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Abstract
The laws of physics that apply at the molecular scale are the laws of quantum mechanics. Whereas

quantum electronic structure calculations are now routine for the most part, “quantum dynamics”

calculations of nuclear motion are still plagued with the “curse of dimensionality.” Similar challenges

may apply to the emerging field of electron dynamics. In this article, the role of recent phase-

space (PS) based methods is reviewed—both individually in comparison with each other, and also

collectively as an avenue for lifting the above “curse.” In addition: (a) the oldest such PS method

is revamped, in order to render it suitable for extremely high accuracy applications; (b) a new PS

method designed for electron dynamics is applied to a calculation of the He atom—performed in

full quantum dimensionality, and treating electron correlation exactly.
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I. INTRODUCTION

Quantum mechanics is usually regarded as a configuration space (CS) theory. The space

on which the wavefunction Ψ “lives” is CS—i.e., (x1,x2, . . .), the set of all particle posi-

tions, xi = xi,α = (xi, yi, zi). The quantum dynamical law governing the time-evolution

of Ψ(x1,x2, . . . , t)—i.e., the time-dependent Schrödinger equation (TDSE)—is derived as

a straightforward Euler-Lagrange equation, from a CS-based Lagrangian action. In most

quantum treatments, therefore, the CS or “position space” representation is given a preferred

role, either implicitly or explicitly.

Yet, there are many indications that a phase space (PS) approach to quantum theory—

encompassing both the position variables, xi, as well as their conjugate momenta, pi = pi,α =

(pxi
, pyi

, pzi
), is more natural. The very notion of the “Hamiltonian” for instance—universally

recognized as the most important of quantum operators—is an inherently PS notion. The

canonical Poisson bracket relation between the xi and pi—i.e., {xi,α, pj,β} = δij δαβ, of crucial

importance in classical PS theory—corresponds directly to the equally important canonical

commutation relation, [x̂i,α, p̂j,β] = i~ δij δαβ Î, in quantum theory. Similar comments apply

to the Poisson brackets/commutators that govern the time evolution of observables. It is

therefore no surprise that three of the earliest and most revered quantum texts that lay

out the fundamentals of the correct (post-Schrödinger) theory—i.e., those of Dirac,1 von

Neumann,2 and Weyl3—all emphasize Hamiltonian or canonical PS aspects.

The PS approach adopted in these “classic” texts is still of great relevance today—

particularly in the field of theoretical quantum dynamics, where John C. Light devoted

most of his academic career. Examining why and how this is the case is the primary pur-

pose of the present review. To be clear, I use the term “quantum dynamics” (QD) in a broad

sense, to incorporate both time-dependent and time-independent (TI) applications. The

reason is that complete knowledge of the latter, i.e. of the TI energy eigenstates, enables

any solution of the former to be constructed.

Within the field of chemical dynamics, the utility of QD calculations has not always been

fully appreciated—owing no doubt to the great success of classical trajectory simulation

(CTS) methods4 in recent decades. Nevertheless, the importance of quantum effects in

many chemical dynamics applications is becoming increasingly acknowledged. The electron

transport chain in biological photosynthesis,5 for example, gives lie to the assumption that
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quantum effects always become “washed” or averaged out as the molecular systems of interest

become more complex. It is therefore not surprising that there is an increasing demand for

methods that can incorporate QD effects, at least approximately.6–8

Whereas the traditional emphasis within the chemical QD discipline has been to treat just

the nuclear motion quantum mechanically, recent years have also seen a rapidly increasing

interest in electron dynamics. One reason is advances in attosecond pulse laser technol-

ogy, which have now made it possible to probe ultrafast electron dynamics experimentally.9

Theoreticians are struggling to keep up, as most of the established accurate QD (and also

electronic structure) technologies are designed for a single (or small number of) adiabatic

electronic potential energy surface(s) [PES(s)]. Accordingly, there is a demand for accurate

theoretical and computational approaches that can handle non-adiabatic QD well beyond

the limits in which the Born-Oppenheimer approximation is valid. In any event, I extend

the term “QD” to encompass electron as well as nuclear dynamics.

From a theoretical and computational methodology standpoint, the greatest QD challenge

across all of the contexts discussed above remains the oft-discussed “curse of dimensional-

ity”: since the dimensionality, f , of CS, grows linearly with the number of particles (i.e.,

nuclei or dynamical electrons), the space itself (i.e. the number of distinct configurations)

grows exponentially.10 Of course, one strategy for addressing the exponential scaling is to

treat quantum effects approximately.6–8 In this paper, however, I consider only exact QD

methods—i.e., those that in principle converge to exact results with rigorous error bounds,

given sufficient computational resources. For exact QD methods to be practical, it is neces-

sary to face the exponential scaling problem head-on.

To this end, a number of different strategies have been employed. In dimensional com-

bination and contraction methods, customized basis sets (often energy-like eigenstates)

are precomputed for reduced-dimensional subsystems, and then used to represent the

full-dimensional Hamiltonian, Ĥ.11–13 In the multiconfiguration time-dependent Hartree

(MCTDH) approach,14 the TD wavefunction at each instant in time is decomposed into an

optimized sum-of-products form. In the variational self-consistent field (VSCF) approach,15

one-dimensional (1D) basis sets are customized for a given system, and then used to gen-

erate a full-dimensional direct product basis (DPB) which is subsequently truncated so as

to exploit correlations across the xi,α coordinates. While all of these techniques have made

truly impressive inroads against the curse of dimensionality, none have been formally shown
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to defeat exponential scaling, none have yet been implemented on massively parallel super-

computers, and none are designed to compute the extremely large numbers (K ≈ 104–106)

of dynamically relevant vibrational (i.e., nuclear motion TI) states that characterize large

molecular systems (f ≈ 10–30).

In contrast, an alternate exact QD strategy, based on a phase space formalism, has been

gaining attention in recent years16–31—particularly because it can formally defeat exponen-

tial scaling, does have a massively parallel implementation, and has been used to compute

104–106 states at once.24,25 The basic rationale behind the PS approach is very straightfor-

ward. Like VSCF, it employs truncation of a primitive DPB, in order to exploit correlation.

