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Abstract—Age of Information (Aol) is a performance metric
that captures the freshness of the information from the per-
spective of the destination. The Aol measures the time that
elapsed since the generation of the packet that was most recently
delivered to the destination. In this paper, we consider a single-
hop wireless network with a number of nodes transmitting time-
sensitive information to a Base Station and address the problem of
minimizing the Expected Weighted Sum Aol of the network while
simultaneously satisfying timely-throughput constraints from the
nodes.

We develop three low-complexity transmission scheduling poli-
cies that attempt to minimize Aol subject to minimum throughput
requirements and evaluate their performance against the optimal
policy. In particular, we develop a randomized policy, a Max-
Weight policy and a Whittle’s Index policy, and show that they
are guaranteed to be within a factor of two, four and eight,
respectively, away from the minimum Aol possible. In contrast,
simulation results show that Max-Weight outperforms the other
policies, both in terms of Aol and throughput, in every network
configuration simulated, and achieves near optimal performance.

I. INTRODUCTION

The Age of Information (Aol) is a performance metric that
measures the time that elapsed since the generation of the
packet that was most recently delivered to the destination.
This metric captures the freshness of the information from
the perspective of the destination. Consider a cyber-physical
system such as an automated industrial plant, a smart house or
a modern car, where a number of sensors are transmitting time-
sensitive information to a monitor over unreliable wireless
channels. Each sensor samples information from a physical
phenomena (e.g. pressure of the tire, quantity of fuel, prox-
imity to obstacles and engine rotational speed) and transmits
this data to the monitor. Ideally, the monitor receives fresh
information about every physical phenomena continuously.
However, due to limitations of the wireless channel, this is
often impractical. In such cases, the system has to manage
the use of the available channel resources in order to keep
the monitor updated. In this paper, we develop three low-
complexity transmission scheduling policies and analyze their
performance in terms of the freshness of the information at
the monitor, namely the Age of Information.

Let every packet be time-stamped with the time it was
generated. Denote by 7;[m] the time-stamp of the mth packet
delivered by sensor ¢ to the monitor. Assume that at time ¢, the
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mth packet delivered by sensor ¢ is the most recent. Then, the
Age of Information associated with sensor ¢ at time ¢ is given
by h;(t) =t — 7;[m]. While the monitor does not receive new
packets from sensor 4, the value of h;(t) increases linearly with
t, representing the information getting older. As soon as the
monitor receives a new packet from sensor ¢, the corresponding
time-stamp is instantaneously updated from 7;[m] to 7;[m+1],
reducing the value of h;(t) by 7;[m + 1] — 7;[m]. Notice that
at the moment packet (m + 1) is delivered to the monitor, the
value of h;(t) matches the delay of the packet. This makes
sense because, at that moment, the information at the monitor
is as old as the information contained in packet (m + 1). It
follows naturally that a good Aol performance is achieved
when packets with low delay are delivered regularly.

In order to provide good Aol performance, the scheduling
policy must control how the channel resources are allocated
to the different sensors in the network. Depending on the
channel conditions and network configuration, this can mean
that some sensors get to transmit repeatedly, while other
sensors less often. The frequency at which information is
delivered to the monitor is of particular importance in sensor
networks. Clearly, a sensor that measures the quantity of fuel
requires a lower update frequency (i.e. throughput) than a
sensor that is measuring the proximity to obstacles in order
to avoid collisions. For capturing this attribute, we associate
a minimum timely-throughput requirement with each sensor
in the network. Hence, in addition to providing good Aol
performance, the scheduling policies should also fulfill timely-
throughput constraints from the individual sensors.

A framework for modeling wireless networks with timely-
throughput requirements was proposed in [1] together with
two debt-based scheduling policies that fulfill any feasible
requirements. Generalizations of this model to different net-
work configurations were proposed in [2]-[4]. Scheduling
policies that maximize throughput and also provide service
regularity in wireless networks were studied in [5] and [6].
The problem of minimizing Aol was introduced in [7]. In [7]-
[10], different queueing systems are analyzed and the optimal
server utilization with respect to Aol is found. In [11]-[13], the
authors optimize the process of generating information updates
in order to minimize Aol. The design of scheduling policies
based on Aol is considered in [14]-[20].

