
Static Analysis and Symbolic Execution
for Deadlock Detection in MPI Programs

Craig C. Douglas1(B) and Krishanthan Krishnamoorthy2

1 School of Energy Resources and Department of Mathematics,
University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071-3036, USA

craig.c.douglas@gmail.com
2 Computer Science Department, University of Wyoming, 1000 E. University

Avenue, Laramie, WY 82071-3315, USA
krishuwyo@gmail.com

Abstract. Parallel computing using MPI has become ubiquitous on
multi-node computing clusters. A common problem while developing par-
allel codes is determining whether or not a deadlock condition can exist.
Ideally we do not want to have to run a large number of examples to find
deadlock conditions through trial and error procedures. In this paper we
describe a methodology using both static analysis and symbolic execu-
tion of a MPI program to make a determination when it is possible. We
note that using static analysis by itself is insufficient for realistic cases.
Symbolic execution has the possibility of creating a nearly infinite num-
ber of logic branches to investigate. We provide a mechanism to limit the
number of branches to something computable. We also provide examples
and pointers to software necessary to test MPI programs.

1 Introduction

While impossible to determine when an arbitrary parallel program halts or goes
into deadlock, which is equivalent to the halting problem [18], there are many
real world codes in which a determination of deadlock or non-deadlock is possible
[12]. This paper only applies when a determination can be made for parallel
programs using MPI [8] though it could be extended to similar communications
systems.

Software model checking provides an algorithmic analysis of programs and
a fundamental framework to construct a program model [11]. A binary decision
diagram (BDD) [3] is one of the ways to construct the model and investigate
the state of the program. A BDD is a decision tree that is used to produce out-
put based on a calculation from Boolean inputs [3]. Even though the BDD and
model checking techniques are excellent, if the program system has a very large
number of states, then it will be difficult to travel all feasible paths. Accord-
ing to Biere et al. [4], the symbolic model checking with boolean encoding can
handle large program states faster than other approaches. We use the symbolic
model checking technique to model a MPI program and simulate its execution

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 783–796, 2018.
https://doi.org/10.1007/978-3-319-93701-4_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_62&domain=pdf


784 C. C. Douglas and K. Krishnamoorthy

while analyzing the states of the program. By using a symbolic model we create
constraints to find feasible paths to follow the execution of the routines or to
detect deadlock. We use the Satisfiability Modulo Theories (SMT) [2] method
and symbolic execution in order to travel through the path in our symbolic
model.

Consider a trivial example program for two processes. Each process uses
MPI Send to send a message to the other process. Each process uses MPI Recv
to receive the message from the other process. Each process then ends with
MPI Finalize. This program obviously does not deadlock.

Our process removes unnecessary code in order to analyze it. We are left with
as little as possible in addition to the MPI calls. Table 1 represents the remaining
code. Table 2 represents the steps that the symbolic execution takes in order to
determine that this example does not deadlock.

Table 1. Sample non-deadlock MPI routines

Process 0 Process 1

MPI Send[1] MPI Send[0]

MPI Recv[1] MPI Recv[0]

MPI Finalize MPI Finalize

Table 2. Non-deadlock MPI routines with possible execution steps and index

Process 0 Process 1

Step 1–MPI Send[1] Step 3–MPI Send[0]

Step 2, Step 6–MPI Recv[1] Step 4–MPI Recv[0]

Step 7–MPI Finalize Step 5–MPI Finalize

The remainder of the paper is organized as follows. In Sect. 2 we discuss
background issues and similar, related research. In Sect. 3 we discuss the com-
putational process used to extract the relevant part of a MPI code and how the
symbolic execution operates. In Sect. 4 we define the symbolic model and how
symbolic execution works. In Sect. 5 we show an interesting example. In Sect. 6
we provide conclusions and discuss future research.