In such a context, however, it does not suffice to consider only position correlation across

the xi,α; physics teaches us that dynamical correlation extends across all PS variables—i.e.,

the xi,α and the pi,α. To exploit this correlation to the fullest extent possible, therefore, we

need a basis and a truncation scheme that operate on PS, rather than CS. Conversely, it

can be shown that any method that does not exploit full PS correlation must formally scale

exponentially with system dimensionality, f .

That said, I emphasize at the outset that formal scaling properties are one thing, but

practical performance is quite another. Depending on various factors such as the degree of

coupling and anharmonicity, the spectral range of interest, E ≤ Emax, the desired number of

computed quantum energy levels, K, and the desired accuracy, ε, there are certainly many

situations in practice where competing methods can outperform the PS strategies described

in this article. However, the opposite is also true, and so the real challenge is to identify a

priori those circumstances under which a given method is likely to be the most competitive.

To this broader end, also, an analysis based on PS ideas turns out to be extremely beneficial.

The goals of this paper, then, are three-fold. First and foremost, I aim to present a brief

review of the use of phase-space-lattice (PSL) basis sets in computational QD, as well as

other basis sets that are truncated using PS means. More than a mere history, I compare

and contrast these methods with respect to scaling, accuracy, and implementation, in order

to establish a set of practical guidelines as to which should be used when. Throughout this

discussion, I attempt to make a distinction between what is known mathematically vs. what

appears to be suggested from the numerical evidence currently available.

Second, very recently, other researchers28,31 have become interested in applying two spe-

cific PSL methods invented by the present author18,21,22 in the context of extremely highly
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accurate calculations—for which the relative error, ε, is only one part in 10−8–10−14. This is

much beyond the scope originally intended for use by these techniques. Consequently, the

expansion coefficients needed to construct basis functions for the “weylet” PSL method (see

Sec. II B)—originally published over a decade ago18—are no longer sufficiently accurate to

meet current demand. I therefore repeat the calculation of these coefficients to much higher

precision—and also provide a correspondingly more complete set of tables.

Third, I present some preliminary results pertaining to the application of PSL (and other)

ideas to the realm of electron QD. In particular, several low-lying electronic states of the

He atom are computed. In traditional electronic structure, a calculation of just the ground

He state might be performed, using some higher-order improvement to Hartree-Fock. In the

PSL approach, multiple electronic states are computed directly, in the full six-dimensional

(6D) electronic CS, treating electron correlation exactly. The PSL approach is therefore

highly relevant for electron QD. I first proposed this idea in 2003—using PS truncation of a

particular type of PSL basis called an “affine wavelet”.18 However, the idea was not actually

implemented until recently, by D. Tannor and coworkers.26 These authors did indeed observe

remarkable reductions in the required basis size, N, as predicted. However, they considered

only 1D model calculations, and also used unrealistic “softened” Coulomb PESs to bypass

the Coulombic singularity. In this work, I consider only the true Coulomb interaction—

operating only in the full 6D space.

II. BACKGROUND AND THEORY

A. Wigner-Weyl Formalism and the Classical Phase Space Picture

The most rigorous way to apply PS ideas to quantum systems is to invoke a true PS

formulation of quantum mechanics. The Wigner-Weyl (WW) formalism16,36 provides a one-

to-one correspondence between Hermitian quantum operators, and real-valued functions on

the classical PS, (x1,x2, . . . ,p1,p2, . . .). For example, Hamiltonian operators of the standard

kinetic-plus-potential form get transformed as follows:

Ĥ =
∑
i

p̂i · p̂i
2mi

+V (x̂1, x̂2, . . .)→ H(x1,x2, . . . ,p1,p2, . . .) =
∑
i

pi · pi
2mi

+V (x1,x2, . . .) (1)
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A single wavefunction, Ψ, is transformed via its pure-state density matrix, ρ̂ = |Ψ〉〈Ψ|:

ρ̂ = |Ψ〉〈Ψ| → WΨ(x1,x2, . . . ,p1,p2, . . .) (2)

The pure-state “Wigner function,” WΨ, is a quasi-probability distribution function on PS,

whose integration over the momentum variables, (p1,p2, . . .), results in the usual probability

density on CS, i.e. |Ψ(x1,x2, . . .)|2. If Ψ is a Hamiltonian eigenstate with energy E, one

might well imagine thatWΨ will tend to be largest whereH(x1,x2, . . . ,p1,p2, . . .) ≤ E—i.e.,

in the classically allowed region of PS.

Actually, a much stronger statement can be made. Let

ρ̂K =
K−1∑
k=0

|Ψk〉〈Ψk| (3)

be the density operator that projects onto the lowest K eigenstates of Ĥ. Further, let k < k′

imply Ek < E ′k, and Emax ≈ EK . Then, the corresponding mixed-state projection Wigner

function, WK , is approximately given by

WK(x1,x2, . . . ,p1,p2, . . .) ≈ Θ[Emax −H(x1,x2, . . . ,p1,p2, . . .)], (4)

with the approximation become increasingly accurate in the classical limit, Emax → ∞. In

other words, the Wigner function for the sum over theK desired states of interest approaches

a uniform distribution over the corresponding classical PS.

The relation of Eq. (4) above is of great importance, for it offers the promise of using the

classical H to optimize the basis representation of the quantum Ĥ. The relation itself, as

well as various applications to basis set optimization,32–35 follow from the derivation of what

is called the “classical PS picture.” The basic idea is not new, going back at least as far as the

Thomas-Fermi model of an electron gas.37 However, various aspects were developed during

my time as a researcher with John C. Light. Fig. 1 is reprinted from an article from that

era.34 In parts (a) and (b), respectively, we see the classical PS region represented by the

right-hand-side of Eq. (4), and the corresponding exact quantum WK(x, p), for the lowest

K = 20 states of the harmonic oscillator.

An important aspect of the classical PS picture is that the volume occupied by the clas-

sical PS is equal to K(2π~)f—i.e., it is proportional to the number of quantum states, K.

For a given calculation, in addition to the desired eigenstates Ψk<K , there is also the repre-

sentational basis set Φn<N , which is associated with its own PS region of volume N(2π~)f .
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The challenge, then, is to choose the Φn such that the representational PS region matches

the desired PS region as closely as possible. In practice, N must always be larger than K,

in order to encompass quantum tunneling beyond the classical PS region. However, if the

choice of basis, Φn, is sufficiently flexible that it can capture all of the PS correlation, then in

principle, one should find that (N/K)→ 1 in the large N (or large Emax) limit—a property

known as perfect asymptotic efficiency.17–19,21,22 Moreover, if the latter property holds for all

f , then one also has, de facto, a method that defeats exponential scaling.

