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Abstract

The laws of physics that apply at the molecular scale are the laws of quantum mechanics. Whereas
quantum electronic structure calculations are now routine for the most part, “quantum dynamics”
calculations of nuclear motion are still plagued with the “curse of dimensionality.” Similar challenges
may apply to the emerging field of electron dynamics. In this article, the role of recent phase-
space (PS) based methods is reviewed—both individually in comparison with each other, and also
collectively as an avenue for lifting the above “curse.” In addition: (a) the oldest such PS method
is revamped, in order to render it suitable for extremely high accuracy applications; (b) a new PS
method designed for electron dynamics is applied to a calculation of the He atom—performed in

full quantum dimensionality, and treating electron correlation exactly.
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I. INTRODUCTION

Quantum mechanics is usually regarded as a configuration space (CS) theory. The space
on which the wavefunction ¥ “lives” is CS—i.e., (X1, Xa,...), the set of all particle posi-
tions, x; = %;o = (¥;,¥i,2;). The quantum dynamical law governing the time-evolution
of U(xy,xa,...,t)—i.e., the time-dependent Schrodinger equation (TDSE)—is derived as
a straightforward Euler-Lagrange equation, from a CS-based Lagrangian action. In most
quantum treatments, therefore, the CS or “position space” representation is given a preferred
role, either implicitly or explicitly.

Yet, there are many indications that a phase space (PS) approach to quantum theory—
encompassing both the position variables, x;, as well as their conjugate momenta, p; = p; o =
(Pzi» Pyi» P ), is more natural. The very notion of the “Hamiltonian” for instance—universally
recognized as the most important of quantum operators—is an inherently PS notion. The
canonical Poisson bracket relation between the x; and p;—i.e., {Z; ., Pj 3} = 0ij 0ap, of crucial
importance in classical PS theory—corresponds directly to the equally important canonical
commutation relation, [Z; ., p; s = 1hdij 6ap I , in quantum theory. Similar comments apply
to the Poisson brackets/commutators that govern the time evolution of observables. It is
therefore no surprise that three of the earliest and most revered quantum texts that lay
out the fundamentals of the correct (post-Schrédinger) theory—i.e., those of Dirac,! von
Neumann,? and Weyl®>—all emphasize Hamiltonian or canonical PS aspects.

The PS approach adopted in these “classic” texts is still of great relevance today—
particularly in the field of theoretical quantum dynamics, where John C. Light devoted
most of his academic career. Examining why and how this is the case is the primary pur-
pose of the present review. To be clear, I use the term “quantum dynamics” (QD) in a broad
sense, to incorporate both time-dependent and time-independent (TI) applications. The
reason is that complete knowledge of the latter, i.e. of the TI energy eigenstates, enables
any solution of the former to be constructed.

Within the field of chemical dynamics, the utility of QD calculations has not always been
fully appreciated—owing no doubt to the great success of classical trajectory simulation
(CTS) methods® in recent decades. Nevertheless, the importance of quantum effects in
many chemical dynamics applications is becoming increasingly acknowledged. The electron

transport chain in biological photosynthesis,” for example, gives lie to the assumption that



quantum effects always become “washed” or averaged out as the molecular systems of interest
become more complex. It is therefore not surprising that there is an increasing demand for
methods that can incorporate QD effects, at least approximately.®®

Whereas the traditional emphasis within the chemical QD discipline has been to treat just
the nuclear motion quantum mechanically, recent years have also seen a rapidly increasing
interest in electron dynamics. One reason is advances in attosecond pulse laser technol-
ogy, which have now made it possible to probe ultrafast electron dynamics experimentally.’
Theoreticians are struggling to keep up, as most of the established accurate QD (and also
electronic structure) technologies are designed for a single (or small number of) adiabatic
electronic potential energy surface(s) [PES(s)|. Accordingly, there is a demand for accurate
theoretical and computational approaches that can handle non-adiabatic QD well beyond
the limits in which the Born-Oppenheimer approximation is valid. In any event, I extend
the term “QD” to encompass electron as well as nuclear dynamics.

From a theoretical and computational methodology standpoint, the greatest QD challenge
across all of the contexts discussed above remains the oft-discussed “curse of dimensional-
ity”: since the dimensionality, f, of CS, grows linearly with the number of particles (i.e.,
nuclei or dynamical electrons), the space itself (i.e. the number of distinct configurations)
grows exponentially.'® Of course, one strategy for addressing the exponential scaling is to
treat quantum effects approximately.5® In this paper, however, I consider only ezact QD
methods—i.e., those that in principle converge to exact results with rigorous error bounds,
given sufficient computational resources. For exact QD methods to be practical, it is neces-
sary to face the exponential scaling problem head-on.

To this end, a number of different strategies have been employed. In dimensional com-
bination and contraction methods, customized basis sets (often energy-like eigenstates)
are precomputed for reduced-dimensional subsystems, and then used to represent the
full-dimensional Hamiltonian, H.'*"'3 In the multiconfiguration time-dependent Hartree
(MCTDH) approach,'* the TD wavefunction at each instant in time is decomposed into an
optimized sum-of-products form. In the variational self-consistent field (VSCF) approach,®
one-dimensional (1D) basis sets are customized for a given system, and then used to gen-
erate a full-dimensional direct product basis (DPB) which is subsequently truncated so as
to exploit correlations across the z;, coordinates. While all of these techniques have made

truly impressive inroads against the curse of dimensionality, none have been formally shown



to defeat exponential scaling, none have yet been implemented on massively parallel super-
computers, and none are designed to compute the extremely large numbers (K ~ 10*-106)
of dynamically relevant vibrational (i.e., nuclear motion TT) states that characterize large
molecular systems (f ~ 10-30).