2 Background and Related Research

Initially, we focused not only detect deadlock on but also looked for a solution
to prevent executing deadlocked MPI code. When a user executes a MPI pro-
gram, it is very difficult to identify the process that cause deadlock due to the
missing matching MPI Send for a MPI Recv in the source code. Our deadlock



Static Analysis and Symbolic Execution for Deadlock Detection 785

prevention system should not change user data in the code because that can
produce wrong output. However, if necessary, we can change the order of the
MPI Routine without affecting the final results. Therefore, we started to focus
on a different direction for our research and we have conducted many research
studies in MPI deadlock and prevention mechanism areas. Since most of the
MPI deadlock detection research have only focused on dynamic analysis of MPI
program, that technique does not lead to deadlock prevention concepts.

In [10] an idea is proposed to find MPI deadlock using a graph based app-
roach. This research idea is primarily based on the Wait-for graph, which helps
to detect deadlock in operating systems and relational database systems. Wait-
for graph considers each process as a node and keeps track of processes when a
MPI program executes [14]. If MPI Recv causes deadlock on a process, it locks
and holds the resources to the process. Suppose more than a single process is
waiting for resources, then there is a possibility of a deadlock. The above method
still requires the MPI program to execute in real time. In addition, possible over-
head and performance drops can happen in the deadlock detection mechanism if
there are lot of MPI Routines available in a MPI source code. Furthermore, the
method cannot help prevent deadlock before it happens during the execution.
However, the proposed method can be useful if we use it before the MPI program
executes.

Based on our research, we can choose either static or dynamic analysis in
order to accomplish our research goal. In the remainder of this section we discuss
both methods. We choose static analysis over dynamic analysis after conducting
several research studies. Also, static analysis provides deadlock detection and
can prevent execution of MPI program before a deadlock occurs.

We can analyze a software program in two ways: by static and dynamic
analysis. Dynamic analysis is a very common method in software testing. To be
effective dynamic analysis requires that the program produce output during the
execution.

A model checking system basically is a finite-state automation that can for-
mally verify the concurrent systems and binary decision diagrams [6]. Also, a
model checking system is automatic, which means it can verify a program with a
high level representation of the user specified model and can check whether the
program satisfies the model. Otherwise, the system provides a counterexample
if the formula is not satisfied. In addition, model checking can be used in two
ways: through dynamic and static analysis.

Dynamic model checking is widely used in race condition and deadlock detec-
tion. Wang et al. discussed finding race conditions in multi threaded programs
[19]. Also, this research study shows better algorithms to reduce the unnecessary
interleaving of thread execution with the model checking and code instrumen-
tation. Gupta et al. explained that there is a significant performance impact on
instrumenting functions, which increases the size of the functions instrumented
in the source code [9].

As a result, researchers have introduced a framework to accomplish the code
instrumentation in better ways and that can reduce overhead while injecting



786 C. C. Douglas and K. Krishnamoorthy

functions into the source code. So, if we can introduce a similar technology in
our research, then the code instrumentation can be very helpful for deadlock
avoidance. In addition, the implementation introduces possible ways to inject
functions into the source code without changing the context of the MPI program.

Symbolic model checking is used to verify a program in an extremely large
scale such that 10120 states can be verified, which enables us to perform program
analysis through boolean encoding and symbolic behavioral states [5]. Due to
this research study our research ideas moved towards the static model checking
method. Even though static model checking is suitable for our research, King
et al. [16] showed that model checking suffers from the well known state-space
explosion problem. This research study introduces a better framework that works
with symbolic execution [13], which helps to automate the test case generation
and solve the state-space explosion problem efficiently.

3 Computational Process

To do the program analysis using a symbolic model, first we parse the MPI code
and extract the information about all of the MPI routines using an Abstract
Syntax Tree (AST) [1] that the Rose Compiler [17] generates. We extract the
variables and functions from the MPI codes. Then we generate the formulas for
our deadlock detection main program. Our main program creates a Yices [20]
script in a file that is used by the Yices SMT program.

The main program determines the final result from the output of the Sym-
bolic Execution in Yices. We implemented a validation mechanism that verifies
the input file and determines if it has valid MPI function calls so that the Sym-
bolic Execution does not fail due to improper arguments. Then we build formulas
for Yices based on the MPI functions.