To the author’s knowledge, the earliest attempt to achieve this goal in the QD context

was made by M. Davis and E. Heller (D&H), in a remarkable 1979 paper.16 Specifically,

they proposed using H and Emax to truncate a rectilinear lattice of PS Gaussians (PSGs)

distributed at “critical density”—i.e., one per (2π~)f Planck cell. (D&H also considered other

densities, and other, nonrectilinear arrangements of PSGs). In 1D, each PSG function, gmn,

is labeled with two integer indices, rather than one. The first is the position index, m, and

the second is the momentum index, n. The center of the PSGWigner function is thus located

at the PS point, (m
√

2π~, n
√

2π~). The generalization for arbitrary f is straightforward.

The above PSL approach promises perfect PS flexibility—i.e., the ability to capture all PS

correlation. Moreover, PSG’s offer the most localizedWΨ functions possible, suggesting that

the PSGs should be more efficient than any other choice of PSL basis function. Yet, the

method proved to be far less effective than expected.

In retrospect, the difficulties of the D&H approach are due to two issues:

1. PSGs are non-orthogonal, and so unlike for Eq. (3), WN 6=
∑

mnWgmn (in 1D).

2. The Balian-Low “no-go” theorem18,38,39 essentially precludes any critically-dense rec-

tilinear PSL of identical PS-translated basis functions, Φmn (in 1D), from being

amenable to effective PS truncation.

Regarding 1., even though the individual PSGs are very localized, there is a collective non-

locality that effectively emerges, because the correct density matrix is given by

ρ̂N =
N−1∑
k=0

N−1∑
l=0

|gk〉
[
S̃−1

]
kl
〈gl| (5)

instead of by Eq. (3). In Eq. (5), S̃ is the overlap matrix—i.e., S̃kl = 〈gk|gl〉, where k and

l are composite indices, each representing a set of (mi≤f , ni≤f ) index pairs (for arbitrary
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f). The mixed-state Wigner function for the collection of N PSGs is therefore not a simple

sum of individual Wigner functions, but also involves “coupling” of well-separated PSGs.

Regarding 2., the situation—and its resolution—are a bit more subtle.

B. Successful Rectilinear Phase Space Lattice Techniques

The difficulties described in Sec. IIA above can be overcome. In a 2003 paper,17 I pre-

sented the first QD method that formally defeats exponential scaling, and also achieves

perfect asymptotic convergence—the so-called “weylet” approach. It was soon applied to

model systems as large as f = 15.18,19 Later, my graduate student R. Lombardini proposed

the closely related, but simpler “symmetrized Gaussian” (SG) approach,21 which has since

been applied to a variety of real and model systems up to f = 27, including methyleneimine

and acetonitrile.22–24 Both weylet and SG are rectilinear PSL (RPSL) approaches. Of all the

PSL methods described in this article, the SG approach is by far the simplest to implement

numerically. This is at least true for force-field PESs, for which all SG matrix elements are

known analytically—although a scalable quadrature method for more general PESs has also

been developed.20

Addressing issue 1. from Sec. IIA above, the weylet approach applies a simple Löwdin

canonical orthogonalization procedure,18,40 which replaces the non-orthogonal gk PSG basis

with a corresponding orthogonalized PSL basis, Φk, that spans the same space:

|Φk〉 =
∑
l

[
S̃−1/2

]
kl
|gl〉 (6)

With regard to issue 2., we note that the Balian-Low theorem applies only to RPSL basis

functions on a critically dense lattice. One solution, therefore, is to work with a set of doubly

dense (in 1D) RPSL functions, from which orthogonal basis functions are then constructed as

a linear combination of one positive-momentum function (m,n > 0), and the corresponding

(m,−n) negative-momentum function. This necessitates the use of half-integer rather than

integer n indices, as indicated in Fig. 2. In any event, these measures give rise to an

orthonormal weylet RPSL basis, for which Eq. (3) applies—and moreover, one for which

the individual Φk basis functions decay exponentially with respect to distance from their PS

centers.18,41

Numerical implementation of the weylet method requires an explicit summation of the
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form of Eq. (6). In principle, this summation is infinite, which ensures that the resultant |Φk〉

are perfect PS-translated copies of each other, and also that the same universal expansion can

be used for all applications. In practice, only a finite summation is required, as the expansion

coefficients decay exponentially with |l− k| (Sec. IIIA). Note that explicit matrix inversion

is not required for each new calculation. Instead, the 1D inverse square root overlap matrix,

S̃−1/2, has been computed once for all time, and is presented in Sec. IIIA. The generalization

for arbitrary f is straightforward, as this is just a direct product of 1D matrices. Moreover,

the exponential decay in coefficient values now applies across all dimensions at once, which

greatly reduces the total number of terms that must be considered explicitly.

In the weylet procedure as described above, the first step is to apply the summation

in order to generate the doubly-dense RPSL functions, and the second step is to apply

momentum symmetrization to obtain the final orthogonal weylet basis. On the other hand, it

is also possible to bypass the summation step altogether, and work directly with momentum-

symmetrized doubly-dense PSGs. This is exactly the SG approach. The resultant SG basis

functions are not orthogonal; yet, they still avoid the collective non-orthogonality problem

of the D&H approach, to the extent that they are nearly as efficient as weylets for most

applications (at least for large f ; see Sec. IIIA).

There are also other avenues for getting around the Balian-Low no-go theorem. Again,

the theorem technically applies only to a critically dense RPSL of (1D) basis functions,

Φmn, that are perfect PS-translated copies of each other. One simple way to modify the

D&H PSGs to remove the PS-translation property is to apply a Fourier low-band-pass filter

projection to each gmn. In other words each PSG is projected onto the space spanned by

momentum eigenstates in the range −pmax ≤ p ≤ pmax.

The above strategy characterizes the so-called “pvb” and related methods of Tannor and

coworkers.26–28 In practice, rather than projecting directly on momentum states, one uses

a set of orthonormal sinc functions, which span the same banded Fourier space. Moreover,

a Fourier projection per se is not essential; in principle, the desired effect can be achieved

using other projection subspaces.30 However, most work to date has been done using Fourier

projections, and it is convenient to think along these lines.

