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Conventional topological superconductors are fully gapped in the bulk but host gapless Majorana
modes on their boundaries. We instead focus on a new class of superconductors, second-order
topological superconductors, that have gapped, topological surfaces and gapless Majorana modes
instead on lower-dimensional boundaries, i.e., corners of a two-dimensional system or hinges for a
three-dimensional system. Here we propose two general scenarios in which second-order topological
superconductivity can be realized spontaneously with weak-pairing instabilities. First, we show that
px + ipy-wave pairing in a (doped) Dirac semimetal in two dimensions with four mirror symmetric
Dirac nodes realizes second-order topological superconductivity. Second, we show that p+id pairing
on an ordinary spin-degenerate Fermi sruface realizes second-order topological superconductivity
as well. In the latter case we find that the topological invariants describing the system can be
written using simple formulae involving only the low-energy properties of the Fermi surfaces and
superconducting pairing. In both cases we show that these exotic superconducting states can be
intrinsically realized in a metallic system with electronic interactions. For the latter case we also show
it can be induced by proximity effect in a heterostructure of cuprate and topological superconductors.

I. INTRODUCTION

One of the characteristic properties of topological insu-
lators (TIs) and superconductors (TSCs) is the presence
of stable, gapless modes hosted on their boundaries. Such
surface states are special because they cannot be realized
in their intrinsic dimension having the same symmetries.
A well-known example is the one-dimensional (1d) p-wave
superconducting wire that is gapped in the bulk, but ex-
hibits Majorana zero mode bound states (MBS) localized
at its two ends1. In higher dimensions, there are a wide
variety of phases including 2d Chern insulators that host
chiral edge states2, and 3d time-reversal invariant topo-
logical insulators that exhibit an odd-number of surface
Dirac cones3. The topological boundary modes are com-
monly used to diagnose the presence of the topological
phase, e.g., by identifying the surface Dirac cone spec-
trum of topological insulators through angular resolved
photoemission spectroscopy3. They also generate much
of the intrinsic interest in these systems for possible appli-
cations, e.g., using MBS as topological qubits4, or chiral
modes as dissipationless transport channels.

Recently, the notion of topological insulators has
been extended to include higher-order topological
insulators5–10; a new class of topological phases without
gapless surface states. A 2nd order topological insula-
tor/superconductor (TI2/TSC2) is a d-dimensional sys-
tem with gapped (d−1)-dimensional boundaries that are
themselves topologically non-trivial such that there are
protected low-energy modes at the (d − 2)-dimensional
boundaries, e.g., corners in 2d and hinges in 3d. The
first predicted TI2 is the 2d quantized electric quadrupole
insulator5–10 that has gapped edge states, but hosts de-
generate low-energy modes localized at the corners of a
sample. This topological phase can be protected by a va-
riety of symmetries, but the most commonly considered
ones are either a pair of mirror symmetries Mx, My, or C4

symmetry. A simple model for this phase was proposed
in Ref. 5, and was subsequently realized experimentally
in three independent meta-material contexts11–13.

In this article, we focus on higher-order topological
superconductors8,9,14–21. In analogy with 2d TI2s, we
provide mean-field Bogoliubov-de-Gennes (BdG) Hamil-
tonians that exhibit second-order topological supercon-
ducting phases and stable corner MBS. We explore two
general scenarios in which one can spontaneously real-
ize TSC2s. First, we focus on mirror-symmetries and
show that for a normal state corresponding to a two-
dimensional Dirac semimetal with four mirror symmet-
ric Dirac nodes, a px + ipy order parameter will generate
second-order topology. Typically, a px + ipy-wave super-
conducting order parameter gives rise to a Chern num-
ber and associated chiral Majorana edge modes. Here,
however, something unusual happens due to the normal-
state electronic structure, and the px + ipy order does
not induce a nonzero Chern number, instead producing
a TSC2 with a Z2 topological invariant protected by mir-
ror or particle-hole symmetries. We consider the effects
of shifting the position of the Dirac nodes, gapping them
out, and doping them and find that the TSC2 phase re-
mains robust in a wide range of parameter space. Moving
the Dirac nodes (in a mirror symmetric fashion) does not
change the topology as long as they do not collapse and
annihilate. Gapping out the Dirac points competes with
the SC order parameter, but we show that the topol-
ogy and corner MBS are robust as long as the Dirac
mass is smaller than the superconducting order param-
eter. Additionally, with a finite chemical potential, the
Dirac points in the normal state evolve into Fermi sur-
faces, and can pass through a Lifshitz transition to even-
tually shrink and vanish. We show that the topology
of the superconducting state remains robust throughout
this process until the Fermi surfaces vanish.