We currently can analyze a MPI program for a very limited number of MPI
functions. The code is extensible in the sense that we can add functions and logic
formulas for additional MPI functions, which is part of the future work listed in
Sect. 6. When the symbolic model is completed we run it using Yices.

An issue is how long should the Symbolic Execution run in order to find a
result from the Yices SMT solver. We specify a last value as symbolic value so
the Symbolic Execution only runs until the last value is reached. Determining
the specific last value without loss of performance and creating a path explosion
problem is a somewhat difficult.

We have introduced a bound variable B (last value) as the maximum integer
available when numbering formulas. The formulas are created dynamically and
we check the deadlock condition. If we do not have a deadlock conclusion, then
we create a formula again with a fresh copy.

4 Symbolic Model and Execution

4.1 The Model

During the extraction process, each MPI function is checked for erroneous param-
eters. Consider Table 1. It uses a state-space exploration technique. A state



Static Analysis and Symbolic Execution for Deadlock Detection 787

includes a process scheduling, current step of a MPI routine, index, and path
condition.

The path condition is a component that specifies the order of a MPI routine.
In Table 2 at Step 2 when MPI Receive executes we change the execution to
process 1 and choose Step 3. The path condition is essential in our constraints
and is maintained in all steps.

We can show the above state components in symbols, such as

process scheduling (p) ∧ current step (j) ∧ index (i) ∧ path condition

The state is maintained as we execute each MPI routine in the code and we
check the logic condition at each step.

We define a token tk for the path condition implementation, which takes a
MPI routine for each index of an execution. The token also has the transition
implied by the MPI routines to indicate a ready to execute condition for a
particular process and index.

We define the variables in a state with symbolic values, e.g.,

p(process) = <p0, p1, . . . , pn>, i(index) = <i0, i1, . . . , in>,
and j(step) = <j1, j2, j3, . . . , jn>.

For Table 2, ji = i, i = 1, · · · , n = 7.
The process p takes values according to the feasible path condition in the

symbolic model, but index i has consistent values that represent the symbolic
variable of the current step. Thus, index i is used when creating a fresh formula
with a copy of the current step. We continuously create and execute the current
step until the symbolic model satisfies the constraints.

If the symbolic model cannot satisfy the constraints for the current step, e.g.,
at Step n, MPI Recev cannot find matching MPI Send at any index i, then
that leads to deadlock for the current process. We do not execute the next step
until we execute the current step successfully. We create fresh formulas for the
current step as necessary for each index i.

token[process][index] = transition(MPIRoutines)

is denoted by
tkp[i] = τtransition(p).

The symbolic model must find a feasible path based on the path conditions and
MPI routines (cf. Table 2).

We add a buffer to our model that stores the MPI Send variable required
by the MPI Receive routine that may execute later in the code. We denote the
buffer implementation as follows:

buffer[destinationprocess][channel][index] = full | empty, or
buf c

p′ [i] = full | empty.

The channel specifies uniqueness of individual routines in each process and
prevents overwriting the buffer. The channel implementation is similar to MPI’s



788 C. C. Douglas and K. Krishnamoorthy

virtual communication channels, which allows buffer to keep storing routines for
a respective channel so MPI Send and MPI Receive can communicate over
the channel.

In Table 2 at step 1 when we execute the MPI Send routine from process 0
we add a constant value that fills the buffer with the destination process (e.g., set
buf1

1 = 1). The constant value indicates that the buffer is full. Since our symbolic
execution checks the program states in sequential order, it is important to keep
track of which process is eligible to run at the current step, e.g., in Table 2 at
step 3, the program jumps to process 1 because at the current step process 0 is
not eligible to continue further execution.

We require a scheduling mechanism in the symbolic model that takes the
eligible process value p for each i, denoted as s[i] = p. Consider Table 2. Then

Step i: s[i] = 0, for i = 0, 1, 6, 7 and
Step j: s[j] = 1, for j = 3, 4, 5.