If pmax is sufficiently large, the above projection will not adversely impact the accu-

racy of the computed results. Moreover—with Balian-Low evidently in check—the resul-

tant projected PSG basis is now amenable to effective PS truncation. This must be im-
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plemented carefully, as the projected PSG functions (denoted g̃mn) are not orthogonal,

and so Eq. (5) applies, rather than Eq. (3). However, by introducing the dual functions,

|b̃k〉 =
∑N−1

l=0

[
S̃−1

]
kl
|g̃l〉, one can replace Eq. (5) with the form

∑N−1
k=1 |b̃k〉〈g̃k|, which re-

sembles Eq. (3). This form suggests that the dual representation should be amenable to

effective PS truncation, as is indeed found to be the case. Moreover, due to well-known

properties of sinc representations (or more generally, any basis set corresponding to Gaus-

sian quadrature42,43), the representational error decays as a Gaussian, outside of the classical

PS region.

In comparison with the weylet and SG methods, the numerical implementation of pvb

requires that an explicit overlap matrix inversion be performed for each new calculation—an

additional computational step not required by weylet/SG. However, the pvb method can be

implemented in such a manner that this S̃ inversion does not become the computational

(CPU) bottleneck of the whole calculation (for the untruncated basis, the inversion can be

applied to each dimension separately, as discussed above).

Ample numerical evidence suggests that pvb achieves perfect asymptotic efficiency in

1D. Although it is likely that pvb also formally defeats exponential scaling, this has yet

to be established mathematically. Regardless of its formal scaling properties, the N values

required for simple pvb to achieve convergence for larger f may be beyond reach, in practice.

To the author’s knowledge,28 the largest systems to which pvb or related methods have been

applied are for f = 6—as compared with f = 27 for SG. This marked difference in scalability

is likely due to the fact that pvb uses a critically-dense, rather than a doubly-dense RPSL—

and is therefore characterized by a 2f -fold loss in resolution, as compared to the weylet/SG

approach. On the other hand, once the convergence regime is reached, pvb is expected to

converge to high accuracy substantially faster than weylet/SG, owing to the Gaussian vs.

exponential decay (see Sec. IIIA).

C. Other Large-f Applications of the Phase Space Picture

Quite distinct from its associations with the above RPSL methods, the PS picture also

presents a useful and versatile analytical tool, with respect to maximizing the performance

of just about any QD basis set, especially at large f . As discussed in Sec. I, one common

strategy to mitigate the curse of dimensionality is to apply correlated truncation to a DPB
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of the form Φk1,...kf
(x1, . . . xf ) = ϕ

(1)
k1

(x1) × · · · × ϕ
(f)
kf

(xf ) (where the α subscript is now

suppressed). In this manner, correlations can be exploited across the full f -dimensional

parameter space of 1D basis functions, (k1, . . . , kf )—if not across the full 2f -dimensional

PS. Even though such a strategy does not formally defeat exponential scaling, it can still

lead to tremendous reductions in N for large f .

Typically, the 1D basis functions, ϕ(i)
ki

(xi) are energy-like eigenfunctions of 1D effective

Hamiltonians, Ĥi≤f , with energies E(i)
ki
. The Ĥi are often taken to be harmonic oscillators

(HOs), with E(i)
ki

= ~ωi(ki + 1/2). For systems characterized by polynomial force field PESs

with small anharmonicity and mode coupling, HO basis sets provide very good results at

the bottom of the energetic spectrum. This approach is used, e.g. in the MULTIMODE

package15 developed by J. M. Bowman and coworkers—although more general VSCF basis

sets can also be employed.

Regardless of the particular choice of basis, the primary question is the following: how

should the correlated truncation of the ϕ(i)
ki

(xi) be optimized, so as to provide the most

accurate eigenenergies at the bottom of the spectrum—or at some other desired spectral

locale? For f = 1, there is only one sensible choice, i.e., k ≤ kmax. For large f , the number

of reasonable-seeming truncations of (k1, . . . kf ) space is vast—as is, also, the corresponding

range in performance. Clearly, it would be worthwhile to have an a priori guide, describing

which correlated truncation scheme should be applied when—yet surprisingly little effort

has been expended in this direction.

For the simplest and most widely-used scenarios, the PS picture provides us with a simple

and reliable set of rules. Consider separable correlated truncations of the general form,
f∑
i=1

αiki ≤ kmax, (7)

where kmax is the sole convergence parameter. The problem of choosing an optimized trunca-

tion scheme then reduces to that of choosing the weights, αi, so as to maximize the accuracy

of the desired computed eigenvalues. Two natural choices emerge. First, if Ĥ =
∑f

i=1 Ĥi

truly were a separable HO, then perfect results (i.e., N = K, with all states computed to

infinite precision) would be obtained by setting αi = ~ωi and kmax = Emax. We refer to

this choice as “frequency-weighted” truncation (FWT)—since the individual weights, and

the entire sum itself, have units of frequency/energy. In the opposite limit, we have αi = 1

(for all i), for which kmax is an integer, representing the total number of excitations summed
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over all i. The latter choice is termed “polyad” truncation (PT), since the individual weights,

and the sum, are integers. Clearly, there are many other “intermediate” choices that could

also be considered.

The PS picture provides the desired answers by explicitly considering quantum tunneling

beyond the classically allowed PS region.24,25 In particular, it reveals that PT is the most

efficient choice at the bottom of the energy spectrum—followed by intermediate weighting

schemes at higher energies, and then by FWT beyond that. Moreover, the PS picture further

predicts that above a certain energy, all HO or DPB correlated truncation schemes give way

to weylet/SG as the most effective approach. This is because of coupling and anharmonicity,

which necessarily increase with increasing energy, at least for force field PESs.

These trends were all observed explicitly, in a recent calculation of the lowest 10,000

quantum states of acetonitrile (f = 12).24,44 (Figure 2 depicts a typical phase space “slice”

for this system.) In particular, by using a combination of the above methods and correlated

truncation schemes, the most accurate spectrum across the entire dynamically relevant range

(within 6500 cm−1 of the ground state) was obtained. The performance of this “hybrid”

spectrum is indicated in Table I. A more detailed breakdown by individual method is

presented in Ref. 24, Fig. 3. As expected, PT is the most efficient choice at the very bottom

of the energy spectrum—offering 0.001–0.1 cm−1 convergence for the lowest 100 or so energy

levels. For the next 2000 or so levels, the intermediate weighting schemes are best for this

system, achieving ∼ 1 cm−1 convergence—followed by FWT beyond that, in the ∼ 10 cm−1

regime. At still higher energies, the predicted transition to weylet/SG is also observed.