In contrast, an alternate exact QD strategy, based on a phase space formalism, has been

16-31__particularly because it can formally defeat exponen-

gaining attention in recent years
tial scaling, does have a massively parallel implementation, and has been used to compute
10%-10° states at once.?*?® The basic rationale behind the PS approach is very straightfor-
ward. Like VSCF, it employs truncation of a primitive DPB, in order to exploit correlation.
In such a context, however, it does not suffice to consider only position correlation across
the z; ; physics teaches us that dynamical correlation extends across all PS variables—i.e.,
the z; , and the p; .. To exploit this correlation to the fullest extent possible, therefore, we
need a basis and a truncation scheme that operate on PS, rather than CS. Conversely, it
can be shown that any method that does not exploit full PS correlation must formally scale
exponentially with system dimensionality, f.

That said, I emphasize at the outset that formal scaling properties are one thing, but
practical performance is quite another. Depending on various factors such as the degree of
coupling and anharmonicity, the spectral range of interest, E < FE,,.., the desired number of
computed quantum energy levels, K, and the desired accuracy, €, there are certainly many
situations in practice where competing methods can outperform the PS strategies described
in this article. However, the opposite is also true, and so the real challenge is to identify a
priori those circumstances under which a given method is likely to be the most competitive.
To this broader end, also, an analysis based on PS ideas turns out to be extremely beneficial.

The goals of this paper, then, are three-fold. First and foremost, I aim to present a brief
review of the use of phase-space-lattice (PSL) basis sets in computational QD, as well as
other basis sets that are truncated using PS means. More than a mere history, I compare
and contrast these methods with respect to scaling, accuracy, and implementation, in order
to establish a set of practical guidelines as to which should be used when. Throughout this
discussion, I attempt to make a distinction between what is known mathematically vs. what
appears to be suggested from the numerical evidence currently available.

Second, very recently, other researchers®®3! have become interested in applying two spe-
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cific PSL methods invented by the present author in the context of extremely highly



accurate calculations—for which the relative error, ¢, is only one part in 107810714, This is
much beyond the scope originally intended for use by these techniques. Consequently, the
expansion coefficients needed to construct basis functions for the “weylet” PSL method (see
Sec. IT B)—originally published over a decade ago'®—are no longer sufficiently accurate to
meet current demand. I therefore repeat the calculation of these coefficients to much higher
precision—and also provide a correspondingly more complete set of tables.

Third, I present some preliminary results pertaining to the application of PSL (and other)
ideas to the realm of electron QD. In particular, several low-lying electronic states of the
He atom are computed. In traditional electronic structure, a calculation of just the ground
He state might be performed, using some higher-order improvement to Hartree-Fock. In the
PSL approach, multiple electronic states are computed directly, in the full six-dimensional
(6D) electronic CS, treating electron correlation ezactly. The PSL approach is therefore
highly relevant for electron QD. I first proposed this idea in 2003—using PS truncation of a
particular type of PSL basis called an “affine wavelet”.!®* However, the idea was not actually
implemented until recently, by D. Tannor and coworkers.?% These authors did indeed observe
remarkable reductions in the required basis size, N, as predicted. However, they considered
only 1D model calculations, and also used unrealistic “softened” Coulomb PESs to bypass
the Coulombic singularity. In this work, I consider only the true Coulomb interaction—

operating only in the full 6D space.

II. BACKGROUND AND THEORY
A. Wigner-Weyl Formalism and the Classical Phase Space Picture

The most rigorous way to apply PS ideas to quantum systems is to invoke a true PS

16:36 provides a one-

formulation of quantum mechanics. The Wigner-Weyl (WW) formalism
to-one correspondence between Hermitian quantum operators, and real-valued functions on
the classical PS, (x1,Xa,...,P1, P2, .. .). For example, Hamiltonian operators of the standard

kinetic-plus-potential form get transformed as follows:
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A single wavefunction, W, is transformed via its pure-state density matrix, p = |W)(¥|:

,5: |\Ij><‘1;| _)W\Il(xlaXQa"'aphan"') (2)

The pure-state “Wigner function,” Wy, is a quasi-probability distribution function on PS,
whose integration over the momentum variables, (pi, ps, - . .), results in the usual probability
density on CS, i.e. |W(x1,Xg,...)|?. If ¥ is a Hamiltonian eigenstate with energy E, one
might well imagine that Wy will tend to be largest where H(xy,Xs,...,p1,P2,-..) < E—i.e.,
in the classically allowed region of PS.

Actually, a much stronger statement can be made. Let

K-1
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k=0
be the density operator that projects onto the lowest K eigenstates of H. Further, let k < ¥’
imply Ey < E}, and Eya. & Ex. Then, the corresponding mixed-state projection Wigner

function, Wy, is approximately given by

WK<X17X27 -y P1, P2, - ) ~ G[Emax - H(X17X27 - P11, P2, - )]7 (4)

with the approximation become increasingly accurate in the classical limit, F. — 0o0. In
other words, the Wigner function for the sum over the K desired states of interest approaches
a uniform distribution over the corresponding classical PS.

The relation of Eq. (4) above is of great importance, for it offers the promise of using the
classical H to optimize the basis representation of the quantum H. The relation itself, as
well as various applications to basis set optimization,3?® follow from the derivation of what
is called the “classical PS picture.” The basic idea is not new, going back at least as far as the
Thomas-Fermi model of an electron gas.3” However, various aspects were developed during
my time as a researcher with John C. Light. Fig. 1 is reprinted from an article from that
era.3* In parts (a) and (b), respectively, we see the classical PS region represented by the
right-hand-side of Eq. (4), and the corresponding exact quantum Wi /(x,p), for the lowest
K = 20 states of the harmonic oscillator.

An important aspect of the classical PS picture is that the volume occupied by the clas-
sical PS is equal to K (27h)/—i.e., it is proportional to the number of quantum states, K.
For a given calculation, in addition to the desired eigenstates Wk, there is also the repre-

sentational basis set ®, .y, which is associated with its own PS region of volume N (27h)”.
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The challenge, then, is to choose the ®, such that the representational PS region matches
the desired PS region as closely as possible. In practice, N must always be larger than K,
in order to encompass quantum tunneling beyond the classical PS region. However, if the
choice of basis, ®,,, is sufficiently flexible that it can capture all of the PS correlation, then in
principle, one should find that (N/K) — 1 in the large N (or large Fi,ax) limit—a property
known as perfect asymptotic efficiency.t” 192122 Moreover, if the latter property holds for all
f, then one also has, de facto, a method that defeats exponential scaling.

