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Abstract:

Human scene categorization is rapid and robust, but we
have little understanding of how individual features
contribute to categorization, nor the time scale of their
contribution. This issue is compounded by the non-
independence of the many candidate features. Here, we
used singular value decomposition to orthogonalize 11
different scene descriptors that included both visual
and semantic features. Using high-density EEG and
regression analyses, we observed that most explained
variability was carried by a late layer of a deep
convolutional neural network, as well as a model of a
scene’s functions given by the American Time Use
Survey. Furthermore, features that explained more
variance also tended to explain earlier variance. These
results extend previous large-scale behavioral results
showing the importance of functional features for
scene categorization. Furthermore, these results fail to
support models of visual perception that are
encapsulated from higher-level cognitive attributes.
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Introduction

Human scene understanding is remarkable for its
speed (Greene & Oliva, 2009; Potter, Wyble,
Hagmann, & McCourt, 2014), as well as its robustness
in the face of limited information, such as in the far
periphery (Boucart, Moroni, Thibaut, Szaffarczyk, &
Greene, 2013), or with limited spatial resolution
(Torralba, 2009). Understanding the representations
and transformations that enable categorization is thus
a fundamental goal for computational cognitive
neuroscience.

Scene categories can be differentiated on the basis
of many types of features, ranging from low-level
visual properties such as color (Oliva & Schyns, 2000),
texture (Renninger & Malik, 2004), or contour junctions
(Choo & Walther, 2016), to high-level properties such
as conceptual attributes (Patterson & Hays, 2012) and
affordances (Greene, Baldassano, Esteva, Beck, &
Fei-Fei, 2016). Despite these results, we do not yet

understand how each feature type contributes to the
neural processing of scene category over time.

Assessing the relative contributions of low- and high-
level visual features has been challenging (Groen,
Silson, & Baker, 2017), primarily because these
features are not independent. Recent work has used
variance partitioning techniques to assess the relative
contributions of information sources (Greene et al.,
2016; Groen et al.,, 2018; Lescroart, Stansbury, &
Gallant, 2015), but these methods are most
interpretable when only a handful of features are
considered.

In this work, we used both optimized image selection
and orthogonal feature transformation in order to
examine the independent contributions of eleven
different visual models to the microgenesis of visual
scene categorization. Our results show that both visual
features and functional features primarily contribute to
early image-evoked activity.

Methods
Stimulus Selection

Participants (N=13) viewed 2250 color images from 30
scene categories across two EEG recording sessions.
Scene categories were chosen to maximize
differences in representational dissimilarity matrices
(RDMs) across three types of features: a late layer
(FC7) of a pre-trained AlexNet deep neural network
(DNN, (Krizhevsky, Sutskever, & Hinton, 2012), a bag-
of-objects model (Lazebnik, Schmid, & Ponce, 2006),
and a model of the scene’s functions / affordances
(Greene et al., 2016). Our iterative selection procedure
was inspired by the odds algorithm of (Bruss, 2000). In
each of 10,000 iterations, we created a set of 30 scene
categories from the SUN database (Xiao, Ehinger,
Hays, Torralba, & Oliva, 2014) that had equal
representation across indoor, urban, and natural
environments, and recorded the Spearman’s rho



correlation between function, object, and DNN RDMs.
We continued sampling scene category sets until we
observed a set with lower inter-feature correlations
than had been observed in the initial 10,000.

Experimental Procedure

Participants viewed scenes (20° visual angle) one at a
time for 750 ms each, and engaged in a three-
alternative forced choice (3AFC) task following each
trial. Each trial began with a 500 ms fixation point
followed by a variable duration blank screen followed
by the image. Continuous high-density EEGs were
recorded using EGI's Geodesic EEG acquisition
system. A full description of the recoding details and
pre-processing procedures is found in (Greene &
Hansen, 2017).

Encoding Models

We employed eleven different encoding models of
both visual and semantic features. For all features
except lexical distance, representational dissimilarity
matrices (RDMs) were created by computing the
distance between each category pair in the feature
space, using the 1-Spearman rho distance metric.

DNN features We exiracted activations from two
layers (Conv2 and FC6) of a pre-trained DNN. The
network used the AlexNet architecture (Krizhevsky et
al.,, 2012), and was trained on the Places database
(Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017).
These layers were chosen to reflect a lower-level and
higher-level layer respectively.