The second context we consider is based on C4T sym-
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metry in a system realizing p+id superconductivity. The
d-wave order is odd under C4 lattice rotation symmetry,
and its π/2 relative phase to the p-wave order ensures a
combined C4T symmetry. The normal state in this case
is a featureless, spin-degenerate Fermi surface. To un-
derstand the origin of the topological phase heuristically
one can think of a two-stage process where the normal
metal state forms a nodal d-wave superconductor with
four nodal points, and then the nodal BdG quasiparti-
cles are fully gapped by the generation of coexisting p-
wave superconductivity. This process could arise in, e.g.,
d-wave cuprate superconductors when co-existing p-wave
order is intrinsically or extrinsically/proximity induced.
Alternatively, one could start from a normal state that is
first fully gapped in the bulk by px + ipy/px − ipy pair-
ing to form a time-reversal invariant TSC.22,23 As such,
the system will have protected edge states and the ad-
dition of d-wave order can gap the edges out in a C4T
invariant way to produce corner modes and TSC2 topol-
ogy. We analyze the topological invariants of 2d and 3d
TSC2s protected by C4T symmetry and show that in
both dimensions it is characterized by a Z2 topological
invariant. Furthermore, we find that these topological in-
variants can be reduced to simple forms that depend only
on the normal-state Fermi surfaces and the properties of
the pairing, when in the weak-pairing limit.

Besides focusing on mean-field BdG Hamiltonians, we
show that certain interactions can favor the spontaneous
formation of both TSC2 scenarios in a weak-pairing pic-
ture. For the first scenario, we start with a normal state
formed by a two-band Dirac nodal structure that can be
realized in solid state or cold atom systems24. We con-
sider adding a chemical potential to the four Dirac nodes
since, from the point of view of energetics, the presence
of Fermi surfaces (FS) is beneficial for superconductivity,
as the density of states is finite (as opposed to vanishing
linearly for the 2d Dirac points). Remarkably, we show
that for a normal state having four “doped Dirac points”
in the presence of a finite-range attractive interaction, a
SC state with px or py pairing symmetry appears sponta-

neously through a low-temperature instability. Further,
we show by Landau-Ginzburg free energy analysis that
a px + ipy-wave order parameter is favored. We show
that these ingredients are sufficient to generate the TSC2

phase for the first scenario.

For the realization of the second scenario we take two
different approaches. First, we consider a metallic sys-
tem with a conventional spin-degenerate FS, and sub-
ject it to two types of electronic interactions that favor
p-wave pairing and d-wave pairing respectively. These
interactions, and their relevance to experiments, have
been extensively studied previously25–32. In particular,
for the p-wave order, it has been recently proposed27,28,30

that fluctuations in the vicinity of an inversion symmetry
breaking ordered phase induce p-wave order. For the d-
wave order, perhaps the simplest mechanism is through
the antiferromagnetic exchange interaction in an itiner-
ant fermion system32. We show that the combination of

these interactions naturally leads to the coexistence of
p-wave and d-wave order. Following a similar Landau-
Ginzburg free energy analysis, we show that the coex-
istence state indeed has p + id-wave order which is the
desired form for the TSC2 state. Additionally, we show
that by coupling a d-wave superconductor with a 2d TSC
will naturally produce the p + id state and TSC2 topol-
ogy through the proximity effect. In particular, we show
that a heterostructure between FeTe0.55Se0.45

33–36 and a
cuprate SC can potentially realize a high-Tc TSC2 phase.