Similar ideas were later applied to benzene (f = 30), for which one million quantum states

were computed (albeit not to very high accuracy).25

III. NEW RESULTS AND DISCUSSION

A. Weylet and SG Calculations at Extremely High Accuracy

In Ref. [21], R. Lombardini and I first proposed the non-orthogonal SG basis, as a

choice that offers nearly the same efficiency as the weylet basis but is simpler to implement.

We went on to provide a comprehensive investigation of scalability and basis set efficiency.

In general, such an investigation requires variation over three separate parameters: (1)
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system dimensionality, f ; (2) desired relative accuracy threshold, ε; (3) number of converged

eigenvalues, K. Such a comparison for weylets vs. SGs may be found in Refs. [21] and

[22]. The main conclusion is that, at the large f values of primary interest—where neither

approach achieves high accuracy without further refinements—SGs are only slightly less

efficient than weylets. As a typical example, for a model f = 14 HO system, with a basis

size of N = 24, 942 and relative accuracy of ε = 0.03, the weylet method achieves K = 1794

states, whereas SG achieves K = 1758.22

On the other hand, very recent numerical work by other authors28,31 has addressed ex-

plicitly the case of low f and extremely high accuracy (i.e. ε ≈ 10−8–10−14)—comparing the

SG and weylet methods to each other, as well as to other techniques. From the numerical

data, it appears that in this regime, weylets outperform SGs by a significant margin. It

has also been reported that weylets are in turn outperformed by other related techniques,

such as pvb. However, these comparisons used the expansion coefficient table reported in

Ref. [18], which is only accurate to 10−8 or so. A proper comparison, clearly, requires more

accurate weylet expansion coefficients, that also extend significantly further out in PS.

In this work, I have used Mathematica to recompute all of the relevant weylet expansion

coefficients, to 20 digits of precision. All coefficients whose numerical magnitude is greater

than 10−20 are reported in Tables II and III. The new coefficient values agree with those

in Ref. [18], to the precision to which the latter were reported. Therefore, even accounting

for substantial compounding of numerical roundoff errors, the new coefficient values should

more than suffice for extremely accurate calculations in the ε ranges described above. The

new values are also available from the author in electronic form, upon request.

I computed the new expansion coefficients as follows.18 First, I began with the half -dense

RPSL of PSGs, centered at the PS origin—or equivalently, the doubly-dense RPSL PSGs that

correspond to even values of both m and n. Next, I truncated these PSGs within a square-

shaped region, corresponding to |m| ≤ mmax and |n| ≤ mmax. The even-valued quantity

mmax is the sole convergence parameter. The next step was to create the overlap matrix S̃

from the truncated Gaussians—the dimensions of which are clearly (mmax+1)2×(mmax+1)2.

The elements of S̃ were evaluated to 30 digits of precision—which was preserved in the

subsequent inverse square root overlap matrix calculation for S̃−1/2. To verify that this level

of precision was indeed achieved, I also numerically computed S̃−1/2 ·S̃ ·S̃−1/2, and confirmed

that the resulting product matrix was indeed the identity, to thirty digits of precision.
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The Löwdin canonical orthogonalization procedure as described previously has the ad-

vantage that it uniquely associates individual orthogonal and non-orthogonal basis functions

(unlike, e.g., the Gram-Schmidt procedure42). In principle, one must compute the expan-

sion coefficients for the infinite matrix corresponding to mmax → ∞—for which all column

vectors of S̃−1/2 become identical, PS-translated copies of each other. In reality, edge effects

associated with the finite truncation cause small deviations from translational invariance.

These deviations should be smallest for the column vectors of S̃−1/2 corresponding to Φmn

centered near the PS origin—i.e., those furthest from the edges. Accordingly, I used the

(m = 0, n = 0) column vector of S̃−1/2 as the (mmax + 1) × (mmax + 1) PS expansion

coefficients, reported in Tables II and III—exploiting, also, the symmetry with respect to

m→ −m, n→ −n, and (m,n)→ (n,m).

I assessed convergence in two different ways. First, I compared the (m = 0, n = 0)

column vector to the adjacent (PS-translated) (m = 2, n = 0) column vector obtained from

the same mmax calculation. This provides a measure of the degree of translation invariance

achieved, or the role of edge effects. Second, I compared the (m = 0, n = 0) column vector

for the largest mmax calculation to that of a slightly smaller mmax calculation. In the present

context, the largest calculation performed was for mmax = 28, with mmax = 24 used for

comparison. With respect to both measures of convergence, the largest discrepancies so

obtained were no larger than ∼ 10−20.

Using the new coefficient values as computed above, one may of course expect to see a

marked improvement in weylet performance for extremely high accuracy calculations. On

the other hand, it is not likely that this improvement will make up for the full difference

in performance with the pvb approach in this regime, as this was reported in Ref. [28]. It

is important to understand the likely reasons for this—to which end, a PS analysis is once

again very advantageous.

In the weylet approach, because the basis functions are orthogonal, one can directly

add/subtract individual WΦk
’s to WN , as in Eq. (3). Moreover, it is well-established that

the individual weylet Wigner functions exhibit exponential decay, with respect to PS distance

(as measured in a certain natural sense18,20) from the weylet center. For computed energy

eigenstates up to Emax, this implies at best an exponential convergence of accuracy, with

respect to distance beyond the classical PS region used to retain additional weylet basis

functions. On the other hand, the pvb method exploits a “dual” approach, for which the
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truncated dual basis functions b̃k exhibit Gaussian convergence of accuracy—even though

they are non-orthogonal, and fairly delocalized in PS.

For the above reason, one may expect the pvb approach to be the more efficient method

in the context of low f , and extremely high accuracy. On the other hand, a weylet or SG

approach is more efficient than pvb at high f—where high accuracies are beyond the reach

of any method, except at the relatively uninteresting region at the bottom of the spectrum.