GIST The spatial envelope descriptor (Oliva &
Torralba, 2001) was computed for each image using 3
scales, 4-8 orientations per scale, and 64 spatial
blocks for a total feature vector of length 1152.

Color We transformed each RGB image to CIE L*a*b
color space, and for each image created a two-
dimensional histogram from the a* and b* channels in
50 bins per channel.

Wavelets To encode structural features, we passed
scenes through a Gabor filter feature bank of 3 spatial
scales, 4 orientations, and two quadrature phases.
Weights for each of the 1328 Gabors were obtained
with ridge regression.

Texture Texture features came from (Portila &
Simoncelli, 2000), and consisted of 6495 features from
four statistic types: marginal statistics of pixels,

wavelet coefficient correlations, wavelet magnitude
correlations, and cross-scale phase statistics.

Tiny images To serve as a baseline, images were
downsampled to 32 by 32 pixels, and RDMs were
created by pixel distance.

Functions Each image was rated by observers on
Amazon’s Mechanical Turk according to each of 227
actions from the American Time Use Survey. The
resulting feature vectors consisted of the proportion of
scenes in a category affording each of the actions.

Objects All objects and regions were hand-labeled
using the LabelMe tool (Russell, Torralba, Murphy, &
Freeman, 2008), resulting in 3,563 unique region
labels. The final feature vector consisted of the
proportion of scene images containing each of the
labels.

Lexical We computed the lexical distance between
each pair of scene category names, operationalized as
the shortest path between entries in WordNet (Miller,
1995).

Attributes We included the category-averaged
attribute descriptions of (Patterson & Hays, 2012) that
represent attributes of objects, materials, layout, and
affordances.

As shown in Figure 1, there were substantial
correlations between RDMs of all features. Therefore,
we used singular value decomposition to create an
orthonormal feature basis that expresses the unique
contributions made by each feature space relative to

one another.

Figure 1: Correlations between all features (Ieft ), and
histogram of feature correlations (right).

Time-Resolved Encoding Analysis

For each of the 11 models, we created 30-category by
30-category RDMs from the 30-category by N-feature
matrices using the 1-correlation metric. All RDMs were
combined in a 435-pair by 11-model matrix. Singular
value decomposition was used to create a new



orthonormal basis from this set, which was used in
regression analysis.

For each participant and each electrode, we
extracted ERP signals within a 40 ms sliding window
beginning 100 ms before stimulus presentation, and
extending through the 750 ms scene duration. For
each window, we created a 30x30 RDM as above. In
separate regression analysis, we predicted this neural
RDM from each of the orthogonalized feature
predictors. Model fit was assessed with adjusted R2.

Results
Overall

Figure 2 shows the explained variability of all 11
features included together. These variables explain
significant ERP variance starting 36 ms after stimulus
onset, and show two distinct peaks at 93 ms and 157
ms post-stimulus respectively.
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Figure 2: Explained variability for all features,
averaged across electrodes. Error surface represents
+/- 1 SEM.

Individual Models

The contribution from individual models is shown in
Figure 3. Overall, each model started explaining ERP
variability early, ranging from 26 ms post-scene onset
(FC6 DNN features) to 40 ms post-stimulus for texture
features. Although all models explained some ERP
variability, the FC6 DNN features and the functional
features, explained twice as much variance as any
other model. Each model was a better predictor of
ERP activity than later. Peak explained variability
ranged from 80 ms post-stimulus for gist and 32x32
tiny image features, to 177 ms for the Wavelet
features. Although we did not observe a significant
correlation between the maximum explained variability
and the peak where that maximum occurred (r=0.04,

p=0.90), nor the onset of explained variability and the
time of peak (r=0.18, p=.60), we did observe a striking
correlation between the onset and the peak (r=-0.88,
p=0.0003), demonstrating that models that had earlier
onsets also explained more variability overall.
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Figure 3: Explained variability over time for each of 11
features, ordered by onset of explained variability.

Discussion

Both visual and conceptual features could explain
early image-evoked EEG activity, and surprisingly
neither feature type seemed to be advantaged over the
other. These results corroborate the findings of
(Greene et al., 2016) who demonstrated that functional
features explained most of the variability in scene
categorization behavior. While (Groen et al., 2018)
replicated this behavioral result, it was observed that
most variability in scene-selective brain regions was
driven by visual features rather than functions. Our
results highlight the importance of functional and visual
features in explaining early neural activity, which may
have been missed at the time scale of fMRI.
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