II. TSC2 FROM MIRROR-SYMMETRIC DIRAC

SEMIMETAL

A. A lattice model for TSC2

We begin constructing a model for a 2d TSC2 phase
by close analogy with the quadrupole model in Ref. 5.
That model is a tight-binding model on a square lattice
with four complex fermion degrees of freedom per cell.
If one simply replaces the four complex fermion orbitals
by Majorana fermions, and replaces all of the hopping
terms with Majorana tunneling terms, then one will have
a model for a TSC2 in a Majorana basis (see Fig. 1). The
Hamiltonian in terms of Majorana operators is given by

H = −2it
∑

(m,n)

[

γ2
m,nγ1

m+1,n + γ4
m,nγ3

m+1,n

−γ2
m,nγ4

m,n+1 + γ1
m,nγ3

m,n+1

]

, (1)

where (m, n) are the site coordinates. The phases of the
Majorana tunneling terms are tuned to have an effective
π-flux per plaquette, and each plaquette is gapped. If we
have boundaries of a sample then the edges are gapped,
but have “unpaired” Kitaev chains, and the corners har-
bor unpaired MBS (as shown in Fig. 1). Thus, this is a
natural model for a TSC2 phase in 2d.

Since two Majorana degrees of freedom represent one
complex fermion degree of freedom, this model can phys-
ically describe a superconductor formed from a normal
metallic state with two bands. We can express the Majo-
rana Hamiltonian in a complex fermion basis in terms of
the hopping and pairing of electrons. To do this we com-
bine the four Majorana operators per unit cell in pairs to
form two complex fermions. There are several inequiva-
lent ways one could choose to do this, and each one yields
a different possible microscopic electronic realization of
this TSC2 phase.

The choice of how to group the four Majorana modes
per cell into two complex fermion modes essentially de-
cides how the Hamiltonian splits into normal-state band
structure and superconducting pairing gaps. Since our
goal is to have the pairing terms generated as a low-
temperature instability of the low-energy electrons, then
it is desirable that we choose a microscopic realization
such that the hopping terms lead to a gapless band struc-
ture, and the pairing terms describe its intrinsic super-
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We now argue that this gapped phase described by
Eq. (11) is in a TSC2 phase. Let us focus on the case
with µ = 0 first. We can think of a process to obtain this
generic HamiltonianH′ by deforming Eq. (3) while main-
taining, e.g, the mirror symmetries. Namely, we define
H′(k, α) in the same form as (11) with α ∈ (0, 1) where
f1(k, 0) ≡ cos kx and f1(k, 1) ≡ f1(k) and similarly de-
fine f2(k, α) and g1,2(k, α). During the deformation pro-
cess the Dirac points given by the normal-state part of
the BdG Hamiltonian do not collapse and annihilate, and
the bulk gap remains open since the equal-spin pairing
term always gaps out the Dirac points. While this shows
we can continuously connect these Hamiltonians without
the bulk gap closing, we also need to show that the cor-
ner Majorana modes in Eq. (3) do not disappear due to a
Wannier transition either, i.e., a bulk-driven transition of
the edge Hamiltonian.5,6,38 In Appendix A we prove that
such a Wannier transition does not occur as long as the
normal state Dirac points do not annihilate. If we then
include a chemical potential µ in Eq. (11) it is straight-
forward to show that, for sufficiently small µ, neither the
bulk nor edge spectrum undergo a transition. Therefore
we have shown that Eq. (11) realizes a TSC2.

As an explicit example of this condition we can con-
sider the Hamiltonian

Hb(k) =(bx + t cos kx)σxτz + t cos kyσy

+ ∆ sin kxσxτy + ∆ sin kyσxτx, , (12)

which we have already found is a TSC2 for |bx| < |t|. We
note that precisely within this range, the BdG Hamil-
tonian describes a px + ipy superconductor with a nor-
mal state with four mirror-symmetric Dirac points. At
bx = −t the normal-state Dirac points are maximally
shifted and annihilate on the kx = 0 axis. Interestingly,
at this point the system goes through a Wannier tran-
sition while the bulk gap remains open. To see this, we
can calculate the effective Hamiltonian for the top and
bottom edges (open boundaries in the y-direction). From
the second and fourth term in Eq. (12) the wavefunction
of the edge states satisfy σzτxΨb/t(kx, y) = ±Ψb/t(kx, y),
where b/t denotes bottom and top edge respectively. The
edge Hamiltonians are given by

H
b/t
b (kx) = (bx + t cos kx)µb/t

x −∆ sin kxµb/t
y . (13)

where µb
i is the Pauli matrices in the subspace of | ⇑〉b ≡

| ↑〉σ ⊗ | →〉τ and | ⇓〉b ≡ | ↓〉σ ⊗ | ←〉τ , and µt
i is the

Pauli matrices in the subspace of | ⇑〉t ≡ | ↑〉σ ⊗ | ←〉τ
and | ⇓〉t ≡ | ↓〉σ ⊗ | →〉τ . One can straightforwardly
verify that this edge Hamiltonian becomes gapless and
transitions from topological to trivial at bx = −t. From
this example we see that the Wannier transition is tied to
the fate of the normal-state Dirac points, and as long as
the Dirac points do not annihilate the system generates
TSC2 topology with the px + ipy pairing.