Without a scheduling implementation it is difficult to add the correct MPI rou-
tine to token and is impossible to travel through the feasible paths in the sym-
bolic model. It is one of the important components in the constraints to make
decisions so that the symbolic execution runs correctly. In order to schedule the
process we need to make sure that the token has a MPI routine and the cur-
rent step is eligible to execute (e.g., if the current routine is a MPI Receive we
need to check if buffer has the value from the matching MPI Send before we
execute the current step).

4.2 MPI Logic Formulas

We can derive formulas for MPI Send and MPI Receive. For MPI Send,

tkp[i] = τsend(p) ∧ buf c
p′ [i] �= full) =⇒

update(s[i] = p) ∧ update(buf c
p [i + 1] = full) ∧ update(buf c

p′ [i + 2] = empty).

This formula means that at the current index, if the token has a MPI Send
routine and the buffer is not full, then we schedule the process p and update
the buffer with the next index (i = i + 1). Also, we update the buffer index
(i = i+2) with the empty value so we prevent overwriting buffer. The symbolic
execution runs correctly.

For MPI Receive,

tkp[i] = τrecev(p) ∧ bufp[i] �= empty =⇒
(update(s[i] = p)) ∨ ((p < pmax) −→ (p = p + 1) ∨ (p = 0)).

This formula means that at the current index, if the token has a MPI Receive
routine and the buffer is not full, then we schedule the current process p. In
order to update to the next process we check whether the current process is the
last available process (represented by p max and is 1 in Table 1) or not. If the
current process itself is the last one, then we update the next process with 0.
Otherwise, we update with next available process.



Static Analysis and Symbolic Execution for Deadlock Detection 789

4.3 Symbolic Execution

Symbolic execution [13] is a program analysis technique that utilizes the sym-
bolic values instead of the absolute values of a program. For all program inputs,
symbolic analysis represents the values of program variables as symbolic expres-
sions of those inputs. As the program executes, at each step the state of the
program executes symbolically and it includes the symbolic values of program
variables at that point. By using the symbolic execution we simulate the pro-
gram. We use the path constraints and the program counter on the symbolic
values to simulate the execution of a program.

While the symbolic execution is one of the better approach simulating a pro-
gram, it is also difficult to apply to parallel programming methods. For instance,
tracking the PC and execution steps in a process is a difficult task and requires
sophisticated approaches other than just the conventional symbolic approach.
Here we propose a different symbolic approach by introducing several constraints
to better resolve the symbolic analysis.

4.4 Symbolic Encoding

We present an encoding approach that converts the symbolic model into Sat-
isfiability Modulo Theories (SMT) formulas [20]. We include scheduling con-
straints (Si), transition constraints (Ti), finalize constraints (Fi), and deadlock
constraints (Di):

Si ∧ Ti ∧ Fi ∧ Di (1)

or
Si ∧ Ti ∧ Fi → ¬Di (2)

We check all constraints in each execution step. Note that (1) is equivalent to
checking the satisfiability for (2). We use Yices as our SMT solver [7] to solve (2).
If each formula is satisfiable, then the solution gives trace output that leads to
the conclusion. Based on the trace output we can draw a conclusion on whether
the given MPI routines are under deadlock condition or not. For example, if all
the constraints become true then the deadlock constraints become false, so the
given MPI code has no deadlock. Alternately, if any of the constraints become
false, then the deadlock constraint is true and we add a value to the deadlock
buffer.

Our program shows detailed information about deadlock that will occur in a
MPI program. The constraints are the tools for us to solve the formula which is
generated by our program.

4.5 Symbolic Variables

In the symbolic analysis, we check deadlock conditions up to a predefined step
bound value B. For each step i < B, we add a fresh copy for each variable. That



790 C. C. Douglas and K. Krishnamoorthy

is, var[i] denotes the copy of i at the step. For example, buffc
p [i] holds values

for each step as

buf c
p [0], buffc

p [1], buffc
p [2], · · · , buffc

p [B]

and each has a value of full | empty.
Yices may take additional index i values to solve the formula, which depends

on number of MPI routines available and what order those MPI routines are
written in the source code. For example, if a MPI source code consists of five
MPI routines, then our program may create 12 entries of the formulas with index
i = 11, but it depends what order the MPI Send and MPI Receive routines
are written in the code. If MPI Receive appears before the MPI Send in all
the processes then Yices solves the formula and concludes with deadlock with
the minimum number of index i value. In that case, the index i value will be
equal to the number process available in the code. However, in order to reduce
the path explosion, we have optimized the constraints. Therefore, we can reduce
the utilization of index i values and prevent solving the same formula over and
over with different index i values. If our program finds either deadlock or non
deadlock of a MPI code, then we halt the symbolic execution.