To the author’s knowledge, the earliest attempt to achieve this goal in the QD context
was made by M. Davis and E. Heller (D&H), in a remarkable 1979 paper.'® Specifically,
they proposed using H and FE,.. to truncate a rectilinear lattice of PS Gaussians (PSGs)
distributed at “critical density”—i.e., one per (27h)/ Planck cell. (D&H also considered other
densities, and other, nonrectilinear arrangements of PSGs). In 1D, each PSG function, g,
is labeled with two integer indices, rather than one. The first is the position index, m, and
the second is the momentum index, n. The center of the PSG Wigner function is thus located
at the PS point, (mv27h, n\/ﬁ) The generalization for arbitrary f is straightforward.
The above PSL approach promises perfect PS flexibility—i.e., the ability to capture all PS
correlation. Moreover, PSG’s offer the most localized Wy functions possible, suggesting that
the PSGs should be more efficient than any other choice of PSL basis function. Yet, the
method proved to be far less effective than expected.

In retrospect, the difficulties of the D&H approach are due to two issues:

1. PSGs are non-orthogonal, and so unlike for Eq. (3), Wy # > W, (in 1D).

mn

18.:38,39 ossentially precludes any critically-dense rec-

2. The Balian-Low “no-go” theorem
tilinear PSL of identical PS-translated basis functions, ®,,, (in 1D), from being

amenable to effective PS truncation.

Regarding 1., even though the individual PSGs are very localized, there is a collective non-

locality that effectively emerges, because the correct density matrix is given by
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instead of by Eq. (3). In Eq. (5), S is the overlap matrix—i.e., Sy = (gi|g:), where k and

[ are composite indices, each representing a set of (m;<s,n;<s) index pairs (for arbitrary



f). The mixed-state Wigner function for the collection of N PSGs is therefore not a simple
sum of individual Wigner functions, but also involves “coupling” of well-separated PSGs.

Regarding 2., the situation—and its resolution—are a bit more subtle.

B. Successful Rectilinear Phase Space Lattice Techniques

The difficulties described in Sec. II A above can be overcome. In a 2003 paper,'” I pre-
sented the first QD method that formally defeats exponential scaling, and also achieves
perfect asymptotic convergence—the so-called “weylet” approach. It was soon applied to
model systems as large as f = 15.1%1 Later, my graduate student R. Lombardini proposed
the closely related, but simpler “symmetrized Gaussian” (SG) approach,?* which has since
been applied to a variety of real and model systems up to f = 27, including methyleneimine
and acetonitrile.?? 2* Both weylet and SG are rectilinear PSL (RPSL) approaches. Of all the
PSL methods described in this article, the SG approach is by far the simplest to implement
numerically. This is at least true for force-field PESs, for which all SG matrix elements are
known analytically—although a scalable quadrature method for more general PESs has also
been developed.?°

Addressing issue 1. from Sec. I A above, the weylet approach applies a simple Lowdin
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canonical orthogonalization procedure, which replaces the non-orthogonal g, PSG basis

with a corresponding orthogonalized PSL basis, ®;, that spans the same space:
) = [S—l/ 2} 6
0 =32 [57], la) (6

With regard to issue 2., we note that the Balian-Low theorem applies only to RPSL basis
functions on a critically dense lattice. One solution, therefore, is to work with a set of doubly
dense (in 1D) RPSL functions, from which orthogonal basis functions are then constructed as
a linear combination of one positive-momentum function (m,n > 0), and the corresponding
(m, —n) negative-momentum function. This necessitates the use of half-integer rather than
integer n indices, as indicated in Fig. 2. In any event, these measures give rise to an
orthonormal weylet RPSL basis, for which Eq. (3) applies—and moreover, one for which
the individual ®; basis functions decay exponentially with respect to distance from their PS
18,41

centers.

Numerical implementation of the weylet method requires an explicit summation of the



form of Eq. (6). In principle, this summation is infinite, which ensures that the resultant |®y)
are perfect PS-translated copies of each other, and also that the same universal expansion can
be used for all applications. In practice, only a finite summation is required, as the expansion
coefficients decay exponentially with |l — k| (Sec. III A). Note that explicit matrix inversion
is not required for each new calculation. Instead, the 1D inverse square root overlap matrix,
S=1/2 has been computed once for all time, and is presented in Sec. IITA. The generalization
for arbitrary f is straightforward, as this is just a direct product of 1D matrices. Moreover,
the exponential decay in coefficient values now applies across all dimensions at once, which
greatly reduces the total number of terms that must be considered explicitly.

In the weylet procedure as described above, the first step is to apply the summation
in order to generate the doubly-dense RPSL functions, and the second step is to apply
momentum symmetrization to obtain the final orthogonal weylet basis. On the other hand, it
is also possible to bypass the summation step altogether, and work directly with momentum-
symmetrized doubly-dense PSGs. This is exactly the SG approach. The resultant SG basis
functions are not orthogonal; yet, they still avoid the collective non-orthogonality problem
of the D&H approach, to the extent that they are nearly as efficient as weylets for most
applications (at least for large f; see Sec. IIT A).

There are also other avenues for getting around the Balian-Low no-go theorem. Again,
the theorem technically applies only to a critically dense RPSL of (1D) basis functions,
®,,.., that are perfect PS-translated copies of each other. One simple way to modify the
D&H PSGs to remove the PS-translation property is to apply a Fourier low-band-pass filter
projection to each g,,,. In other words each PSG is projected onto the space spanned by
momentum eigenstates in the range —pmax < P < Pmax-

The above strategy characterizes the so-called “pvb” and related methods of Tannor and
coworkers.?628 In practice, rather than projecting directly on momentum states, one uses
a set of orthonormal sinc functions, which span the same banded Fourier space. Moreover,
a Fourier projection per se is not essential; in principle, the desired effect can be achieved
using other projection subspaces.?® However, most work to date has been done using Fourier
projections, and it is convenient to think along these lines.