C. Realization from electronic interactions

The fact that our proposed superconducting Hamilto-
nian (3) has a gapless normal-state band structure in-
dicates that the required superconducting gap can po-
tentially be intrinsically induced from electronic inter-
actions. From an energetic perspective, the presence of
Fermi surfaces at a finite µ greatly enhances the pairing
instability so we will consider a normal state of “doped”
Dirac points with Fermi surfaces at finite µ. We have
shown above that doing so does not change the topology
of the superconducting state in which we are interested.
To be specific, we consider the same nearest-neighbor
tightbinding Hamiltonian as in Eq. (4) with a finite µ
with 0 < µ < t (The situation with four closed pockets
around each Dirac points, shown in Fig. 2). There are
four Fermi pockets centered at (kx, ky) = (±π/2,±π/2),
and the regions of the FS’s with opposite momenta al-
ways occur with the same (pseudo) spin texture, hence
naturally leading to triplet, odd-parity pairing instead of,
e.g., singlet s-wave pairing. Unlike topology, the super-
conducting critical temperature Tc, as well as the exact
form and magnitude of the superconducting gap ∆ are
not universal properties, and depend on microscopic de-
tails such as the band dispersion and the structure of the
electronic interactions. However, the remarkable feature
that odd-parity (p-wave) pairing is expected to be dom-
inant over s-wave pairing for our normal state system is
an encouraging sign for its realization.

We now move on to study a concrete pairing mecha-
nism. The sign-changing structure of the p-wave order
parameter in k-space places restrictions on the required
k-space structure of the electronic interactions. Indeed,
momentum-independent electron-phonon interactions do
not induce pairing in the p-wave channel at weak cou-
pling, because, within the ladder approximation39, the
contribution to the pairing susceptibility from FS regions
with positive and negative pairing gaps cancels out. For
our purposes, we consider a density-density interaction
given by the effective action

Sint = −

ˆ

dkdqD(q)c†
α(k)cα(k)c†

β(k + q)cβ(k + q), (14)

where α, β are (pseudo) spin indices and are summed
over, k ≡ (ωm, k), q ≡ (Ωm, q), and ωm, Ωm are Matsub-
ara frequecies. D(q) can be thought as the propagator of
a collective mode, and for simplicity we take an Ornstein-
Zernike form

D(Ω, q) = 1/(Ω2 + c2q2 + c2ξ−2). (15)

This propagator is peaked at zero momentum, and it
can be realized physically by fluctuations of an electronic
nematic order,40 or a soft optical phonon mode with a
strong momentum dependence peaked at q = 0. For
example, such a phonon mode has been proposed to play
an important role in high-temperature superconductivity
in monolayer FeSe on SrTiO3.41,42
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We make three further simplifications. First, we as-
sume that the Fermi pockets in Fig. 2(a) are circular.
Second, we take the weak-coupling limit and neglect all
self-energies and vertex corrections. Third, we assume
that the correlation length in units of the lattice constant
a0 satisfies 1 � ξ/a0 � t/µ, such that the intra-pocket
interaction can be treated as constant, and dominates
over the inter-pocket ones. With these assumptions, the
linearized gap equation for the p-wave order ∆1 between
the two pockets centered at ±(k∗

x, k∗
y) is

∆1 =
λ0 − λ2

4
N(0)∆1 ln

Λ

T

ˆ

dθ

2π
cos2 θ

2
, (16)

where we have defined λ0 ≡ D(Ω = 0, q = 0), λ1 ≡
D(Ω = 0, |q| = π), and λ2 ≡ D(Ω = 0, q = (π, π)). We
note that λ1 dependent terms happen to cancel and not
enter the equation. The ln(Λ/T ) factor corresponds to
the standard Cooper instability, where Λ is an ultraviolet
cutoff and T is the temperature. N(0) is the density
of states at the Fermi level. Additionally, the angular
integrand cos2(θ/2) obtains from the spin-texture on the
FS’s.