Token Variables. The token (tk) is used to store a MPI routine in each exe-
cution step. During the transition a MPI routine τ in process p and index i has
a token, denoted by tkp[i] = τ . At any step, a single transition per process has
a token. When τ is executed, then the token moves to next MPI routine. Define
succ(τ) to be the successor of next transition of τ .

Buffer Implementation. Unlike typical programming languages, we cannot
store a value in a Yices program. We use the index i, which is used to create
a fresh copy of a variable in Yices. We have fresh copy of buffer with current
process p for use to store a value. In our symbolic execution buffer is used to
store only full or empty. We use specific values to represent the full and empty
values in Yices depending on the context.

In our symbolic analysis we have six kinds of buffers:

1. Scheduling Buffer
2. Schedule Success Buffer
3. Transition Buffer
4. Transfer Buffer
5. Receive Block Buffer
6. Deadlock Buffer.

We use the Scheduling Buffer to store the execution step. We ensure that
the current step can be scheduled or that it is necessary to move on to the
next process. This situation arises when a MPI Receive routine is executed. If
MPI Receive does not find a matching MPI Send, then we skip the execution
in the current process and move to the next process. Otherwise, we fill the



Static Analysis and Symbolic Execution for Deadlock Detection 791

Scheduling Buffer. We use the Transfer Buffer to store each transfer that
occurred from one process to another when we do not schedule the current
process. Hence, we keep a record of the number of the transfer that happened
for each MPI Receive in a process, which helps us to find deadlock in the
Deadlock Constraint.

The Scheduling Buffer avoids conflicts between the MPI routines and
stores values for a specific channel and execution index. We fill the Schedule
Success Buffer when a process is selected to execute. We use Schedule Success
Buffer to indicate the execution of the current process in Deadlock Constraint.
If the current MPI Receive does not find a matching MPI Send after some
execution and the current Schedule Success Buffer is empty, then we use
Schedule Success Buffer and Receive Block Buffer in order to identify a
potential deadlock in the code. In this case, Transfer Buffer is the number of
transfers we made for the current MPI Receive when we attempted to find a
matching MPI Send.

If the number of transfers exceeds the number of processes available in
the MPI code, then we assume that the current MPI Receive will never find
a matching MPI Send. Therefore, we update the Receive Block Buffer in
Transfer Buffer Constraint. As a result, Schedule Success Buffer and
Receive Block Buffer both satisfy the Deadlock Constraint formula and
becomes true. Finally, we update the Deadlock Buffer and conclude there
is a deadlock in the code.

The Transition Buffer is used to store the value or tag of the MPI routine
that will identify the matching MPI Send or MPI Receive. For example, in
Table 2, if step 1 is permitted to execute, then the Transition Buffer acquires a
value from MPI Send (or a tag) and the value should be the same for the match-
ing MPI Receive in the destination process. The MPI Receive and Deadlock
Buffers are tied together. Table 3 shows a deadlock situation in step 2 if the
MPI Receive cannot find a matching MPI Send. Then the Transfer Buffer
Constraint adds the current step into the Receive Block Buffer, which occurs
in step 4. We perform this operation by using the Transfer Buffer and we
introduce a constraint to check whether Transfer Buffer is full or empty.

Finally, our program concludes as a deadlock if the Deadlock Buffer
includes one or more MPI Receive routines. If even one MPI Receive is
in the Deadlock Buffer, then some MPI Receive could not find a match-
ing MPI Send. So the execution will not continue at least for the blocking
MPI Send and MPI Receive as in real MPI execution and will be considered
as a potential deadlock in the code (Table 4).