If pnax is sufficiently large, the above projection will not adversely impact the accu-
racy of the computed results. Moreover—with Balian-Low evidently in check—the resul-

tant projected PSG basis is now amenable to effective PS truncation. This must be im-



plemented carefully, as the projected PSG functions (denoted §,,,) are not orthogonal,
and so Eq. (5) applies, rather than Eq. (3). However, by introducing the dual functions,
o) = S [57*1] " |G1), one can replace Eq. (5) with the form S"7-'|bx) (G|, which re-
sembles Eq. (3). This form suggests that the dual representation should be amenable to
effective PS truncation, as is indeed found to be the case. Moreover, due to well-known
properties of sinc representations (or more generally, any basis set corresponding to Gaus-

1243) " the representational error decays as a Gaussian, outside of the classical

sian quadrature
PS region.

In comparison with the weylet and SG methods, the numerical implementation of pvb
requires that an explicit overlap matriz inversion be performed for each new calculation—an
additional computational step not required by weylet /SG. However, the pvb method can be
implemented in such a manner that this S inversion does not become the computational
(CPU) bottleneck of the whole calculation (for the untruncated basis, the inversion can be
applied to each dimension separately, as discussed above).

Ample numerical evidence suggests that pvb achieves perfect asymptotic efficiency in
1D. Although it is likely that pvb also formally defeats exponential scaling, this has yet
to be established mathematically. Regardless of its formal scaling properties, the N values
required for simple pvb to achieve convergence for larger f may be beyond reach, in practice.
To the author’s knowledge,?® the largest systems to which pvb or related methods have been
applied are for f = 6—as compared with f = 27 for SG. This marked difference in scalability
is likely due to the fact that pvb uses a critically-dense, rather than a doubly-dense RPSL—
and is therefore characterized by a 2/-fold loss in resolution, as compared to the weylet/SG
approach. On the other hand, once the convergence regime is reached, pvb is expected to

converge to high accuracy substantially faster than weylet/SG, owing to the Gaussian vs.

exponential decay (see Sec. IITA).

C. Other Large-f Applications of the Phase Space Picture

Quite distinct from its associations with the above RPSL methods, the PS picture also
presents a useful and versatile analytical tool, with respect to maximizing the performance
of just about any QD basis set, especially at large f. As discussed in Sec. I, one common

strategy to mitigate the curse of dimensionality is to apply correlated truncation to a DPB
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of the form @, &, (21,...25) = go,(cll)(:cl) X e X go,ii)(xf) (where the a subscript is now

suppressed). In this manner, correlations can be exploited across the full f-dimensional
parameter space of 1D basis functions, (ki,...,ks)—if not across the full 2f-dimensional
PS. Even though such a strategy does not formally defeat exponential scaling, it can still
lead to tremendous reductions in N for large f.

Typically, the 1D basis functions, cp,(;i) (x;) are energy-like eigenfunctions of 1D effective

Hamiltonians, [:Iig §, With energies E,S) The H; are often taken to be harmonic oscillators
(HOs), with E,(;) = hw;(k; +1/2). For systems characterized by polynomial force field PESs
with small anharmonicity and mode coupling, HO basis sets provide very good results at
the bottom of the energetic spectrum. This approach is used, e.g. in the MULTIMODE
package!'® developed by J. M. Bowman and coworkers—although more general VSCF basis
sets can also be employed.

Regardless of the particular choice of basis, the primary question is the following: how

(%)

should the correlated truncation of the ¢,’(x;) be optimized, so as to provide the most

accurate eigenenergies at the bottom of the spectrum—or at some other desired spectral
locale? For f =1, there is only one sensible choice, i.e., k < k.. For large f, the number
of reasonable-seeming truncations of (ki,...ky) space is vast—as is, also, the corresponding
range in performance. Clearly, it would be worthwhile to have an a prior: guide, describing
which correlated truncation scheme should be applied when—yet surprisingly little effort
has been expended in this direction.

For the simplest and most widely-used scenarios, the PS picture provides us with a simple

and reliable set of rules. Consider separable correlated truncations of the general form,

f
Z aiki S kmaxv (7)
i=1

where k.« is the sole convergence parameter. The problem of choosing an optimized trunca-
tion scheme then reduces to that of choosing the weights, «;, so as to maximize the accuracy
of the desired computed eigenvalues. Two natural choices emerge. First, if H= Z{Zl H;
truly were a separable HO, then perfect results (i.e., N = K, with all states computed to
infinite precision) would be obtained by setting a; = hw; and kpax = Funax. We refer to
this choice as “frequency-weighted” truncation (FWT)—since the individual weights, and
the entire sum itself, have units of frequency/energy. In the opposite limit, we have o; = 1

(for all 7), for which k.« is an integer, representing the total number of excitations summed
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over all 7. The latter choice is termed “polyad” truncation (PT), since the individual weights,
and the sum, are integers. Clearly, there are many other “intermediate” choices that could
also be considered.

The PS picture provides the desired answers by explicitly considering quantum tunneling
beyond the classically allowed PS region.?*? In particular, it reveals that PT is the most
efficient choice at the bottom of the energy spectrum—followed by intermediate weighting
schemes at higher energies, and then by FWT beyond that. Moreover, the PS picture further
predicts that above a certain energy, all HO or DPB correlated truncation schemes give way
to weylet /SG as the most effective approach. This is because of coupling and anharmonicity,
which necessarily increase with increasing energy, at least for force field PESs.

These trends were all observed explicitly, in a recent calculation of the lowest 10,000
quantum states of acetonitrile (f = 12).244 (Figure 2 depicts a typical phase space “slice”
for this system.) In particular, by using a combination of the above methods and correlated
truncation schemes, the most accurate spectrum across the entire dynamically relevant range
(within 6500 cm™! of the ground state) was obtained. The performance of this “hybrid”
spectrum is indicated in Table 1. A more detailed breakdown by individual method is
presented in Ref. 24, Fig. 3. As expected, PT is the most efficient choice at the very bottom
of the energy spectrum—offering 0.001-0.1 cm ™! convergence for the lowest 100 or so energy
levels. For the next 2000 or so levels, the intermediate weighting schemes are best for this

I convergence—followed by FWT beyond that, in the ~ 10 cm™!

system, achieving ~ 1 cm™
regime. At still higher energies, the predicted transition to weylet/SG is also observed.
Similar ideas were later applied to benzene (f = 30), for which one million quantum states

were computed (albeit not to very high accuracy).?