We can extract the superconducting critical tempera-
ture as

Tc = Λ exp

[

−8

(λ0 − λ2)N(0)

]

. (17)

By the spatial symmetry of our system, the analysis for
the p-wave order ∆2 between the two pockets centered
at ±(k∗

x,−k∗
y) follows analogously, and the resulting Tc

is identical. The interplay between the ∆1,2 orders can
be addressed within a Ginzburg-Landau free energy for-
malism:

F =α(|∆1|
2 + |∆2|

2) + β(|∆1|
4 + |∆2|

4) (18)

+ 4β′|∆1|
2|∆2|

2 + β′′
[

∆2
1(∆∗

2)2 + ∆2
2(∆∗

1)2
]

.

Whether, and how, the ∆1 and ∆2 order parameters co-
exist is determined by the quartic terms. Since in our
case ∆1 and ∆2 couple to different pockets, their com-
petition effects (which are captured by the β′ term) are
small, and ∆1 and ∆2 coexist in the ground state. From
the β′′ term, no matter how small, the relative phase be-
tween ∆1,2 is fixed to be ±π/2.43–45 It is straightforward
to check the phase of the SC gap on each pocket to find
that such a coexistence state is indeed a px+ipy SC state.
Therefore, we have shown that via a simple pairing mech-
anism, a two-dimensional Dirac system precisely realizes
the second-order topological superconductivity sponta-
neously.

III. TSC2 FROM A C4T SYMMETRIC

SUPERCONDUCTOR

A. p + id pairing symmetry

In this section we discuss another type of TSC2 phase
in both 2d and 3d characterized by a combined symmetry

of C4 spatial rotation and time-reversal T . We consider
the following Hamiltonian

H =

ˆ

dk

[

c†(k)

(

k2

2m
− µ

)

c(k)

+∆pcT (k)(k · σ)iσyc(−k)

+i∆dcT (k)(k2
x − k2

y)iσyc(−k) + h.c.
]

, (19)

which can be used in both 2d and 3d. The first term
describes an ordinary spin-degenerate Fermi surface, and
the second term corresponds to a time-reversal invariant
p-wave pairing, commonly denoted as (p + ip)/(p − ip)
order in 2d, or the analog of the superfluid 3He-B phase
in 3d23,46. The first two terms have time reversal sym-
metry T , as well as a particle-hole symmetry C. The
third term is a d-wave pairing term, which is odd under
a C4 lattice rotation, with a relative phase of π/2 with
respect to the p-wave order. For convenience, we take
this phase difference into account by treating the d-wave
order parameter as imaginary, and we denote the pair-
ing symmetry of this SC state as p + id. Owing to the
imaginary d-wave pairing term, such a superconducting
state breaks both time-reversal symmetry T and C4 ro-
tational symmetry, but is invariant under the combined
C4T operation.

Such a SC model supports chiral Majorana modes on
the hinges of a sample in 3d, or MBS on the corners of
a sample in 2d. We can understand the origin of these
topological modes in a simple picture. For example, in
3d, the p-wave superconducting order by itself realizes
topological superconductivity in class DIII, which sup-
ports gapless Majorana cones on all surfaces. The addi-
tion of the bulk d-wave order parameter gaps out these
surface Majorana cones, as its relative π/2 phase with the
p-wave order breaks T . Since the d-wave order param-
eter changes sign under a C4 rotation in the xy-plane,
the Majorana masses for the neighboring side surfaces
(parallel to the z-axis), say xz and yz surfaces, are op-
posite. Therefore, the hinges separating these surfaces
can be viewed as mass domain walls for the surface Ma-
jorana fermions, and therefore they localize chiral Ma-
jorana modes. This argument holds similarly in 2d to
generate single MBS at corners from mass domain walls
of the initially-gapless helical Majorana modes on the
edges. We illustrate these MBS in Fig. 3.

For the sake of completeness, we note that there is
another set of C4 and T broken, but C4T invariant, terms
allowed in the superconducting system. Such terms are
given by, for example,

ˆ

dkc†(k)(k2
x − k2

y)σic(k), i = x, y, z, (20)

and represent spin-nematic order that might be induced
as a Pomerunchuk instability in the spin channel.47–49

These terms deform the Fermi surfaces in a spin-
dependent way. However, we found that these terms do
not fully gap the system. Choosing i = x, y, or z, either
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wave and dxy-wave order. This imaginary d-wave pairing
term completely gaps out the Fermi surface, including the
would-be nodal lines in the T -symmetric sector during a
transition from ν = 2 to ν = 0. Thus, this transition
can occur without a gap closing, hence ν = 2 and ν =
0 belong to the same phase. This result indicates that
the topological invariant is a Z2 quantity given by P ≡
(−1)ν .

