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Abstract

Grounded language acquisition is concerned with
learning the meaning of language as it applies to
the physical world. As robots become more capa-
ble and ubiquitous, there is an increasing need for
non-specialists to interact with and control them,
and natural language is an intuitive, flexible, and
customizable mechanism for such communication.
At the same time, physically embodied agents of-
fer a way to learn to understand natural language
in the context of the world to which it refers. This
paper gives an overview of the research area, se-
lected recent advances, and some future directions
and challenges that remain.

1 Introduction

Advances in robotics are enabling progressively more sophis-
ticated, capable technologies to reach large consumer popu-
lations. Such systems offer unprecedented potential for AI to
help in a variety of human-centric applications such as elder
care and household maintenance. However, natural, easy-to-
use interfaces to such systems, such as those employing nat-
ural language, are lagging behind. As robots become more
prevalent—and as the need for the services they can offer
grows—the importance of allowing non-expert users to in-
teract with them naturally and comfortably increases. Nat-
ural language is an excellent modality for end users to give
instructions and teach robots about their environments.

At the same time, physically grounded agents provide
unique opportunities for language learning. Human lan-
guage does not exist in isolation; it is learned, understood,
and applied in the physical world in which people exist.
Understanding symbols and symbolic reasoning has been
a core element of artificial intelligence throughout the his-
tory of the field [Newell and Simon, 1976; Searle, 1980;
Harnad, 1990]. Finding the connection between those sym-
bols and their underlying meanings is the grounded language
acquisition problem: taking linguistic tokens and learning to
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interpret them by connecting them to real-world percepts and
actions [Mooney, 2008].

The core idea underlying this work is that treating language
learning as a physically grounded problem can improve the
efficiency and efficacy of both natural language processing
and robotics. Intuitively, language can be better learned when
presented and interpreted in the context of the world it per-
tains to, and robots can learn to be more useful and more
flexible when language is used to describe and disambiguate
the noisy, unpredictable world in which they operate. Learn-
ing these groundings on the fly from non-specialists allows
a deployed robot to learn and continually update a situation-
specific model of language and tasks in its environment.

The work presented in this paper centers on the use case of
people teaching a robot about objects and tasks in its environ-
ment via unconstrained natural language. The research focus
is on formulating and using statistical machine learning ap-
proaches to allow robots to gain knowledge about the world
from interactions with users, while simultaneously acquiring
semantic representations of language about objects and tasks.

Rather than considering these problems separately, they are
addressed concurrently by employing a joint learning model
that treats a combination of language, perception, and task
understanding as strongly associated training inputs. This ap-
proach allows each of these channels to provide mutually re-
inforcing inductive bias, constraining an otherwise unman-
ageable search space and allowing robots to learn from a rea-
sonable number of ongoing interactions.

There are many approaches to symbol grounding, includ-
ing formal methods that manually define words [Boteanu et
al., 2017], cognitive approaches [Mohan and Laird, 2014],
and approaches in which meaning is represented as part of
a larger-scale knowledge framework [Williams and Scheutz,
2016] or graphical structure [Arumugam et al., 2017]. This
paper focuses on using statistical machine learning methods
to learn mappings between words and formal representations
of the world [Misra et al., 2017]. from paired corpora of lan-
guage and sensor data. We give brief examples of research
achievements and concepts in using machine learning to un-
derstand language, then touch on selected future directions
and open problems.









information provided by sensor data about the world. De-
spite an extensive and growing body of research, a significant
number of challenges still need to be addressed before we
see language-controlled robot assistants deployed in human
spaces. This goal will continue to drive technical advances
in robotics, natural language processing, machine learning,
cognitive science, and other areas.
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