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Abstract 
  
 

We develop a quantum network architecture, for which any two neighboring nodes and the 

communication channel between them can form a closed subsystem.  This architecture is 

implemented in a phononic network of solid-state spins in diamond, in which nanomechanical 

resonators couple to color centers through phonon-assisted transitions.  A key element of the 

implementation is the use of alternating phononic crystal waveguides that feature specially-

designed band gaps, enabling alternating, frequency-selective coupling between mechanical 

resonators.  The implementation also includes quantum state transfer between single spins or spin 

ensembles in neighboring resonators.  An ensemble-spin based protocol, which requires a special 

ratio between the spin-mechanical and waveguide-resonator coupling rates, can be independent of 

the initial states of all the mechanical modes involved and thus be robust against the thermal 

environment.  The proposed phononic network overcomes the inherent obstacles in scaling 

phononic quantum networks and avoids the technical difficulty of employing chiral spin-phonon 

interactions, providing a promising route for developing quantum computers using robust solid-

state spin qubits.   
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I. INTRODUCTION 
 Photons are excellent carriers of quantum information and are the ideal choice for long 

distance quantum communications and networks[1-5].  For on-chip communications and 

networks, there are, however, a few inherent limitations.  For example, the speed of light can be 

too fast for communications over short distances, such as a few hundred micrometers or less.  

Scattering losses of electromagnetic waves into vacuum can be excessive even with state-of-the-

art nanofabrication technologies, which severely limits the photon lifetime in nano-optical systems 

such as photonic crystal optical resonators.   

In comparison, phonons, which are the quanta of mechanical waves, feature several distinct 

advantages for on-chip communications[6-8].  The speed of sound is about five orders of 

magnitude slower than the speed of light.  Mechanical waves cannot propagate in vacuum and thus 

are not subject to scattering or radiation losses into vacuum.  The relatively long acoustic 

wavelength also makes it easier to fabricate phononic nanostructures for confining and guiding 

acoustic waves on a chip.   

The primary function of a quantum network is to enable high-fidelity quantum state transfer 

between two neighboring quantum nodes.  This can take place in a cascaded network[9], for which 

the coupling between neighboring quantum nodes is unidirectional[10].  Quantum state transfer 

protocols that are robust against thermal noise in the communication channel have been proposed 

recently for cascaded networks[11,12].  Cascaded optical quantum networks can be realized with 

chiral optical interactions[13,14], as demonstrated with atoms and quantum dots[15,16].  The lack 

of easily accessible chiral acoustic processes, however, makes it difficult to implement cascaded 

phononic quantum networks[6,17].   

Furthermore, there are two inherent obstacles in scaling up a phononic network.  First of 

all, the spin-mechanical coupling rate at the single-phonon level scales with the zero-point 

fluctuation of the mechanical system, which is proportional to 1/ m  with m being the mass of 

the mechanical system.  The larger the network is, the smaller the single-phonon coupling rate 

usually becomes.  Secondly, nearest neighbor coupling of a large number of mechanical resonators 

can lead to the formation of spectrally-dense mechanical modes, causing crosstalk between the 

collective mechanical modes.  These problems are well known in ion trap quantum computers[18], 

for which phonon-mediated interactions play an essential role.  A solution to these problems is to 
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build phononic networks using closed mechanical subsystems.  An apparent difficulty is to enable 

quantum state transfer between the seemingly closed subsystems.   

 In this paper, we propose a general and conceptually-simple architecture for quantum 

networks that feature closed subsystems.  This architecture employs at least two frequencies for 

communications and exploits alternating, frequency-selective waveguides.  As illustrated 

schematically in Fig. 1a, each quantum node couples to two waveguides, A and B, which allow 

signal propagation at frequencies near A and B, but forbid signal propagation at frequencies near 

B and A, respectively.  This special frequency selectivity of the alternating waveguides can make 

any two neighboring nodes and the waveguide between them a closed subsystem, as highlighted 

in Fig. 1a.  For a phononic quantum network of solid state spins, this architecture can be 

implemented with quantum nodes, in which a spin system couples selectively to two mechanical 

resonator modes with frequency A and B.  This phononic quantum network can also be viewed 

as closed mechanical subsystems coupled together via the spins, as shown schematically in Fig. 

1b.  In this network, high-fidelity quantum state transfer between the neighboring spin systems can 

take place via the closed mechanical subsystems.   