The identification of P ≡ (−1)ν as a bulk topologi-
cal invariant can also be established via the stability of
the hinge modes. As we discussed, for the T -invariant
system the winding number ν ∈ Z corresponds to the
number of stable, surface Majorana cones. When the
imaginary d-wave order parameter is turned on it gaps
out the Majorana cones on surfaces parallel to the z-
axis, and induces chiral Majorana modes at the hinges
where these surfaces intersect. The direction of propaga-
tion of these hinge modes are determined by the sign of
the d-wave gap, but importantly, this sign does not enter
the calculation of the winding number ν. Since, for even
values of ν, there are an even number of hinge modes,
one always tune the signs of the multiband imaginary d-
wave order parameters such that the hinge modes form
counter-propagating pairs. It is then possible to gap out
these counter-propagating modes without changing ν. In
the case of ν = 2, the dxy order in Eq. (28) can couple the
counter-propagating hinge modes and gap them without
breaking the C4T symmetry. By the definition of our
winding number ν, the d-wave order does not affect it,
yet it can gap the hinge states, hence we do not expect
even values of ν to be stable. One can also argue that one
can glue 2d chiral px + ipy layers to the surfaces in a C4T
preserving pattern which will flip the propagation direc-
tions of the hinge modes, but not destablize them. From
this picture, having two copies, i.e., ν = 2 will not be
stable since the hinge modes on one copy can be flipped
and coupled to gap the original copy without breaking
the symmetry.

For a weak coupling SC, the protected Z2 topological
invariant P = (−1)ν is given by [see Eq. (26)]

P =
∏

i

[i sgn(Re∆i)]
Ci =

∏

i

[sgn(Re∆i)]
mi , (29)

where mi is the number of time-reversal invariant mo-
mentum points enclosed by the i-th FS, Ci is the Chern
number of the i-th FS, and Re∆i is understood as the
T -invariant part of the pairing gap on the FS. In the sec-
ond step we have used the properties37 that (i) (−1)Ci =
(−1)mi , and (ii) following the Nielsen-Ninomiya theorem,
the total Chern number of all FS’s vanishes,

∑

i Ci = 0.
From Eq. (29) it is straightforward to verify that for a
single-orbital spin- 1

2 system, our p + id state indeed is a
TSC2.

The identification of the topological invariant for the
2d case is also possible. In the T symmetric class DIII
TSC, the topological invariant is already a Z2 number,
which indicates the presence/absence of stable helical
Majorana edge modes. The breaking of T with a d-wave

order that preserves C4T will generically gap the helical
Majorana edge modes and generate MBS at the four cor-
ners. Thus, the topological invariant is the same as the
Z2 number for just the T symmetric sector. Via a dimen-
sional reduction procedure, it was found in Ref. 37 that
in the weak pairing limit, the Z2 invariant can be defined
as the parity of the winding number for the Hamilto-
nian H(kx, ky, θ) that smoothly interpolates between the
2d SC in consideration (at θ = 0) and a trivial SC (at
θ = π). For a 2d T symmetric weak-coupling SC, the
topological invariant is given by

∏

i[sgn(∆i)]
mi , where

i, ∆i, mi are defined in the same way as before. There-
fore, for our TSC2 its topological invariant is

P2d =
∏

i

[sgn(Re∆i)]
mi (30)

where Re∆i is understood as the TR invariant part of
the pairing gap on the FS.

In summary we have found that the topological invari-
ants in for both the 2d and 3d C4T symmetric TSC2

phases can be determined from just the T -invariant sec-
tor. This is similar to the chiral hinge insulator with C4T
symmetry shown in Ref. 7 where the magneto-electric
θ-angle53 was shown to still characterize the topologi-
cal phase even when T is broken. Further, by analogy,
our results on the 2d TSC2 topological invariant suggest
that 2d C4T quadrupole insulators are described by the
same topological invariant as the T -invariant quantum
spin Hall insulator.