IIT. NEW RESULTS AND DISCUSSION

A. Weylet and SG Calculations at Extremely High Accuracy

In Ref. [21], R. Lombardini and I first proposed the non-orthogonal SG basis, as a
choice that offers nearly the same efficiency as the weylet basis but is simpler to implement.
We went on to provide a comprehensive investigation of scalability and basis set efficiency.

In general, such an investigation requires variation over three separate parameters: (1)
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system dimensionality, f; (2) desired relative accuracy threshold, €; (3) number of converged
eigenvalues, K. Such a comparison for weylets vs. SGs may be found in Refs. [21] and
[22]. The main conclusion is that, at the large f values of primary interest—where neither
approach achieves high accuracy without further refinements—SGs are only slightly less
efficient than weylets. As a typical example, for a model f = 14 HO system, with a basis
size of N = 24,942 and relative accuracy of € = 0.03, the weylet method achieves K = 1794
states, whereas SG achieves K = 1758.22

On the other hand, very recent numerical work by other authors®®3! has addressed ex-
plicitly the case of low f and extremely high accuracy (i.e. € ~ 1078-107!4)—comparing the
SG and weylet methods to each other, as well as to other techniques. From the numerical
data, it appears that in this regime, weylets outperform SGs by a significant margin. It
has also been reported that weylets are in turn outperformed by other related techniques,
such as pvb. However, these comparisons used the expansion coefficient table reported in
Ref. [18], which is only accurate to 107 or so. A proper comparison, clearly, requires more
accurate weylet expansion coefficients, that also extend significantly further out in PS.

In this work, I have used Mathematica to recompute all of the relevant weylet expansion
coefficients, to 20 digits of precision. All coefficients whose numerical magnitude is greater
than 10720 are reported in Tables II and III. The new coefficient values agree with those
in Ref. [18], to the precision to which the latter were reported. Therefore, even accounting
for substantial compounding of numerical roundoff errors, the new coefficient values should
more than suffice for extremely accurate calculations in the e ranges described above. The
new values are also available from the author in electronic form, upon request.

I computed the new expansion coefficients as follows.*® First, I began with the half-dense
RPSL of PSGs, centered at the PS origin—or equivalently, the doubly-dense RPSL PSGs that
correspond to even values of both m and n. Next, I truncated these PSGs within a square-
shaped region, corresponding to |m| < mpa.c and |n| < mp.c. The even-valued quantity
Mumax 1S the sole convergence parameter. The next step was to create the overlap matrix S
from the truncated Gaussians—the dimensions of which are clearly (mmax+1)? X (Mpax+1)2.
The elements of S were evaluated to 30 digits of precision—which was preserved in the
subsequent inverse square root overlap matrix calculation for S~1/2. To verify that this level
of precision was indeed achieved, I also numerically computed S—%/2.5-5-1/2 and confirmed

that the resulting product matrix was indeed the identity, to thirty digits of precision.
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The Lowdin canonical orthogonalization procedure as described previously has the ad-
vantage that it uniquely associates individual orthogonal and non-orthogonal basis functions
(unlike, e.g., the Gram-Schmidt procedure??). In principle, one must compute the expan-
sion coefficients for the infinite matrix corresponding to m.x — oo—for which all column
vectors of S~1/2 become identical, PS-translated copies of each other. In reality, edge effects
associated with the finite truncation cause small deviations from translational invariance.

These deviations should be smallest for the column vectors of S—1/2

corresponding to ®,,,
centered near the PS origin—i.e., those furthest from the edges. Accordingly, I used the
(m = 0,n = 0) column vector of S™/2 as the (Mmayx + 1) X (Mmax + 1) PS expansion
coefficients, reported in Tables II and IIT—exploiting, also, the symmetry with respect to
m — —m, n — —n, and (m,n) — (n,m).

[ assessed convergence in two different ways. First, I compared the (m = 0,n = 0)
column vector to the adjacent (PS-translated) (m = 2,n = 0) column vector obtained from
the same my,., calculation. This provides a measure of the degree of translation invariance
achieved, or the role of edge effects. Second, I compared the (m = 0,n = 0) column vector
for the largest m., calculation to that of a slightly smaller m,., calculation. In the present
context, the largest calculation performed was for mpy., = 28, with muy.. = 24 used for
comparison. With respect to both measures of convergence, the largest discrepancies so
obtained were no larger than ~ 10720,

Using the new coefficient values as computed above, one may of course expect to see a
marked improvement in weylet performance for extremely high accuracy calculations. On
the other hand, it is not likely that this improvement will make up for the full difference
in performance with the pvb approach in this regime, as this was reported in Ref. [28]. It
is important to understand the likely reasons for this—to which end, a PS analysis is once
again very advantageous.

In the weylet approach, because the basis functions are orthogonal, one can directly
add/subtract individual Wg,’s to Wy, as in Eq. (3). Moreover, it is well-established that
the individual weylet Wigner functions exhibit exponential decay, with respect to PS distance

(as measured in a certain natural sense'®?°)

from the weylet center. For computed energy
eigenstates up to .., this implies at best an exponential convergence of accuracy, with
respect to distance beyond the classical PS region used to retain additional weylet basis

functions. On the other hand, the pvb method exploits a “dual” approach, for which the
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truncated dual basis functions by exhibit Gaussian convergence of accuracy—even though
they are non-orthogonal, and fairly delocalized in PS.