We describe an implementation of this architecture employing diamond color centers, 

nanomechanical resonators, and phononic crystal waveguides.  In this implementation, color 

centers featuring robust spin qubits couple to vibrations of nanomechanical resonators through 

sideband (i.e. phonon-assisted) transitions driven by external optical or microwave fields[19].  

Communications between these spin-mechanical resonators take place via alternating phononic 

crystal waveguides[20].  A key feature of the network is specially-designed band gaps in the 

phononic crystal waveguides, which enable frequency-selective coupling.  In addition, the entire 

network can be embedded in a phononic crystal lattice, which isolates and protects the network 

from the surrounding mechanical environment.  Note that diamond photonic crystals and 

optomechanical crystals, which are technically more demanding than diamond phononic crystals 

in terms of nanofabrication, have already been successfully realized[21-23]. 

We also outline two schemes for quantum state transfer between spin systems in 

neighboring resonators.  One scheme relies on strong spin-mechanical coupling of a single spin.  

The other employs spin ensembles for the quantum state transfer and approximates the spin 

ensemble as a bosonic oscillator[11,12].  Both schemes can be robust against thermal phonons in 

the phononic waveguide.   
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Solid state spin systems such as negatively-charged nitrogen vacancy (NV) centers in 

diamond have emerged as a promising qubit system for quantum information processing[24-26].  

High fidelity quantum control of individual spin qubits via microwave or optical transitions has 

been well established[27-33].  Photonic networks of NV centers have also been proposed[34-36].  

The phononic quantum network described in this paper can potentially enable a scalable, chip-

based experimental platform for developing quantum computers using robust solid-state spin 

qubits.   

 

II. PHONONIC QUANTUM NETWORKS 
 The proposed phononic network consists of diamond-based spin-mechanical resonators 

that couple spin qubits in diamond to relevant mechanical modes, phononic crystal waveguides 

with suitable energy gaps and waveguide modes, and a two-dimensional (2D) phononic crystal 

lattice that protects the mechanical modes involved in the phononic network.  For numerical 

calculations, we assume that the phononic network is fabricated from a diamond membrane with 

a thickness of 300 nm.  In addition to NV centers, other color centers in diamond, such as silicon 

vacancy (SiV) or germanium vacancy (GeV) centers[37-40], can also be used in the phononic 

network.  High quality NV, SiV, and GeV centers can be created in diamond through ion 

implantation, followed by elaborate thermal annealing and surface treatment[41,42].   

 
A.  Spin-Mechanical resonators 

The elementary unit or node in our quantum network is a spin-mechanical resonator, in 

which spin qubits couple to mechanical resonator modes in a thin, rectangular diamond plate.  

Calculations of mechanical normal modes in the diamond plate are discussed in detail in the 

appendix.  We are interested in mechanical compression modes that are symmetric with respect to 

the median plane of the plate (the so-called symmetric modes).  Figure 2a shows, as an example, 

the displacement pattern of a fifth order compression mode.   

Coherent interactions between electron spin states of a NV center and long-wavelength 

mechanical vibrations of the diamond lattice have been experimentally explored via either ground-

state or excited-state strain coupling[19,43-53].  The orbital degrees of freedom of a NV center 

can couple strongly to the long-wavelength mechanical vibrations via the excited states.  As a 

result, the excited-state strain coupling for a NV center is about five orders of magnitude stronger 
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than the ground-state strain coupling[53-55].  For defect centers such as SiV and GeV centers, 

strong coupling between the orbital degrees of freedom and the mechanical vibrations can also 

take place through the ground states[56].   

As illustrated in Fig. 2b, we control the coupling between the ground spin states of the NV 

center and the relevant mechanical mode through a resonant Raman process that consists of a 

sideband (or phonon-assisted) optical transition as well as a direct dipole optical transition.  The 

Raman process is driven and controlled by two external optical fields.  The interaction Hamiltonian 

is given by[52] 
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where s m zpfg Dk x , D is the deformation potential, xzpf is the zero-point fluctuation, km is the 

phonon wavevector, + and  are the optical Rabi frequencies and + and  are the effective 

dipole detunings for the two respective optical transitions, and â  is the annihilation operator for a 

mechanical mode with frequency m.  For a NV center, the 1sm  ground spin states can serve 

as states |  and the A2 state can serve as state |e> [57].   