The formulas for both MPI Send and MPI| − Receive are quite complex.
In [15] are tables that break down the conditions to simple expressions, based
on tables, that can be followed to determine correctness.

4.6 MPI Logic Reformulations

The MPI formulas from Sect. 4.2 are reformulated in this section for what they
are with the details of this section.



792 C. C. Douglas and K. Krishnamoorthy

Table 3. Deadlocked MPI routines with possible execution steps

Process 0 Process 1

Step 1–MPI Send[1] Step 3, Step 5–MPI Receive[0]

Step 2, Step 4–MPI Receive[1] MPI Receive[0]

MPI Finalize MPI Finalize

Table 4. Another deadlocked MPI routines with possible execution steps

Process 0 Process 1

Step 1, Step 3–MPI Receive[0] Step 2, Step 4–MPI Receive[0]

MPI Send[1] MPI Send[0]

MPI Finalize MPI Finalize

The main job of the Scheduling Constraint is to generate formulas that
are responsible for process scheduling. In real MPI execution, each process will
execute the MPI routines that belong to the process. Since execution is simulated
sequentially, we determine that the current process is eligible to schedule before
we execute MPI routines. If the scheduling formula does not execute, then further
execution will not take place.

We introduce a program counter (PC) in the MPI constraints. It is used to
keep track of duplicate executions of the same MPI routine. In Table 2 after Step
5 and before Step 6, Yices can execute the MPI Send routine, but it ignores the
execution because MPI Send is already executed successfully in step 1 so we
can prevent solving the formula twice and move on to the next step. Therefore, in
Table 2 we directly evaluate formulas for MPI Receive in Step 6, which helps
to minimize the usage of index i and can potentially reduce overhead in our
symbolic execution.

The updated formula for MPI Send is

∑k=N
k=0 (PCp[k] �= full ∧ ∃k ∈ i) −→ (tkp[i] = τsend(p′)∧

buf c
p′ [i] �= full) −→ update(s[i] = p)∧

update(schedule success bufp[i] = full)∧
update(buf c

p′ [i + 1] = full) ∧ update(buf c
p′ [i + 2] = empty)∨

(update(buf c
p′ [i + 1] = empty)) ∧ δ({i, τ, j}).

The updated formula for MPI Receive is

∑k=N
k=0 (PCp[k] �=full ∧ ∃k ∈ i) −→ (tkp[i]=τreceive(p) ∧ ∑l=N

l=0 bufp[l] �= empty)
−→ (update(s[i]=p) ∧ update(schedule success bufp[i] = full)) ∨ (((p<pmax)
−→ (update(pi+1 = p + 1)) ∨ (update(pi+1 = 0))) ∧ update(tkp+1[i + 1] =
succ(τ)) ∧ update(transfer bufp[i][ji+1] = full)) ∧ ∃l ∈ i ∧ δ({p, i, τ, j}).



Static Analysis and Symbolic Execution for Deadlock Detection 793

5 Experiments

All experiments were run on a computer with an Intel Core i7 7700K running
at up to 4.20 GHz, 16 GB of DRAM, and a 500 GB solid state drive. We used a
virtual environment of a VMware workstation player installed under Windows 10
as the host operating system with Ubuntu 16.04 as the guest operating system.

In Table 5 we show experiments taken from deadlocked MPI code. The MPI
codes used in our experiments were based on ones the Internet and we also
created some complex MPI codes. The codes all fall into deadlock, though not
in an obvious manner.