For the above reason, one may expect the pvb approach to be the more efficient method
in the context of low f, and extremely high accuracy. On the other hand, a weylet or SG
approach is more efficient than pvb at high f—where high accuracies are beyond the reach
of any method, except at the relatively uninteresting region at the bottom of the spectrum.
The weylet /SG approach is more efficient in this context because it provides much better
sampling resolution of the relevant PS. In particular, because it uses a doubly-dense grid,
the resolution is improved by a factor of two per dimension—or by a factor of 2/ in all.
Evidently, this difference is what makes it possible to perform weylet/SG calculations up to
f = 27,22 whereas pvb-type calculations have to date been extended only up to f = 6.

It must also be borne in mind that the above comparison is for TT calculations only. For
TD calculations, the pvb approach has the advantage of not being constrained by momentum
symmetry. Whereas it is certainly possible to use weylets in a TD context, the momentum
symmetry constraint will necessarily lead to reduced efficiency. It is an interesting question—
currently being explored by Tannor and coworkers*>—whether, and more specifically in what
contexts, the reduced resolution of the pvb approach is outweighed by its ability to capture
momentum asymmetry, in TD applications.

Returning to TI calculations at larger f, it is also worth knowing when one should em-
ploy the weylet over the SG approach. Based on the previous discussion, it seems likely that
for many applications, there will be an “intermediate” regime—corresponding to perhaps
something like f = 4-12 and € ~ 1072-10"%—in which weylets outperform both SGs and
pvbs. For much larger f values, neither SG nor weylet (in their simplest implementations
as described here) can achieve high accuracy, and so the SG approach is preferred, as it is
simpler to implement (though neither SG nor weylet is any more difficult to code than any
other PSL method). As discussed in Sec. II B, the weylet Hamiltonian matrix construction
requires summations similar to Eq. (6). It can be shown that the number of CPU oper-
ations per matrix element scales as a power law.?* 2 The CPU effort required for matrix
construction becomes comparable to that of matrix diagonalization when this number ap-
proaches N = 700,000 (the largest explicit matrix size considered to date). For f =8, this
corresponds t0 M,y & 8, or (from Tables II and III) an expansion error of € ~ 10~%—which

is still smaller than the expected basis set error.
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B. Electron Dynamics: A preliminary investigation

For Coulombic PESs, both the challenges and opportunities of PSL methods appear to
be quite different than in the vibrational, nuclear motion context—and are therefore worthy
of separate consideration. Regarding opportunities, the concave-shaped PS regions that
characterize Coulombic interactions offer the potential for tremendous reduction—even in
1D, but especially as f is increased. Although this aspect was evidently first suggested by
the present author,'® it was not actually demonstrated until more recent work by Tannor
and coworkers?—who indeed observed a 13-60-fold reduction in N, in 1D. Moreover, the
promise of greatly improved efficiency with increasing f is particularly relevant for electron
QD applications—for which the conventional single-electron-Hartree-Fock-based techniques
that have been so successful in electronic structure, may not be so well suited.

As promising as is this earlier work by Tannor and coworkers, it has been limited in several
important respects by the aforementioned technical challenges, which are severe. Foremost
among these are the singularities in the PES—which give rise to infinitely tall PS regions
at the nuclear positions, even for bound electronic states. This is how the “cusp problem”
manifests in a PS treatment. With respect to a rectilinear lattice of PSL functions, one can
arrange the PS centers so as to avoid a single nuclear position, but it is harder to avoid all
nuclei. In many-electron applications, avoiding the electron-electron repulsion singularity is
substantially more difficult.*

To deal with the above situation, Tannor and coworkers sometimes replace the true
PES with a “softened” Coulomb approximation, which has no attractive singularities at the
nuclear positions.?% Additionally, these authors avoid the repulsive singularity by considering
only one-electron systems—meaning that the role of electron correlation remains completely
unexamined. Finally, they artificially reduce the dimensionality of the Coulomb problem
down to just 1D (f = 1)—which could have unphysical ramifications, given that the inverse
power law form of the Coulomb PES is inextricably linked to the fact that there are f = 3
spatial dimensions.

In the present work, we (myself and coworker J. Jerke) overcome all of these limitations, in
the course of computing several low-lying electronic states of the He atom. The calculations
are performed in the full f = 6 quantum dimensionality, using exact Coulombic PESs.

Electron correlation is thus treated ezactly, although for this preliminary study, spin is
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ignored. Our numerical calculation thus provides exact non-fine-structure-corrected energy
levels and wavefunctions, for both para- and ortho-helium.

Although PS ideas as discussed in this paper are used to truncate the basis, this is not
just a simple weylet or SG representation. In order to handle the singularities, we make use
of new matrix element integration technology?® that applies a Fourier band-pass filter. In
addition to this, a tensor product decomposition strategy is also employed. The details of
this method will be provided in a future publication. For the present purpose, it suffices to
state that all parameters associated with these refinements (e.g., the tensor rank) have been
chosen such that their contribution to the total error is significantly less than the largest
source of error—which is basis set truncation.

Computed energy levels (frequencies) for the ground (lowest-lying excited) state(s) are
presented in Table IV, and compared with experimental data.*” All calculations were per-
formed on a single node, with the longest requiring 42 hours of CPU time. For the ground
state, both the numerical convergence and the agreement with experiment are to within a
few .001 Ha. Note that substantially better convergence may not lead to a commensurate
improvement in experimental agreement, as fine structure effects are not considered here.
In any event, the computed ground state energy is much closer to experiment than is the
Hartree-Fock value®® (also presented).

In contrast, the excited state energy levels are less well converged—to one or two .01
Ha, which also characterizes the agreement with experiment. One might have expected a
tremendous reduction in accuracy as compared with the ground state—due to the much
larger CS region explored by the 2s or 2p electron, by virtue of its excitation and greater
screening. On the other hand, the corresponding PS region increase is much more modest,
as a consequence of which the resultant loss in accuracy (less than a single digit) is mitigated
significantly. Even more encouraging, however, is the fact that excited state frequencies are
significantly more accurate than energy levels. The frequencies in Table IV, obtained from
a separate calculation designed to optimize the latter, are converged to just a few .001 Ha.