The use of the sideband transitions, instead of resonant transitions, enables the selective 

coupling of an electron spin to any relevant mechanical mode, which is an essential requirement 

for the implementation of the proposed network architecture.  Specifically, we can couple the 

electron spin states to a mechanical mode with frequency m by setting the detuning between the 

two optical driving fields according to the Raman resonant condition, m     .  To avoid 

the population of the excited state, we can also exploit a combination of techniques, such as dark 

states, shortcuts to adiabatic passage[58,59], Magnus expansions[60], as well as large dipole 

detuning.  Excited-state mediated spin-mechanical coupling via a dark state has already been 

demonstrated in an earlier experimental study[52].   

Note that for negatively charged SiV or GeV centers that feature strong ground-state strain 

coupling, the spin-mechanical coupling can also be driven by microwave sideband transitions 

between the ground spin states.  In addition, the coupling schemes discussed in [17] can also be 

adopted.     
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B.  Phononic crystal waveguides and alternating, frequency-selective coupling 
 We use phononic crystal waveguides, which are one-dimensional (1D) phononic crystals 

consisting of a periodic array of holes in a beam (see Fig. 3a), to network together a series of spin-

mechanical resonators.  In a simple picture, mechanical vibrations in a resonator excite propagating 

mechanical waves in the adjacent phononic waveguides[20].  Conversely, mechanical waves in 

the phononic waveguide also excite vibrations in the adjacent mechanical resonators.   

 A suitable design of the phononic crystal waveguides can enable alternating, frequency-

selective coupling for the phononic network.  As shown in Fig. 3a, a spin-mechanical resonator 

couples to two phononic waveguides, A and B, that feature an array of elliptical holes with different 

periods.  The phononic band structure of each waveguide shows a sizable band gap for the 

symmetric mechanical modes (see Fig. 3b).  The center of the band gap for waveguide B, which 

features a shorter period, is higher in frequency than that for waveguide A, which features a longer 

period.  For this design, the two band gaps have two non-overlapping spectral regions, as 

highlighted by the grey shaded areas in Fig. 3b.  We use waveguide modes and resonator modes 

in these non-overlapping regions for quantum state transfer between spin systems in neighboring 

quantum nodes. 

Specifically, for the resonator-waveguide design shown in Fig. 3a, a higher frequency 

resonator mode with A/2=1.6332 GHz, which is a fifth order compression mode of the resonator 

and is in the band gap of waveguide B (see Fig. 3b), couples resonantly to a mode in waveguide 

A.  A lower frequency resonator mode with B/2=0.9133 GHz, which is a third order compression 

mode and is in the band gap of waveguide A (see Fig. 3b), couples resonantly to a mode in 

waveguide B.  This design effectively realizes the network architecture shown in Fig. 1b.   

Because of the alternating, frequency-selective coupling, any two neighboring resonators 

and the waveguide between them can form a closed subsystem.  The relevant waveguide modes 

are thus discrete standing wave modes.  For a relatively short waveguide, the frequency spacing 

of these modes can be large compared with other relevant frequency scales and the waveguide can 

thus behave like a single-mode mechanical oscillator.  In this limit, we can treat the closed 

mechanical subsystem shown in Fig. 1b as a three-mode system.  The appendix discusses in detail 

numerical calculations of the normal modes of the three-mode subsystem and, in particular, the 

coupling rate, g, between the resonator and the waveguide modes.  Depending on the specific 

design of the waveguide and resonators, g/2 can range from a few kHz to more than 10 MHz.  
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Note that we can engineer the coupling rate by tailoring or shaping the contact area between the 

waveguide and the resonator.   

 

C.  Isolating intra-node spin-mechanical coupling from the waveguides 
 We separate the spin qubits in a spin-mechanical resonator into logic qubits and 

communication qubits, which are used exclusively for quantum state transfer between neighboring 

quantum nodes.  Ideally, intra-node interactions should be decoupled from the phononic 

waveguides, since residual coupling of the logic qubits to the adjacent waveguides leads to 

additional decoherence.   

The band gaps of the phononic crystal waveguides can be exploited to isolate the intra-

node spin-mechanical coupling from the waveguides.  Specifically, the logic qubits can couple to 

each other and to the communication qubits through a resonator mode with a frequency that is in 

the band gap of both phononic crystal waveguides, i.e. in the overlapping spectral region of the 

two phononic band gaps, as highlighted by the yellow shaded area in Fig. 3b.  In this case, the 

phonon-mediated coupling among the logic qubits and the communication qubits within a spin-

mechanical resonator or a quantum node is decoupled from the adjacent waveguides.  For the 

resonator-waveguide design shown in Fig. 3a, the fourth order compressional mode of the 

resonator, with R=1.3258 GHz, falls in the band gap of both phononic crystal waveguides and 

can thus serve as a mechanical mode for intra-node spin-mechanical coupling.  Other resonator 

modes in the overlapping region of the two band gaps can also be used for this purpose, providing 

flexibility in the physical location of the logic qubits. 

