliminate information and make the density delta
search too ambiguous. For example, especially in Problem
14, slices can contain many white interior pixels that are not
completely enclosed by a border. As such, these pixels er-
roneously get labeled as transparent and too little informa-
tion remains. This suggests we need to revisit how we deter-
mine transparency. PolAR-SS outperforms in this scenario
because it is purely subslice-based and subslices are chosen

specifically to avoid transparent pixels.
As for good news, the hard sample multi-slot problem

(Figure 1, right) showcases the power of the models. Re-
call that all models had 100% success rate for this problem.
On one hand, the conditions are perfect for the PolAR mod-
els; there are no differences in either scaling or shading —
the slices are copies of their corresponding slot subregions.
However, the slots and the slices have so much noise that
a human would have a very difficult time solving it. Imag-
ine just being given the slice in Figure 4 and arriving at the
solution shown in Figure 5. These successes indicate that
the underlying approaches have merit; however, it remains
to make them more robust to compete with human level per-
formance. The other good news is that the choice localiza-
tion results seem promising; as Figure 6 shows, many of the
problems have 100% accuracy across all four models. The
performance drop on some of the earlier problems as well as
Problems 12/13 can be explained by differences in shading
and scaling respectively.

Contributions and Future Work
The PolAR representation is geared towards mental rota-
tion specifically, but mental rotation is only one capability
that is needed within a broader computational framework
of imagery-based reasoning (Kosslyn and Shwartz 1977).
Other imagery-based operations, such as translation, zoom-
ing, and image composition, are not currently implemented
but could easily be incorporated into the PolAR framework,
and in fact have been explored in previous models by our
team (Kunda, McGreggor, and Goel 2013). While these ad-
ditional operations do not appear to be strictly necessary for
the FC test, they may be required for other Leiter-R tests,
and also may contribute to improved/different levels of per-
formance on the FC test as well.

We describe PolAR and associated algorithms here as a
“computational cognitive model.” While our model is not
necessarily cognitively plausible in a strict sense, we do
know that humans perform many similar imagery-based op-
erations to those performed by our model, though the ex-
act format of representations and operations will differ in
the human brain. Whether people solve FC problems in a
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way that is, at a high level, similar to our model is an open
question, and will require more detailed comparisons to hu-
man data (e.g. eye-tracking, error analysis, etc.). We see the
model in this paper as one of many possible strategies that
people may use to solve FC problems. Eventually, we hope
that models such as this one will help illuminate and explain
individual differences in cognitive strategies on tests like the
FC test, especially in cognitive conditions like autism. We
also plan to tackle the other Leiter-R subtests, using the cur-
rent model as a starting point.

One specific direction of interest is looking into “gener-
ative” approaches to FC. Our current FC approach is “dis-
criminative” because the choices are decomposed into slices,
and then each is individually searched for in the slots; the
algorithm tries to discriminate where constituent pieces are
located. A generative approach, on the other hand, would
attempt to first combine all the choice‘s slices into a com-
plete object, and then search for that object in the easel. This
would serve as a useful counterpoint to the current discrim-
inative model; our hypothesis is that humans employ both
of these strategies, perhaps switching based on a person’s
developmental stage or the complexity of a given problem.
We expect to explore this hypothesis through a combination
of continued computational experiments combined with hu-
man studies.
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