All in all, the numerical performance is quite good, considering that the calculation was
performed directly in the full f = 6 quantum dimensionality, treating all electron correlation
explicitly. Evidently, there is extensive correlation across all twelve PS variables, x1, X2, p1,
and ps, which the method is able to exploit. Some of this “correlation” (in the broad, PS

sense) is clearly evident in Fig. 3, which presents various two-dimensional integrated density
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plots for the computed electronic ground state wavefunction. Note that electron correlation
(i.e., “correlation” in the electronic structure sense) accounts for much of this.

As a final comment, I point out that our procedure as implemented above, does not
as yet make any special allowances for the cusp. Traditional electronic structure methods
use ever-narrowing Gaussian functions, to deal effectively with cusps. Alternatively, in a
PSL context, I proposed!'® (and D. Tannor has implemented?®) using affine rather than PS-
translated wavelets. Affine wavelets are related to each other via width rescaling, as well as
CS translation—rendering them highly suitable for cusp regions. As of yet, neither affine
wavelets, nor traditional Gaussians, have been incorporated into our PSL calculation of the
He electronic states, as described above. However, either or both of these refinements could

be implemented, no doubt leading to further improvements in performance.

IV. SUMMARY AND CONCLUSIONS

For decades, computational chemists and molecular physicists have wrestled with the
“curse of dimensionality’—treating all degrees of freedom explicitly quantum mechanically,
in the context of nuclear motion dynamics. Similar challenges may apply in the emerging field
of electron dynamics. Whether the context is nuclear or electronic, if accurate “quantum
dynamics” calculations for large systems is the goal, then this goal cannot be achieved
without first facing down the curse of dimensionality head-on.

Phase space offers a very promising avenue for doing just that. In particular, the classical
phase space picture as discussed in Sec. IT A provides a clear understanding of the exponential
scaling that underlies the curse: both where it comes from, and how to eradicate it. Indeed,
this picture was used to develop the first quantum dynamics method formally known to
defeat exponential scaling—i.e., the weylet method, as discussed in Secs. IIB and IIT A.
Moreover, it has inspired other, related methods, such as SG and pvb. Collectively, these
methods have been successfully applied in circumstances that seemingly lie beyond the
capabilities of other state-of-the-art techniques. In particular, I know of no other methods
that can compute all of the extremely large number of vibrational states (e.g., K ~ 10*-10°)
that become dynamically relevant when f is large.

On the other hand, the phase space methods also have their own limitations—such as a

profound difficulty in achieving high accuracy when f is large. Here, too, the phase space

18



picture provides a quantitative understanding of why and how this is the case—albeit in
a more refined version, that describes the quantum tunneling of Wigner functions beyond
the classical phase space region implied by Eq. (4). This more refined picture also tells us
when each of the various rectilinear phase space lattice methods considered here is likely
to be the most effective—e.g., SG for the largest f and largest ¢ calculations, weylet for
intermediate f and €, and finally, pvb for the smallest, but most accurate calculations (and
also, explicitly time-dependent applications). The refined phase space picture also provides
an extremely useful analysis of conventional basis set methods. Few basis sets are less
basic or more widely used than the harmonic oscillator—particular in molecular vibration
applications. Yet, until the phase-space analysis of Sec. I1 C was performed, the optimal
means of truncating a harmonic oscillator basis for large f [in accord with Eq. (7)] was
evidently not known.

Returning to the three rectilinear phase space lattice methods discussed in this article—
i.e., weylet, SG, and pvb—the assessments as drawn above and in Secs. II B and III should
decidedly not be considered closed. All three approaches are still under active development,
with various beneficial refinements being introduced to improve accuracy, performance, and
scalability. The major goal is to improve the accuracy for large f—a challenge that requires
improving the Wigner representation, near and beyond the edge of the classical phase space
region at H = F... One effective strategy, at least for small f, is to project individual
weylet or SG basis functions using phase space region operators>!—reminiscent of the Fourier
projection in pvb, but applied here for an entirely different purpose. A more straightforward
approach that has been explored by several authors is to employ a non-F,,..-based phase
space truncation criterion, when growing the representational basis of N functions beyond
the first K that correspond to the classical region.2%28:3!

It is also possible to merge aspects of the different methods together. For example, Tannor

h2845—j e., weylet basis functions

and coworkers have recently explored the “pW” approac
that have been band-pass projected—which seems to offer some advantages. Indeed, a simi-
lar strategy is adopted in Sec. III B. Other refinements, to better accommodate quadrature,
overlap matrix inversion, iterative eigensolvers, tensor products, massive parallelization, etc.,
are also being considered. To this list we must also add “singular potentials”—for it seems

that the integration and other technologies employed in Sec. III B have now, for the first

time, opened the door to performing calculations for real electrons, using phase space lattice
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methods. This new development could prove very significant for electron dynamics. In any
event, whatever the future may bring, it seems clear that phase space ideas will enjoy a
bright future in the field of quantum dynamics, for some years to come.

As a final comment, I am very pleased and humbled to be able to say that—insofar as
my own contributions in the phase space quantum dynamics arena are concerned—these
began during my time as a postdoctoral associate with John C. Light. It was with John
that I published most of my early papers on the classical phase space picture,3?3 and I will
forever be grateful for the opportunity that his group provided me, early in my career, to

develop these ideas.
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TABLE I: Number of converged energy levels for CH3NH at varying levels of accuracy, e. Con-
vergence was determined by comparing the second largest calculation (N = 480159) to the largest
(N = 733312). Column I is the error tolerance in cm™!, used to determine which states are “ac-
curately” computed. Column III is efficiency of the basis as determined by comparing the ratio of

number of accurate states, K to the basis size, N.

Number of Converged States for CH3CN

Accuracy (cm™1) Number of States (K) Efficiency (£)

1000 479173 99.8%
100 243255 50.7%
10 10035 2.09%

1 310 0.0646%

0.1 54 0.0177%

0.01 31 0.00646%

0.001 6 0.00125%
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TABLE II: Gaussian expansion coefficients, ¢y, for normalized (but not momentum-symmetrized)
“fiducial” weylet, ®oo(x) = > Cmn gmn(x), on doubly-dense rectilinear PS lattice. The Gaussian
function, gmn(x), is centered in phase space at the lattice site, (m+/m, ny/7). Both positive and
negative values of m and n are included in the expansion. All coefficients larger than 1072° are

included here and in Table III—taking into account the index exchange symmetry, ¢, = Cum.