 

D.  Protecting phononic networks with a 2D phononic crystal lattice 

To protect the relevant mechanical modes from the surrounding mechanical environment, 

we embed the entire phononic network in a 2D phononic crystal lattice, as illustrated in Fig. 4.  2D 

phononic crystal lattices have been used extensively in earlier studies to isolate mechanical 

systems such as optomechanical crystals, membranes, and single-mode phononic wires from the 

surrounding environment [61-63].  The use of 2D phononic crystal shields has led to the 

experimental realization of ultrahigh mechanical Q-factors, with Qm/2 approaching or even 

exceeding 1017 [64,65].   
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Figure 4b plots the phononic band structure of the symmetric mechanical modes in the 2D 

phononic crystal lattice shown in Fig. 4a.  The band structure of the 2D lattice features a band gap 

between 0.85 and 2.25 GHz, spanning the phononic band gaps of both phononic crystal 

waveguides A and B and thus protecting all the mechanical modes relevant to the phononic 

quantum network.  For the design shown in Fig. 4a, only waveguide B is attached to the 2D lattice, 

because this waveguide and the 2D square lattice have the same period.  In this case, mechanical 

modes with frequencies near A are isolated from the environment by the band gap in the 2D 

lattice as well as the band gap in waveguide B, which also relaxes the requirement that the band 

gap of the 2D lattice spans both A and B.  

 The specific design for the mechanical resonators, phononic crystal waveguides, and 2D 

phononic crystal shields discussed in this section is by no means optimal.  The design serves as an 

example for implementing the proposed network architecture in a phononic network. 

 

III.  QUANTUM STATE TRANSFERS 
 Mechanically-mediated quantum state transfers have been investigated theoretically for 

optomechanical transducers that can interface hybrid quantum systems[66-71].  State transfer 

processes that can be robust against thermal mechanical noise have also been proposed.  One 

approach is based on the use of dark modes, which are decoupled from the relevant mechanical 

system through destructive interference[72,73].  Dark modes in multimode optomechanical and 

electromechanical systems have been realized experimentally [74-76].  Another approach returns 

the mediating mechanical mode to its initial state, disentangling the mechanical mode from the 

rest of the system[77,78].   

 The closed mechanical subsystem discussed in Section II (also see Fig. 1b) consists of three 

mechanical modes, including two resonator modes in the respective mechanical resonators, 

described by annihilation operators, 1â  and 2â , and a waveguide mode, described by b̂ .  For 

simplicity, we assume that the two resonator modes couple to the waveguide mode with equal 

coupling rate g and all three mechanical modes have the same resonance frequency, unless 

otherwise specified.  Each resonator mode couples to either a single spin or an ensemble of spins.  

For the quantum state transfer between the two spin systems in the respective resonators, the 

interaction Hamiltonian is given by, 
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where 1̂S  and 2Ŝ  describe the spin systems, as will be discussed in more detail later, and G1(t) and 

G2(t) are the corresponding spin-mechanical coupling rates.  Note that spin qubits in a given 

resonator can couple to various mechanical modes of the resonator.  As discussed in Section II.A, 

the mode selection for the spin-mechanical coupling is set by the detuning between the external 

laser driving fields or by the frequency of the microwave driving field.   

 We assume that the relevant mechanical modes in the two resonators are cooled to their 

motional ground state.  This can be achieved via resolved sideband cooling using a phonon-assisted 

optical transition[54], along with cryogenic cooling.  Because of the protection provided by the 

2D phononic crystal shield, the mechanical damping rate, , can in principle be much smaller than 

the relevant coupling rate such that mechanical losses can be ignored during the transfer process.  

With /B mG k T Q  , the effects of thermal heating during the transfer process can also 

be negligible.  For T=1 K and G on the order of 0.1 MHz, this requires Qm >> 105, a regime 

readily achievable in state-of-the-art phononic nanostructures. 