The weylet/SG approach is more efficient in this context because it provides much better

sampling resolution of the relevant PS. In particular, because it uses a doubly-dense grid,

the resolution is improved by a factor of two per dimension—or by a factor of 2f in all.

Evidently, this difference is what makes it possible to perform weylet/SG calculations up to

f = 27,22,24 whereas pvb-type calculations have to date been extended only up to f = 6.

It must also be borne in mind that the above comparison is for TI calculations only. For

TD calculations, the pvb approach has the advantage of not being constrained by momentum

symmetry. Whereas it is certainly possible to use weylets in a TD context, the momentum

symmetry constraint will necessarily lead to reduced efficiency. It is an interesting question—

currently being explored by Tannor and coworkers45—whether, and more specifically in what

contexts, the reduced resolution of the pvb approach is outweighed by its ability to capture

momentum asymmetry, in TD applications.

Returning to TI calculations at larger f , it is also worth knowing when one should em-

ploy the weylet over the SG approach. Based on the previous discussion, it seems likely that

for many applications, there will be an “intermediate” regime—corresponding to perhaps

something like f = 4–12 and ε ≈ 10−3–10−6—in which weylets outperform both SGs and

pvbs. For much larger f values, neither SG nor weylet (in their simplest implementations

as described here) can achieve high accuracy, and so the SG approach is preferred, as it is

simpler to implement (though neither SG nor weylet is any more difficult to code than any

other PSL method). As discussed in Sec. II B, the weylet Hamiltonian matrix construction

requires summations similar to Eq. (6). It can be shown that the number of CPU oper-

ations per matrix element scales as a power law.20–23 The CPU effort required for matrix

construction becomes comparable to that of matrix diagonalization when this number ap-

proaches N ≈ 700, 000 (the largest explicit matrix size considered to date). For f = 8, this

corresponds to mmax ≈ 8, or (from Tables II and III) an expansion error of ε ≈ 10−6—which

is still smaller than the expected basis set error.
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B. Electron Dynamics: A preliminary investigation

For Coulombic PESs, both the challenges and opportunities of PSL methods appear to

be quite different than in the vibrational, nuclear motion context—and are therefore worthy

of separate consideration. Regarding opportunities, the concave-shaped PS regions that

characterize Coulombic interactions offer the potential for tremendous reduction—even in

1D, but especially as f is increased. Although this aspect was evidently first suggested by

the present author,18 it was not actually demonstrated until more recent work by Tannor

and coworkers26—who indeed observed a 13–60-fold reduction in N , in 1D. Moreover, the

promise of greatly improved efficiency with increasing f is particularly relevant for electron

QD applications—for which the conventional single-electron-Hartree-Fock-based techniques

that have been so successful in electronic structure, may not be so well suited.

As promising as is this earlier work by Tannor and coworkers, it has been limited in several

important respects by the aforementioned technical challenges, which are severe. Foremost

among these are the singularities in the PES—which give rise to infinitely tall PS regions

at the nuclear positions, even for bound electronic states. This is how the “cusp problem”

manifests in a PS treatment. With respect to a rectilinear lattice of PSL functions, one can

arrange the PS centers so as to avoid a single nuclear position, but it is harder to avoid all

nuclei. In many-electron applications, avoiding the electron-electron repulsion singularity is

substantially more difficult.45

To deal with the above situation, Tannor and coworkers sometimes replace the true

PES with a “softened” Coulomb approximation, which has no attractive singularities at the

nuclear positions.26 Additionally, these authors avoid the repulsive singularity by considering

only one-electron systems—meaning that the role of electron correlation remains completely

unexamined. Finally, they artificially reduce the dimensionality of the Coulomb problem

down to just 1D (f = 1)—which could have unphysical ramifications, given that the inverse

power law form of the Coulomb PES is inextricably linked to the fact that there are f = 3

spatial dimensions.

In the present work, we (myself and coworker J. Jerke) overcome all of these limitations, in

the course of computing several low-lying electronic states of the He atom. The calculations

are performed in the full f = 6 quantum dimensionality, using exact Coulombic PESs.

Electron correlation is thus treated exactly, although for this preliminary study, spin is
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ignored. Our numerical calculation thus provides exact non-fine-structure-corrected energy

levels and wavefunctions, for both para- and ortho-helium.

Although PS ideas as discussed in this paper are used to truncate the basis, this is not

just a simple weylet or SG representation. In order to handle the singularities, we make use

of new matrix element integration technology46 that applies a Fourier band-pass filter. In

addition to this, a tensor product decomposition strategy is also employed. The details of

this method will be provided in a future publication. For the present purpose, it suffices to

state that all parameters associated with these refinements (e.g., the tensor rank) have been

chosen such that their contribution to the total error is significantly less than the largest

source of error—which is basis set truncation.

Computed energy levels (frequencies) for the ground (lowest-lying excited) state(s) are

presented in Table IV, and compared with experimental data.47 All calculations were per-

formed on a single node, with the longest requiring 42 hours of CPU time. For the ground

state, both the numerical convergence and the agreement with experiment are to within a

few .001 Ha. Note that substantially better convergence may not lead to a commensurate

improvement in experimental agreement, as fine structure effects are not considered here.

In any event, the computed ground state energy is much closer to experiment than is the

Hartree-Fock value48 (also presented).

In contrast, the excited state energy levels are less well converged—to one or two .01

Ha, which also characterizes the agreement with experiment. One might have expected a

tremendous reduction in accuracy as compared with the ground state—due to the much

larger CS region explored by the 2s or 2p electron, by virtue of its excitation and greater

screening. On the other hand, the corresponding PS region increase is much more modest,

as a consequence of which the resultant loss in accuracy (less than a single digit) is mitigated

significantly. Even more encouraging, however, is the fact that excited state frequencies are

significantly more accurate than energy levels. The frequencies in Table IV, obtained from

a separate calculation designed to optimize the latter, are converged to just a few .001 Ha.

All in all, the numerical performance is quite good, considering that the calculation was

performed directly in the full f = 6 quantum dimensionality, treating all electron correlation

explicitly. Evidently, there is extensive correlation across all twelve PS variables, x1,x2,p1,

and p2, which the method is able to exploit. Some of this “correlation” (in the broad, PS

sense) is clearly evident in Fig. 3, which presents various two-dimensional integrated density
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plots for the computed electronic ground state wavefunction. Note that electron correlation

(i.e., “correlation” in the electronic structure sense) accounts for much of this.