C. Realization of p + id pairing in a metallic system

To realize p + id-wave SC order, we now explicitly
construct a 2d TSC2 phase with p- and d-wave pairing
from an instability of a metallic normal state with elec-
tronic interactions. In the literature the pairing interac-
tions for the T -invariant p-wave SC25–28,30,31 and d-wave
SC32,54,55 have been extensively studied. The strategy
here is to combine two types of interactions that respec-
tively favor p-wave and d-wave order and show that by
tuning the interactions to comparable strengths the sys-
tem naturally develops a TSC2 state with p + id pairing
symmetry.

Following Refs. 28 and 50, a p-wave instability is in-
duced by fluctuations of inversion breaking order. To
this end, we consider the following interaction me-
diated by parity fluctuations: Hparity(k, k′, p, p′) =

Uparity
αβ,γδ (k, k′, p, p′)c†

α(k)c†
γ(p)cβ(k′)cδ(p′) where

Uparity
αβ,γδ (k, k′, p, p′)

= V parity

[(

k̂ + k̂′

2

)

· σαβ

][(

p̂ + p̂′

2

)

· σγδ

]

, (31)

where α, β are (pseudo) spin indices. V parity is the corre-
lation function of the parity fluctuations; for our purposes
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we simply set it to a constant. It is helpful to introduce
the helicity operator χ = k̂ · σ = ±1, and it is straight-
forward to see that the scattering of electrons via this
interaction preserves helicity. It is therefore convenient
to introduce pairing gaps ∆±(k) on FS’s with a given
helicity,

H± =

ˆ

dk∆±(k)cT (k)iσyP±c(−k) + h.c., (32)

where P± ≡ (1 ± k̂ · σ)/2 are helicity projection oper-
ators. For the interaction term Uαβ,γδ, the supercon-
ducting gaps ∆± decouple in the linearized gap equa-
tions, though when other interactions are included ∆±

will be coupled in general. Interestingly, if ∆+ = −∆− is
enforced due to their coupling, then the resulting order
corresponds to a p-wave order with ∆p = |∆±|. Indeed
we can write the p-wave pairing gap in terms of ∆± as

Hp =

ˆ

dk∆p(k)cT (k)iσy [P+ − P−] c(−k) + h.c.

=

ˆ

dk∆p(k)cT (k)iσy(k̂ · σ)c(−k) + h.c. (33)

To further couple ∆±, we consider interactions that
are mediated by antiferromagnetic fluctuations peaked
at momentum transfer Q = (π, π) with

Uaf
αβ,γδ(k, k′, p, p′) = V af

∑

i=x,y,z

σ
i
αβχ(k, k′)σi

γδ, (34)

where the spin-spin correlation function is given by

χ(k, k′) =
1

(k− k′ −Q)2 + ξ−2
. (35)

This interaction is repulsive in nature32, and for a large
enough ξ favors ∆+(k) = −∆−(k + Q). If Uaf is treated
as a small perturbation, together with the dominant par-
ity fluctuations Uparity, p-wave order will be favored. On
the other hand, if Uaf is dominant over Uparity, it is well-
known that antiferromagnetic fluctuations by themselves
favor d-wave pairing. In terms of the helical pairing fields
∆±, a d-wave pairing order satisfies

∆d(k) = ∆+(k) = ∆−(k) (36)

and both transforming with a sign change under a C4

rotation. Therefore, depending on the relative amplitude
of V af and V parity, either a p-wave order or a d-wave order
is induced as a leading instability. We verify these claims
in Appendix B.

When the p-wave and d-wave instabilities are compara-
ble, then at low temperatures the two orders can coexist.
Again, the coexisting ground state can be determined by
analyzing the Ginzburg-Landau (GL) free energy, all the
symmetry-allowed terms of which are given by

F =α1|∆p|
2 + α2|∆d|

2 + β1|∆p|
4 + β2|∆d|

4

+ 4β̄|∆p|
2|∆d|

2 + β̃(∆2
p∆∗2

d + ∆2
d∆∗2

p ), (37)

where we have split the momentum dependent gaps
∆p,d(k) ≡ ∆p,d(θ) into a constant part and a form-factor
part, i.e., ∆p,d(θ) = ∆p,d × fp,d(θ). The form factors
fp,d(θ) enter the evaluation of the coefficients of the free
energy.