 We consider two quantum state transfer schemes based on the use of single spins and spin 

ensembles, respectively.  Both schemes return the waveguide mode to its initial state and are thus 

independent of the initial state of the waveguide.  Since the effects of heating are assumed to be 

negligible and the schemes are independent of the initial state of the waveguide, we calculate the 

transfer fidelity at zero temperature and examine other relevant limiting factors.   

 

A. Quantum state transfer between single spins 

 For the single-spin based transfer scheme, we assume (G, G) >> g.  The spin operator in 

Eq. (2) corresponds to the lowering operator for a single spin, with ||ˆˆ S .  The single 

spin, which serves as a communication qubit, can be positioned near the node of the resonator 

mode, where the spin-mechanical coupling reaches its maximum value.  For the resonant Raman 

process shown in Fig. 2b, the effective spin-mechanical coupling rate for a single spin is given by 

/ (4 | | )s mG g       [52].  With estimated D=5 eV and xzpf =0.75x10-15 m, we have G/2 

=0.1 MHz, where we take +/2 =/2=0.6 GHz, +/2 =3 GHz, and m/2=1 GHz.   
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As shown in Fig. 5, the state transfer between the two spin systems can take place in a 

simple triple-swap process.  For the first swap, we set G2 =0 and turn on G1 for a duration =/2G1, 

mapping the spin state for 1̂S  to the state for 1â .  For the second swap, we set G1=G2=0.  After a 

duration 2 / 2g  , the state of 1â  is effectively mapped to that of 2â [78].  This waveguide-

mediated mapping between the two mechanical resonators leaves the state in the waveguide 

unchanged, as shown in Fig. 5.  For the third swap, we set G1=0 and turn on G2 for a duration 

=/2G2, mapping the state from 2â  to 2Ŝ .   

 The unavoidable coupling to the waveguide mode during the swaps between the single spin 

and the resonator modes (i.e. the first and the third swap) limits the fidelity of the overall quantum 

state transfer, which is defined as  
21/2

Tr ( ) ( ) ( )i f it t t         
 [79].  Figure 6a shows the 

fidelity, with the initial state given by | ( ) | | | 0, 0, 0it       , as a function of G/g where G is 

the peak value for both G and G.  High fidelity can be achieved only when G/g >>1, which is 

difficult to achieve experimentally.  Figure 6b also plots the fidelity when the duration of the /2 

pulses deviates from the ideal value.  For relatively small G/g, the maximum fidelity actually 

occurs away from the zero deviation, =0.  This is because for the phononic network, g is a 

constant.  The mechanical resonators remain coupled to the waveguide in the first and the third 

swap of the state transfer process.  In the limit that G/g >>1, the maximum fidelity occurs at =0, 

as shown in Fig. 6b.  

 Detuning between the individual mechanical modes can also limit the fidelity of the state 

transfer.  Here we can assume that the single spin couples resonantly to the respective resonator 

mode since the corresponding detuning is set by the frequency of the driving lasers.  Figure 6c 

shows the fidelity as a function of the detuning, , between the waveguide and the two resonator 

modes (which are assumed to have equal frequency).  As expected, high fidelity is achieved when 

the detuning is small compared with g.   

 

B. Quantum state transfer between spin ensembles  
 For the spin-ensemble based transfer scheme, the spin operator in Eq. (2) corresponds to 

the collective lowering operator for a spin ensemble, with 
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Ground-state spin-strain coupling of SiV or GeV centers can be used to avoid large optical 

inhomogeneous broadening of the NV centers.  Alternatively, a relatively large optical dipole 

detuning, , can be used for the ensemble NV centers.  For sufficiently weak coupling of individual 

spins, we can approximate Ŝ  as a bosonic operator, with ˆ ˆ[ , ] 1S S  .  Similar approximations for 

spin ensembles have also been used for thermally-robust quantum state transfer in an optical 

network[11,12].  In this limit, the overall system can be approximated as a set of linearly coupled 

harmonic oscillators.   

 With G=G=G, the interaction Hamiltonian can be written in terms of super modes, with 

2/)ˆˆ(ˆ 21 aaa   and 2/)ˆˆ(ˆ
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The corresponding Heisenberg equations can be solved analytically.  The time evolution of 1̂S  is 

given by 
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where 222 Gg  .    

For the case that Gn2 , where n is a positive integer, 21
ˆ)/(ˆ SGtS  , as can be seen 

from Eq. (5), which enables a perfect state transfer between the two spin systems, provided that 

Ŝ  can be approximated as a bosonic operator.  This state transfer process is independent of the 

initial states of the two mechanical resonators as well as the initial state of the phononic crystal 

waveguide.   