Table 5. Experiments for deadlocked MPI codes

MPI Time taken for 10 experiments (secs.)
Routines

1 2 3 4 5 6 7 8 9 10
4 3.049 3.082 3.035 3.306 3.366 3.401 3.339 3.346 3.380 3.301
8 3.361 3.390 3.364 3.330 3.385 3.440 3.279 4.283 3.391 3.437
8 4.575 4.285 4.198 4.745 4.094 4.156 5.117 5.077 4.062 4.076
12 4.102 4.911 4.159 4.024 5.022 4.233 4.201 4.248 4.145 5.363
24 4.007 3.937 3.979 4.078 3.950 4.039 4.064 4.007 4.127 3.945
24 4.186 4.261 4.203 4.223 4.149 4.274 4.357 4.272 4.199 4.330
48 5.127 5.017 5.030 5.107 5.099 5.031 5.155 4.948 5.042 5.085
64 5.761 5.577 5.724 5.804 5.788 5.605 5.715 5.967 5.677 5.854

MPI Procs. Average
Routines Time

4 2 3.2605
8 2 3.4660
8 3 4.4385
12 3 4.4408
24 3 4.0133
24 4 4.2454
48 5 5.0641
64 6 5.7472

In some contexts we added several processes instead of including many MPI
routines in a few processes. We used 2 and 3 processes for 8 MPI routines.
Similarly, we used 3 and 4 processes for 24 MPI routines. We tested with different
processes to evaluate the time difference between the number of processes. The
results show some differences since the symbolic execution may consume more
time as the number of processes increase in the MPI code. We observe that when
24 MPI routines are executed the average time for the execution is less than the
previous results. The reason for this difference could be among 24 MPI routines
the orphan MPI Receive is situated in nearly the best case scenario in the MPI
code.



794 C. C. Douglas and K. Krishnamoorthy

According to the Table 5 for the deadlock detection, the best case scenario
would be an orphan MPI Receive executed in the first step in process 0. If an
orphan MPI Receive executes at the last step in the final process, then it is the
worst cast scenario. The average experiment time in Table 5 is the time the main
program took to accomplish all of the tasks, which includes parsing the MPI
codes, generating the AST using the ROSE compiler, extracting information
from the AST and ROSE compiler, generating Yices codes, running symbolic
execution in Yices, analyzing Yices output, and generating the conclusion from
results.

Table 6 shows the experiment results for a non-deadlock MPI code. Time
consumption for the 24 MPI routines case is higher when compared to Table 5.
Since the MPI code is not under deadlock, Yices must run symbolic execution
until it finds the last MPI routine in the final process. Hence, Yices consumes
more time than running symbolic execution in a similar deadlocked MPI code.

Table 6. Experiments for non-deadlock MPI code

MPI Time taken for 10 experiments (secs.)
Routines

1 2 3 4 5 6 7 8 9 10
4 4.88 3.72 3.69 3.58 3.60 3.46 3.71 3.64 3.76 3.60
8 4.17 4.23 4.13 4.11 4.25 4.17 4.15 4.32 5.06 4.19
8 3.65 3.63 4.00 3.67 3.41 3.81 3.56 3.64 3.52 3.48
12 6.79 6.86 6.77 7.20 6.69 6.55 6.70 6.78 6.94 6.76
24 70.39 69.62 69.20 71.32 75.42 72.58 73.40 72.33 71.07 70.14
24 83.94 83.75 77.97 79.6 77.60 79.44 76.72 77.06 77.61 76.86
48 73.02 74.16 75.56 73.76 80.34 77.53 80.91 73.80 74.38 76.53
64 105.11 130.01 105.70 103.30 103.29 107.56 106.71 103.97 104.34 103.64

MPI Procs. Average
Routines Time

4 2 3.76
8 2 4.28
8 3 3.64
12 3 6.80
24 3 71.55
24 4 79.06
48 5 76.00
64 6 107.36

6 Conclusions and Future Work

We have proposed a novel approach to find deadlock in simple MPI codes using
static analysis and symbolic execution. We chose static analysis over dynamic
analysis because it helps to verify a program of extremely large scale plus we can



Static Analysis and Symbolic Execution for Deadlock Detection 795

find deadlock in MPI programs without numerous executions of the code. Static
analysis allows analysis of MPI codes by using static model checking techniques.
To perform the static model checking we construct a symbolic model that is
the basic element for building the constraints and formulas. Symbolic Execution
runs the formulas that we create from constraints in the Yices SMT solver.