Momentum Position index |m|
index |n| 0 2 4 6

0 1.002 814 619 133 862 872 08 -0.021 713 366 679 443 673 02 0.000 703 359 248 430 332 55 -0.000 025 326 890 087 677 42
2 -0.021 713 366 679 443 673 02 0.000 470 147 007 792 114 70 -0.000 015 229 432 217 229 25 0.000 000 548 388 546 428 14
4 0.000 703 359 248 430 332 55 -0.000 015 229 432 217 229 25 0.000 000 493 325 708 374 47 -0.000 000 017 763 903 753 75
6 -0.000 025 326 890 087 677 42 0.000 000 548 388 546 428 14 -0.000 000 017 763 903 753 75 0.000 000 000 639 650 987 60
8 0.000 000 957 635 906 854 65 -0.000 000 020 735 138 074 57 0.000 000 000 671 671 572 06 -0.000 000 000 024 185 865 36
10 -0.000 000 037 244 351 751 09 0.000 000 000 806 430 471 67 -0.000 000 000 026 122 633 99 0.000 000 000 000 940 636 07
12 0.000 000 001 475 340 003 95 -0.000 000 000 031 944 686 36 0.000 000 000 001 034 781 52 -0.000 000 000 000 037 260 90
14 -0.000 000 000 059 200 996 59 0.000 000 000 001 281 845 04 -0.000 000 000 000 041 522 70 0.000 000 000 000 001 495 17
16 0.000 000 000 002 398 405 38 -0.000 000 000 000 051 931 29 0.000 000 000 000 001 682 21 -0.000 000 000 000 000 060 57
18 -0.000 000 000 000 097 886 26 0.000 000 000 000 002 119 47 -0.000 000 000 000 000 068 66 0.000 000 000 000 000 002 47
20 0.000 000 000 000 004 018 54 -0.000 000 000 000 000 087 01 0.000 000 000 000 000 002 82 -0.000 000 000 000 000 000 10
22 -0.000 000 000 000 000 165 76 0.000 000 000 000 000 003 59 -0.000 000 000 000 000 000 12
24 0.000 000 000 000 000 006 86 -0.000 000 000 000 000 000 15
26 -0.000 000 000 000 000 000 29
28 0.000 000 000 000 000 000 01
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TABLE III: Gaussian expansion coefficients, ¢, for normalized (but not momentum-symmetrized)
“fiducial” weylet, ®oo(x) = > ¢mn gmn(z), on doubly-dense rectilinear PS lattice. See Table II

caption for further details.

Momentum Position index |m|
index |n| 8 10 12

0 0.000 000 957 635 906 854 65 -0.000 000 037 244 351 751 09 0.000 000 001 475 340 003 95
2 -0.000 000 020 735 138 074 57 0.000 000 000 806 430 471 67 -0.000 000 000 031 944 686 36
4 0.000 000 000 671 671 572 06 -0.000 000 000 026 122 633 99 0.000 000 000 001 034 781 52
6 -0.000 000 000 024 185 865 36 0.000 000 000 000 940 636 07 -0.000 000 000 000 037 260 90
8 0.000 000 000 000 914 492 58 -0.000 000 000 000 035 566 42 0.000 000 000 000 001 408 87
10 -0.000 000 000 000 035 566 42 0.000 000 000 000 001 383 25 -0.000 000 000 000 000 054 79
12 0.000 000 000 000 001 408 87 -0.000 000 000 000 000 054 79 0.000 000 000 000 000 002 17
14 -0.000 000 000 000 000 056 53 0.000 000 000 000 000 002 20 -0.000 000 000 000 000 000 09
16 0.000 000 000 000 000 002 29 -0.000 000 000 000 000 000 09

18 -0.000 000 000 000 000 000 09
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TABLE 1V: Ground state energy level and excited state frequencies of the He atom, in Hartrees, as
computed using the method described in Sec. III B (Column II), and compared with experiment*”
(Column IIT). Energy differences are also listed (Column IV). For the ground state energy level, the
Hartree-Fock value®® is also presented, in the second row. Ground state energies appear above the
midrule; excited state frequencies below. Fine structure corrections are mot included in the calcu-
lation. Hence, the three *P energies (and separately, the three P energies) should be degenerate;

the small observed differences are due to numerical errors.

State Computed Experimental Difference
Label Energy (Ha) Energy (Ha) (Ha)
1s2 (1S) - 2.8968 -2.9037 0.0069

1s? (H.-F.) -2.8617 -2.9037 0.0420
1s2s (3S) 0.7246 0.7284 -0.0038
1s2s (1S) 0.7624 0.7576 0.0048
1s2p (3P) 0.7646 0.7704 -0.0058
1s2p (°P) 0.7649 0.7704 -0.0055
1s2p (°P) 0.7649 0.7704 -0.0055
1s2p (*P) 0.7764 0.7797 -0.0033
1s2p ('P) 0.7765 0.7797 -0.0032
1s2p (1P) 0.7768 0.7797 -0.0029
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FIG. 2: Schematic representation of doubly-dense weylet/SG RPSL in 1D, for the fourth normal
mode of CH3CN. The gray shaded area is the PS region representing the (eight) basis functions
retained via PS truncation—for a calculation of energy states in the dynamically relevant range up
t0 Feyt = 6500 cm™! (outer contour, denoted by thick curve). Source: T. Halverson and B. Poirier,

Chem. Phys. Lett. 624 (2015), Fig. 1(b), p. 39. Reproduced with permission of Elsevier.
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FIG. 3: Contour plots of the electron density for the ground state of the He atom, as computed in

Sec. III B, and integrated over all but two phase space variables: (a) (z1,22); (b) (Pay,Pzs); ()

(1, pz,). Contours correspond to exponentially-decreasing values of the electron density.
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