To gain further physical insights into the quantum state transfer process, we plot in Fig. 7 

the dynamics of the constituent mechanical and spin-ensemble systems under a constant spin-

mechanical coupling.  For simplicity, we assume that at t=0, the occupation in 1̂S , 1̂a , and b̂  is 1 

and that in 2Ŝ  and 2â  is 0.  As shown in Figs. 7a (with 2G  ) and 7b (with 4G  ), an effective 
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-pulse (with duration / G  ) swaps the quantum states of the two spin systems as well as 

those of the two mechanical resonator modes and returns the waveguide mode to its initial state.  

Because of the bosonic approximation of the spin ensembles, the dynamics of the constituent 

mechanical and spin systems are periodic.  With Gn2 , the complete state swapping between 

the two spin ensembles occurs simultaneously with that between the two mechanical resonator 

modes.  This state swapping process, which arises from the special periodic dynamics of the 

system, is independent of the phonon occupation or distribution in the individual mechanical 

modes (waveguide or resonator modes) and keeps the mechanical and the spin systems 

disentangled.  In this regard, the state transfer is robust against the overall thermal environment.   

The above state transfer scheme requires a careful tuning of the spin-mechanical coupling 

rate, G, to satisfy the condition, Gn2 .  Nevertheless, the quantum state transfer process can 

tolerate considerable deviations of G from its targeted or optimal value.  As shown in Fig. 8a, even 

with a deviation as large as 6%, the fidelity of the state transfer calculated with the effective 

Hamiltonian given in Eq. (4) can still exceed 0.99 (see the shaded area in Fig. 8a).   

In the limit that G   (which implies G << g), the fast dynamics of the "+" super-modes 

interacting with mode b̂  effectively average to zero.  As a result, the time evolution of mode b̂  

have negligible effects on the dynamics of the spin system, as shown in Fig. 7c.  In this case, the 

time evolution can be described by the effective Hamiltonian 

  ˆ ˆˆ ˆ( ).effH G S a S a 
             (6) 

The complete state swap between the two spin systems can now occur to the zeroth order of the 

small parameter G/g, with 21
ˆ)/(ˆ SGtS   and without the requirement that Gn2 .   

In the regime of G << g, spin dephasing induced by the nuclear spin bath becomes a major 

limiting factor for the quantum state transfer process.  Figure 8b shows the fidelity for the state 

transfer as a function of the spin dephasing time, T2*, calculated with the effective Hamiltonian 

given in Eq. (6) and the corresponding density matrix equations.  As expected, high fidelity can 

only be achieved when 1/T2* is small compared with G.  In addition to the use of isotopically 

purified diamond[80], spin dephasing can also be greatly suppressed with the use of dressed, 

instead of, bare spin states[81,82].   
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IV. SUMMARY AND OUTLOOK 
In summary, we have developed theoretically a phononic network of solid state spins, in 

which a given spin-mechanical resonator is coupled to two distinct phononic crystal waveguides.  

The specially designed band gaps in the alternating waveguides enable bidirectional, but 

frequency-selective coupling, leading to a new architecture for quantum networks.  In this 

architecture, any two neighboring nodes and the waveguide between them can form a closed 

subsystem.  This conceptually-simple architecture overcomes the inherent obstacles in scaling up 

phononic quantum networks and avoids the technical difficulty of employing chiral spin-phonon 

interactions.  The proposed phononic quantum network thus provides a promising route for 

developing quantum computers that can take advantage of robust spin qubits.   

We have considered two specific approaches for quantum state transfer between spin 

systems in neighboring quantum nodes, using single spins and spin ensembles, respectively.  An 

ensemble-spin based protocol, which requires a special ratio between the spin-mechanical and 

waveguide-resonator coupling rates, can be independent of the initial states of all the mechanical 

modes involved and thus be robust against the thermal environment.  Note that these schemes are 

intended to illustrate examples of spin-mechanical interactions that can be used for the proposed 

phononic quantum networks.  By using closed subsystems as building blocks, the phononic 

network can exploit and adopt a variety of quantum state transfer schemes.   