Also, in this research we delivered a deadlock detection program that can
find deadlock in MPI codes that include only basic MPI communicative rou-
tines, e.g., MPI Send and MPI Receive. Future research will enable many
more MPI routines, such as MPI Barrier, MPI Isend, MPI Ireceive, etc.
into our deadlock detection mechanism.

Acknowledgments. This research was supported in part by grants DMS-1722692,
ACI-1541392, and ACI-1440610 from the National Science Foundation.

References

1. Aho, A.V., Ullman, J.D.: Principles of Compiler Design. Addison-Wesley, Boston
(1977)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS
Press (2009)

3. Becker, B., Drechsler, R.: Binary Decision Diagrams: Theory and Implementation.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4757-2892-7

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

5. Chou, C.N., Ho, Y.S., Hsieh, C., Huang, C.Y.: Symbolic model checking on systemc
designs. In: DAC Design Automation Conference 2012, pp. 327–333. IEEE Press
(2012)

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16, 1512–1542 (1994)

7. Elwakil, M., Yang, Z., Wang, L., Chen, Q.: Message race detection for web services
by an SMT-based analysis. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou,
X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 182–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16576-4 13

8. Gropp, W., Lusk, E.: Using MPI: Portable Parallel Programming with the Message-
Passing Interface. Scientific and Engineering Computation, 3rd edn. MIT Press,
Cambridge (2014)

9. Gupta, S., Pratap, P., Saran, H., Arun-Kumar, S.: Dynamic code instrumentation
to detect and recover from return address corruption. In: Proceedings of the 2006
International Workshop on Dynamic Systems Analysis, WODA 2006, pp. 65–72.
ACM, New York (2006)

10. Hilbrich, T., de Supinski, B.R., Schulz, M., Mueller, M.S.: A graph based approach
for MPI deadlock detection. In: Proceedings of the 23rd International Conference
on Supercomputing, ICS 2009, pp. 296–305. ACM, New York (2009)

11. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41, Arti-
cle ID 21 (2009)

12. Jiang, B.: Deadlock detection is really cheap. ACM SIGMOD Rec. 17, 2–13 (1988)

https://doi.org/10.1007/978-1-4757-2892-7
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-16576-4_13


796 C. C. Douglas and K. Krishnamoorthy

13. King, J.C.: A new approach to program testing. In: Hackl, C.E. (ed.) IBM 1974.
LNCS, vol. 23, pp. 278–290. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07131-8 30

14. Kitsuregawa, K.M., Tanaka, H.: Database Machines and Knowledge Base
Machines. Springer, New York (1988). https://doi.org/10.1007/978-1-4613-1679-4

15. Krishnamoorthy, K.: Detect Deadlock in MPI programs using static analysis and
symbolic execution. Master’s thesis, University of Wyoming, Computer Science
Department, Laramie, WY (2017)

16. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

17. rosecompiler.org: ROSE compiler. http://www.rosecompiler.org/. Accessed 3 Mar
2018

18. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proc. Lond. Math. Soc. 42, 230–265 (1937)

19. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dynamic model checking with
property driven pruning to detect race conditions. In: Cha, S.S., Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 126–140.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 11

20. yices.csl.sri.com: The Yices SMT solver.http://yices.csl.sri.com/. Accessed 3 Mar
2018

https://doi.org/10.1007/3-540-07131-8_30
https://doi.org/10.1007/3-540-07131-8_30
https://doi.org/10.1007/978-1-4613-1679-4
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
http://www.rosecompiler.org/
https://doi.org/10.1007/978-3-540-88387-6_11
http://yices.csl.sri.com/

	Static Analysis and Symbolic Execution for Deadlock Detection in MPI Programs
	1 Introduction
	2 Background and Related Research
	3 Computational Process
	4 Symbolic Model and Execution
	4.1 The Model
	4.2 MPI Logic Formulas
	4.3 Symbolic Execution
	4.4 Symbolic Encoding
	4.5 Symbolic Variables
	4.6 MPI Logic Reformulations

	5 Experiments
	6 Conclusions and Future Work
	References