As a final comment, I point out that our procedure as implemented above, does not

as yet make any special allowances for the cusp. Traditional electronic structure methods

use ever-narrowing Gaussian functions, to deal effectively with cusps. Alternatively, in a

PSL context, I proposed18 (and D. Tannor has implemented26) using affine rather than PS-

translated wavelets. Affine wavelets are related to each other via width rescaling, as well as

CS translation—rendering them highly suitable for cusp regions. As of yet, neither affine

wavelets, nor traditional Gaussians, have been incorporated into our PSL calculation of the

He electronic states, as described above. However, either or both of these refinements could

be implemented, no doubt leading to further improvements in performance.

IV. SUMMARY AND CONCLUSIONS

For decades, computational chemists and molecular physicists have wrestled with the

“curse of dimensionality”—treating all degrees of freedom explicitly quantum mechanically,

in the context of nuclear motion dynamics. Similar challenges may apply in the emerging field

of electron dynamics. Whether the context is nuclear or electronic, if accurate “quantum

dynamics” calculations for large systems is the goal, then this goal cannot be achieved

without first facing down the curse of dimensionality head-on.

Phase space offers a very promising avenue for doing just that. In particular, the classical

phase space picture as discussed in Sec. IIA provides a clear understanding of the exponential

scaling that underlies the curse: both where it comes from, and how to eradicate it. Indeed,

this picture was used to develop the first quantum dynamics method formally known to

defeat exponential scaling—i.e., the weylet method, as discussed in Secs. II B and IIIA.

Moreover, it has inspired other, related methods, such as SG and pvb. Collectively, these

methods have been successfully applied in circumstances that seemingly lie beyond the

capabilities of other state-of-the-art techniques. In particular, I know of no other methods

that can compute all of the extremely large number of vibrational states (e.g., K ≈ 104–106)

that become dynamically relevant when f is large.

On the other hand, the phase space methods also have their own limitations—such as a

profound difficulty in achieving high accuracy when f is large. Here, too, the phase space
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picture provides a quantitative understanding of why and how this is the case—albeit in

a more refined version, that describes the quantum tunneling of Wigner functions beyond

the classical phase space region implied by Eq. (4). This more refined picture also tells us

when each of the various rectilinear phase space lattice methods considered here is likely

to be the most effective—e.g., SG for the largest f and largest ε calculations, weylet for

intermediate f and ε, and finally, pvb for the smallest, but most accurate calculations (and

also, explicitly time-dependent applications). The refined phase space picture also provides

an extremely useful analysis of conventional basis set methods. Few basis sets are less

basic or more widely used than the harmonic oscillator—particular in molecular vibration

applications. Yet, until the phase-space analysis of Sec. II C was performed, the optimal

means of truncating a harmonic oscillator basis for large f [in accord with Eq. (7)] was

evidently not known.

Returning to the three rectilinear phase space lattice methods discussed in this article—

i.e., weylet, SG, and pvb—the assessments as drawn above and in Secs. II B and III should

decidedly not be considered closed. All three approaches are still under active development,

with various beneficial refinements being introduced to improve accuracy, performance, and

scalability. The major goal is to improve the accuracy for large f—a challenge that requires

improving the Wigner representation, near and beyond the edge of the classical phase space

region at H = Emax. One effective strategy, at least for small f , is to project individual

weylet or SG basis functions using phase space region operators21—reminiscent of the Fourier

projection in pvb, but applied here for an entirely different purpose. A more straightforward

approach that has been explored by several authors is to employ a non-Emax-based phase

space truncation criterion, when growing the representational basis of N functions beyond

the first K that correspond to the classical region.20,28,31

It is also possible to merge aspects of the different methods together. For example, Tannor

and coworkers have recently explored the “pW” approach28,45—i.e., weylet basis functions

that have been band-pass projected—which seems to offer some advantages. Indeed, a simi-

lar strategy is adopted in Sec. III B. Other refinements, to better accommodate quadrature,

overlap matrix inversion, iterative eigensolvers, tensor products, massive parallelization, etc.,

are also being considered. To this list we must also add “singular potentials”—for it seems

that the integration and other technologies employed in Sec. III B have now, for the first

time, opened the door to performing calculations for real electrons, using phase space lattice
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methods. This new development could prove very significant for electron dynamics. In any

event, whatever the future may bring, it seems clear that phase space ideas will enjoy a

bright future in the field of quantum dynamics, for some years to come.

As a final comment, I am very pleased and humbled to be able to say that—insofar as

my own contributions in the phase space quantum dynamics arena are concerned—these

began during my time as a postdoctoral associate with John C. Light. It was with John

that I published most of my early papers on the classical phase space picture,32–35 and I will

forever be grateful for the opportunity that his group provided me, early in my career, to

develop these ideas.
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TABLE I: Number of converged energy levels for CH3NH at varying levels of accuracy, ε. Con-

vergence was determined by comparing the second largest calculation (N = 480159) to the largest

(N = 733312). Column I is the error tolerance in cm−1, used to determine which states are “ac-

curately” computed. Column III is efficiency of the basis as determined by comparing the ratio of

number of accurate states, K to the basis size, N .

Number of Converged States for CH3CN

Accuracy (cm−1) Number of States (K) Efficiency (KN )

1000 479173 99.8%

100 243255 50.7%

10 10035 2.09%

1 310 0.0646%

0.1 54 0.0177%

0.01 31 0.00646%

0.001 6 0.00125%
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TABLE II: Gaussian expansion coefficients, cmn, for normalized (but not momentum-symmetrized)

“fiducial” weylet, Φ00(x) =
∑
cmn gmn(x), on doubly-dense rectilinear PS lattice. The Gaussian

function, gmn(x), is centered in phase space at the lattice site, (m
√
π, n
√
π). Both positive and

negative values of m and n are included in the expansion. All coefficients larger than 10−20 are

included here and in Table III—taking into account the index exchange symmetry, cmn = cnm.