While the discussions in this paper use, as a specific example, color centers in diamond, 

the implementation can be applied or extended to other defect centers or solid-state spin systems 

such as SiC-based systems[83].  Furthermore, the general architecture and the specific approach 

of alternating, frequency-selective coupling can be extended to microwave networks of 

superconducting circuits as well as to photonic networks, and also to 2D quantum networks, for 

which the implementation of surface codes becomes possible[84].   
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APPENDIX:  MECHANICAL MODES IN DIAMOND PHONONIC STRUCTURES 

I.  Calculations of normal modes 
For wavelengths much larger than the atomic spacing, mechanical modes in an elastic 

material can be treated as a continuum field with time-dependent displacement at a point r, given 

by Q(r, t).  The field displacement obeys a wave equation 

   2 2 .t         Q Q Q      (A1) 

where  is the density of the material.  The Lamé constants 

,
(1 )(1 2 ) 2(1 )

E E 
  

 
  

     (A2) 

are expressed in terms of the Young’s modulus E and Poisson ratio .   

We determine the frequencies and field patterns of the normal modes by solving the 

corresponding eigenvalue equations using finite element numerical calculations.  The material 

properties of diamond used are E = 1050 GPa, =0.2, and  = 3539 kg/m3.  All structures under 

study have mirror symmetries, as illustrated in Fig. A1.  The solutions of the wave equations will 

thus be eigenmodes of the symmetry operations.  We organize the solutions as even or odd under 

reflection Rj about a plane perpendicular to the coordinate axis j = x, y, z.  The specific symmetries 

of the structure are Ry and Rz.  All modes considered in this work have even symmetry under Rz.  

Figure A1 shows the displacement patterns of the third and fourth order compression modes of the 

thin diamond plate discussed in Fig. 2 of the main text.  

II.  Resonator-waveguide Coupling Rates 
We describe the coupling between the plate resonators and the phononic crystal 

waveguides by using a standard coupled-mode theory.  The Hamiltonian for a pair of single-mode 

resonators connected by a waveguide is taken to be 

   † †
1 2( 1) . . ,n

n n nn n

n

H b b g a b ca h                (A3) 

written in a frame rotating at the resonator frequency, where 1â  and 2â  describe the two resonator 

modes with the same frequency, nb  describes the waveguide modes, gn is the resonator-waveguide 

coupling rate, and n is the frequency difference between the waveguide and the resonator modes.  

The sign difference on alternating modes reflects alternating symmetry of the eigenmodes in the 
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waveguide.  For a waveguide of length L = 120 m, numerical simulations of the diamond waveguide 

structure used in this study give a mode spacing about 30 MHz.  In the limit that g is much less than 

the mode spacing, only the resonant or nearly resonant waveguide mode 0b  needs to be considered.  

In the limit of a single waveguide mode, the (unnormalized) eigenmodes are 0 1 2a a  

and 0 0 1 24 ( )( )gb a a        , with corresponding eigenvalues 0 0  , 0
1 ( )
2

     , 

where 2 2
0 8g    .  To determine the relevant resonator-waveguide coupling rates for the 

phononic network structure, we first calculate numerically the relevant eigenmodes of the full 

structure.  As shown in Fig. A2, the eigenmodes occur as triplets, which arise from the coupling 

between the unperturbed resonator and waveguide modes.  From the frequencies of the given 

triplet, we can then determine both g and 0, with  

0 02 ,              (A4) 

and  

2 2
0( ) .

8
g

   
        (A5) 

For the dimensions of the phononic network used in the main text, the third order compression mode 

features g = 9.0MHz and 0 = −3.4MHz, while the fifth order compression mode features g = 3.1 

MHz and 0 = −1.9MHz.  Further fine tuning of the resonator dimensions can reduce 0 to be 

much smaller than g.  The coupling rate can also be tuned or tailored by shaping the contact area 

between the plate resonator and the phononic crystal waveguide.  

In the single-waveguide-mode limit, the eigenmode 0  should have no contribution from 

the waveguide mode.  As can been seen from the displacement patterns shown in Fig. A2, there 

are still discernable contributions from the waveguide, which arise from the coupling of the 

resonators to the adjacent waveguide modes such as 1b .  In order to avoid the coupling to multiple 

waveguide modes, the waveguide mode spacing needs to far exceed the waveguide-resonator 

coupling rate, which puts a limit on both the magnitude of g and the length of the waveguide.  In 

the limit of long waveguides with g much greater than the mode spacing, quantum state transfer 

schemes similar to those proposed for optical networks can be used[11,12].  For diamond-based 