As discussed in the previous section, β̃ fixes the relative
phase of ∆d and ∆p to be ±π/243–45, if they coexist. As
can be verified by a straightforward minimization of the
free energy, the two order parameters coexist if43,44

β1β2 > (2β̄ − β̃)2. (38)

The values of the β’s can be obtained by integrating out
the fermions, and are given by the product of fermionic
Green functions and the form factors fs,d(θ).28,50,56

Explicitly evaluating the β’s by integrating over the
fermionic Green functions, we obtain that for our circular
FS,

β1 = β

ˆ

dθ

2π
f4

p (θ), β2 = β

ˆ

dθ

2π
f4

d (θ),

β̄ = β̃ = β

ˆ

dθ

2π
f2

p (θ)f2
d (θ), (39)

where

β =
N(0)T

2

∑

m

ˆ ∞

−∞

dε

(ω2
m + ε2)2

=
5ζ(3)

8π2T 2
N(0).

Here ζ(x) is the Riemann zeta function. By the Cauchy-
Schwarz inequality one can prove that generally

β1β2 > β̄2 = β̃2, (40)

which we also verified numerically. This is precisely the
coexistence condition for ∆p and ∆d. Combined with
the result on their relative phase, we have shown that
the ground state has a T -breaking p + id pairing sym-
metry, and thus spontaneously generates a TSC2 phase
protected by C4T symmetry.

D. Realization of p + id pairing in a

superconducting heterostructure

Alternatively, a p + id pairing state can also be in-
duced extrinsically by Josephson-coupling a p-wave SC
and a d-wave SC. In Fig. 5(a) we illustrate such a setup
of superconducting heterostructure, with, e.g., a cuprate
d-wave SC on top, and a p-wave SC on the bottom. Due
to the conflicting pairing symmetries57,58, the Josephson
coupling between the top and bottom layers can only be
achieved by a quartic term ∼ ∆2

p∆∗2
d + h.c.. Using the

same argument for Eq. (37), the two order parameters
∆p and ∆d differ by a phase of π/2. By proximity effect,
the cuprate layer develops p + id-wave order. Since the
cuprate system is C4 symmetric on its own, the bottom
layer now realizes a C4T symmetric TSC2 and can host
corner Majorana modes, as we illustrate in Fig. 5(a). A
similar setup was recently proposed using a heterostruc-
ture of high-Tc SC and quantum spin Hall insulator21,59;
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λc∆+(θ) =

ˆ

dθ′

[

V parity cos2

(

θ − θ′

2

)

∆+(θ′)− V afχ(θ, θ′)

(

3− cos(θ − θ′)

2
∆+(θ′) +

3 + cos(θ − θ′)

2
∆−(θ′)

)]

λc∆−(θ) =

ˆ

dθ′

[

V parity cos2

(

θ − θ′

2

)

∆−(θ′)− V afχ(θ, θ′)

(

3− cos(θ − θ′)

2
∆−(θ′) +

3 + cos(θ − θ′)

2
∆+(θ′)

)]

,

(B2)

where λc = 1/[N(0) log Λ
Tc

], N(0) is the density of states

at the Fermi level, and χ(θ, θ′) is χ(k, k′) in Eq. (35) pro-
jected to the Fermi surface. The factors cos2[(θ − θ′)/2]
and [3− cos(θ± θ′)]/2 comes from the product of projec-
tion operators P±(k) and the spin dependence of Uparity

and Uaf . By Fermi statistics, we explicitly only keep so-
lutions that satisfy ∆±(θ) = ∆±(θ + π). (Note that even
the odd-parity p-wave order satisfies this.) This set of
linear integral equations can be solved numerically as an
eigenvalue problem in the vector space of [∆+(θ), ∆−(θ)].

From the eigenvalue λc one can obtain the mean-field
critical temperature Tc of the pairing channels. The
eigenfunctions for ∆±(k) with the largest λc, and thus
highest Tc’s, correspond to channels of strongest pairing
instability. Indeed, as we expected from the heuristic
arguments above, with this combination of interactions,
the two leading pairing instabilities are towards d-wave
and p-wave (as is confirmed in Fig. 6 in which we plot
the two eigenfunctions (pairing form-factors) that had
the largest eigenvalues). By tuning V parity and V af , ei-
ther p-wave or d-wave is dominant. For our model, when
V af = 1.234V parity, the two instabilities are degenerate.
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