Momentum Position index |m|

index |n| 0 2 4 6

0 1.002 814 619 133 862 872 08 -0.021 713 366 679 443 673 02 0.000 703 359 248 430 332 55 -0.000 025 326 890 087 677 42

2 -0.021 713 366 679 443 673 02 0.000 470 147 007 792 114 70 -0.000 015 229 432 217 229 25 0.000 000 548 388 546 428 14

4 0.000 703 359 248 430 332 55 -0.000 015 229 432 217 229 25 0.000 000 493 325 708 374 47 -0.000 000 017 763 903 753 75

6 -0.000 025 326 890 087 677 42 0.000 000 548 388 546 428 14 -0.000 000 017 763 903 753 75 0.000 000 000 639 650 987 60

8 0.000 000 957 635 906 854 65 -0.000 000 020 735 138 074 57 0.000 000 000 671 671 572 06 -0.000 000 000 024 185 865 36

10 -0.000 000 037 244 351 751 09 0.000 000 000 806 430 471 67 -0.000 000 000 026 122 633 99 0.000 000 000 000 940 636 07

12 0.000 000 001 475 340 003 95 -0.000 000 000 031 944 686 36 0.000 000 000 001 034 781 52 -0.000 000 000 000 037 260 90

14 -0.000 000 000 059 200 996 59 0.000 000 000 001 281 845 04 -0.000 000 000 000 041 522 70 0.000 000 000 000 001 495 17

16 0.000 000 000 002 398 405 38 -0.000 000 000 000 051 931 29 0.000 000 000 000 001 682 21 -0.000 000 000 000 000 060 57

18 -0.000 000 000 000 097 886 26 0.000 000 000 000 002 119 47 -0.000 000 000 000 000 068 66 0.000 000 000 000 000 002 47

20 0.000 000 000 000 004 018 54 -0.000 000 000 000 000 087 01 0.000 000 000 000 000 002 82 -0.000 000 000 000 000 000 10

22 -0.000 000 000 000 000 165 76 0.000 000 000 000 000 003 59 -0.000 000 000 000 000 000 12

24 0.000 000 000 000 000 006 86 -0.000 000 000 000 000 000 15

26 -0.000 000 000 000 000 000 29

28 0.000 000 000 000 000 000 01
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TABLE III: Gaussian expansion coefficients, cmn, for normalized (but not momentum-symmetrized)

“fiducial” weylet, Φ00(x) =
∑
cmn gmn(x), on doubly-dense rectilinear PS lattice. See Table II

caption for further details.

Momentum Position index |m|

index |n| 8 10 12

0 0.000 000 957 635 906 854 65 -0.000 000 037 244 351 751 09 0.000 000 001 475 340 003 95

2 -0.000 000 020 735 138 074 57 0.000 000 000 806 430 471 67 -0.000 000 000 031 944 686 36

4 0.000 000 000 671 671 572 06 -0.000 000 000 026 122 633 99 0.000 000 000 001 034 781 52

6 -0.000 000 000 024 185 865 36 0.000 000 000 000 940 636 07 -0.000 000 000 000 037 260 90

8 0.000 000 000 000 914 492 58 -0.000 000 000 000 035 566 42 0.000 000 000 000 001 408 87

10 -0.000 000 000 000 035 566 42 0.000 000 000 000 001 383 25 -0.000 000 000 000 000 054 79

12 0.000 000 000 000 001 408 87 -0.000 000 000 000 000 054 79 0.000 000 000 000 000 002 17

14 -0.000 000 000 000 000 056 53 0.000 000 000 000 000 002 20 -0.000 000 000 000 000 000 09

16 0.000 000 000 000 000 002 29 -0.000 000 000 000 000 000 09

18 -0.000 000 000 000 000 000 09
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TABLE IV: Ground state energy level and excited state frequencies of the He atom, in Hartrees, as

computed using the method described in Sec. III B (Column II), and compared with experiment47

(Column III). Energy differences are also listed (Column IV). For the ground state energy level, the

Hartree-Fock value48 is also presented, in the second row. Ground state energies appear above the

midrule; excited state frequencies below. Fine structure corrections are not included in the calcu-

lation. Hence, the three 3P energies (and separately, the three 1P energies) should be degenerate;

the small observed differences are due to numerical errors.

State Computed Experimental Difference

Label Energy (Ha) Energy (Ha) (Ha)

1s2 (1S) - 2.8968 -2.9037 0.0069

1s2 (H.-F.) -2.8617 -2.9037 0.0420

1s2s (3S) 0.7246 0.7284 -0.0038

1s2s (1S) 0.7624 0.7576 0.0048

1s2p (3P) 0.7646 0.7704 -0.0058

1s2p (3P) 0.7649 0.7704 -0.0055

1s2p (3P) 0.7649 0.7704 -0.0055

1s2p (1P) 0.7764 0.7797 -0.0033

1s2p (1P) 0.7765 0.7797 -0.0032

1s2p (1P) 0.7768 0.7797 -0.0029
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FIG. 1: PS Wigner function, ρ20(q, p) = W20(x, p), for the projection operator corresponding

to the lowest K = 20 states of the 1D harmonic oscillator system, H(x, p) = (x2 + p2)/2: (a)

(quasi)classical approximation from the right-hand-side of Eq. (4); (b) exact quantum result.

The latter oscillates about the former (constant) value, within the classically allowed region of

PS. Outside this region, ρqc
20(q, p) = 0, and ρ20(q, p) decays to zero very quickly (typically as a

Gaussian). Source: B. Poirier, Found. Phys. 30 (2000), Figs. 1(e) and 1(f), p. 1199. Reproduced

with permission of Springer.
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FIG. 2: Schematic representation of doubly-dense weylet/SG RPSL in 1D, for the fourth normal

mode of CH3CN. The gray shaded area is the PS region representing the (eight) basis functions

retained via PS truncation—for a calculation of energy states in the dynamically relevant range up

to Ecut = 6500 cm−1 (outer contour, denoted by thick curve). Source: T. Halverson and B. Poirier,

Chem. Phys. Lett. 624 (2015), Fig. 1(b), p. 39. Reproduced with permission of Elsevier.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

� �

�

�

��

��

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � �

�

�

�

�

�

29



FIG. 3: Contour plots of the electron density for the ground state of the He atom, as computed in

Sec. III B, and integrated over all but two phase space variables: (a) (x1, x2); (b) (px1 , px2); (c)

(x1, px2). Contours correspond to exponentially-decreasing values of the electron density.

(a) (b) (c)
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