phononic network, relatively short waveguides are preferred.  
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FIG 1. (a) Schematic of a quantum network with alternating and frequency-selective waveguides, 
in which each quantum node couples to two different waveguides, A and B.  Propagation near 
frequencies A and B is allowed and that near frequencies B and A is forbidden for waveguides 
A and B, respectively.  As indicated by the dashed-line boxes, any two neighboring quantum nodes 
and the waveguide between them can form a closed subsystem.  (b) An implementation using solid 
state spins and mechanical resonators.  In each quantum node, a spin system couples selectively to 
two resonator modes with frequency A and B.  The network consists of closed mechanical 
subsystems coupled together via the spins.  
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FIG 2.  (a) Displacement pattern of a fifth order compression mode in a thin rectangular diamond 
plate with dimension (27, 8, 0.3) m.  (b) Schematic of a spin qubit coupling to a mechanical mode 
with frequency m through a resonant Raman process, driven by two external optical fields with 
frequency + and -.  We can couple the spin qubit to a given mechanical mode by choosing a 
suitable detuning between + and -.  
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FIG 3.  (a) A mechanical resonator couples to two photonic crystal waveguides with a width of 3 
m and a period of 6 m (waveguide A) and 4 m (waveguide B).  For the elliptical holes in the 
waveguides, the minor (major) axes are 0.6 (2.2) m.  (b) Phononic band structures of the two 
waveguides.  Each features a band gap.  Blue lines: Waveguide A.  Red lines: Waveguide B.  The 
grey shaded areas show non-overlapping regions of the two band gaps.  The yellow shaded area 
shows the overlapping region.  Solid (dashed) lines are for modes with displacement patterns that 
are symmetric (antisymmetric) about the plane that bisects and is normal to both the waveguide 
and the resonators.  Dot-dashed lines indicate the frequencies of the two resonator modes, A and 
B, used to couple to the respective waveguide modes.   
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FIG 4. Top: A phononic network embedded in a square photonic crystal lattice with a period of 4 
m.  The side length of the squares is 3 m.  The connecting bridges have a length of 1 m and 
width of 0.4 m.  Bottom: Phononic band structure of the 2D lattice.  Only symmetric modes are 
shown.  
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FIG 5.  Time evolution of the mechanical and spin systems with G/g = 100 during the three 
successive swaps, with the same peak value G both G1 and G2.  Top: resonator mode 1 (blue), 
resonator mode 2 (purple), and waveguide mode (black).  Bottom: spin 1 (red) and spin 2 (green).    
 

 

  



 

21 
 

 

 

 

 
 

FIG 6.  Fidelity for the triple-swap quantum state transfer with an initial state |+>|>|0, 0, 0>.  (a) 
As a function of G/g.  (b) As a function of the deviation from the /2 pulses.  From top to bottom, 
G/g=50, 10, 3, 2.  (c) As a function of the detuning between the waveguide and the two resonator 
modes, with G/g=25.  Ideal pulse duration and detuning are used unless otherwise specified.  No 
other decoherence processes are included.   
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FIG 7.  Time evolution of the mechanical and spin-ensemble systems under a constant spin-
mechanical coupling, with the initial states specified in the text.  Red lines: two spin ensembles. 
Blue lines: two resonator modes. Grey line: the waveguide mode.  Top panel:  /G=2.  Middle 
panel:/G=4.  Bottom panel: / 1001G  .  For both the top and middle panels, the complete 
state swap between the spin ensembles is accompanied by that between the resonator modes.   
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FIG 8.  (a) Fidelity of the spin-ensemble based quantum state transfer as a function of G, with 
/Gopt=4 and with the initial states being the same as those used for Fig. 7.  No decoherence 
processes are included.  (b) Fidelity of the spin-ensemble based quantum state transfer as a function 
of the spin dephasing rate, with G <<g and spin lifetime=10000/G.  The fidelity is averaged over 
all possible initial states.  No other decoherence processes are included.   
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FIG A1.  Top:  The reflection symmetry planes of the phononic network structure. The blue and 
red planes correspond to Rz and Ry, respectively.  Bottom: Displacement patterns of the third 
order compression mode (left), with even Ry symmetry, and fourth order compression mode 
(right), with odd Ry symmetry. 
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FIG A2: Displacement patterns of three eigenmodes of the phononic network structure shown in 
Fig. 3 of the main text.  The frequencies are (1.6737, 1.6791, 1.6826) GHz from top to bottom.  
The triplet arises from the coupling between the fifth order compression modes in the two 
neighboring plate resonators and the nearly resonant waveguide mode.  The array of holes in the 
waveguide has a period of 6 m. 
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