An important observation is that high throughput does not
guarantee low Aol. Consider an M/M/1 queue with high
arrival rate and low service rate. In this system, the queue
is often filled, resulting in high throughput and high packet



delay. This high delay means that packets being served contain
outdated information. Hence, despite the high throughput, the
Aol may still be high. In this paper, we develop policies that
minimize Aol subject to minimum throughput requirements,
where timely-throughput is modeled as in [1]. To the best
of our knowledge, this is the first work to consider Aol-
based policies that provably satisfy throughput constraints of
multiple destinations simultaneously.

The remainder of this paper is outlined as follows. In Sec. II,
the network model and performance metrics are formally
presented. Then, in Sec. III, three low-complexity scheduling
policies are proposed and analyzed. In Sec. IV, those policies
are simulated and compared to the state-of-the-art in the
literature. The paper is concluded in Sec. V.

II. SYSTEM MODEL

Consider a single-hop wireless network with a Base Station
(BS) receiving time-sensitive information from M nodes. Let
the time be slotted, with slot index k € {1,2,---, K}, and
consider a wireless channel that allows at most one packet
transmission per slot. In each slot &, the BS either idles or
selects a node ¢ € {1,2,---, M} for transmission. Let u;(k)
be the indicator function that is equal to 1 when the BS selects
node 7 during slot k, and w;(k) = 0 otherwise. When u; (k) =
1, node ¢ samples fresh information, generates a new packet
and sends this packet over the wireless channel. The packet
from node 7 is successfully received by the BS with probability
p; € (0,1] and a transmission error occurs with probability
1 —p;. The probability p; does not change with time, but may
differ between nodes.

The transmission scheduling policy controls the decision
of the BS in each slot k, which is represented by the set of
values {u;(k)},. The interference constraint associated with
the wireless channel imposes that

SMoui(k) <1, Vke{1,--- K}, (1)

meaning that at any given slot k, the scheduling policy can
select at most one node for transmission. Let d;(k) be the
random variable that indicates when a packet from node ¢
is delivered to the BS. If node i transmits a packet during
slot k, i.e. u;(k) = 1, then d;(k) = 1 with probability p;
and d;(k) = 0 with probability 1 — p;. On the other hand, if
node i does not transmit, i.e. u;(k) = 0, then d;(k) = 0 with
probability one. It follows that E [d; (k) |u;(k)] = p;u; (k) and,
applying the law of iterated expectations

E [d;i(k)] = pi [ui(k)] . 2

In this paper, we consider non-anticipative scheduling poli-
cies, i.e. policies that do not use future knowledge in making
decisions. Denote by II the class of non-anticipative policies
and let 7 € II be an arbitrary admissible policy. Our goal
is to design low-complexity scheduling policies that belong
to 11, provide close to optimal Aol performance and, at the
same time, guarantee a minimum throughput level for each

individual destination. Next, we formally introduce both per-
formance metrics, throughput and Aol, and define a measure
for “closeness to optimality”.

A. Minimum Throughput Requirement

Let ¢; be a strictly positive real value that represents the
minimum throughput requirement of node ¢. Using the random
variable dT (k), we define the long-term throughput of node i
when policy 7 is employed as
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Then, we express the minimum throughput constraint of each
individual node as

In this paper, we assume that {q;}}, is a feasible set of

minimum throughput requirements, i.e. there exists a policy
7w € II that satisfies all K interference constraints in (1) and
all M throughput constraints in (4) simultaneously. As shown
in [1, Lemma 5], the inequality
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is a necessary and sufficient condition for the feasibility of
{q:}M,. Throughout this paper, we assume that (5) is satisfied
with strict inequality. Next, we present the Aol metric.

B. Age of Information

The Age of Information depicts how old the information
is from the perspective of the BS. Let h;(k) be the positive
integer that represents the Aol associated with node ¢ at the
beginning of slot k. If the BS does not receive a packet from
node ¢ during slot &, then h;(k + 1) = h;(k) + 1, since the
information at the BS is one slot older. In contrast, if the BS
receives a packet from node ¢ during slot &, then h;(k+1) = 1,
because the received packet was generated at the beginning of
slot k. The evolution of h;(k) follows

_ 1 s if dz(k}) =1 5
hi(k+1) = { hi(k) +1 , otherwise.

The average Aol of node ¢ during the first K slots is cap-
tured by E {Zle hi(kz)} /K, where the expectation is with
respect to the randomness in the channel and the scheduling
policy. For measuring the freshness of the information of
the entire network when policy 7 is employed, we use the
Expected Weighted Sum Aol

(6)
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where A(1) = [hy(1),--- , has(1)]7 is the vector of initial Aol
in (6) and a; > 0 is the weight of node . For simplicity, we
assume that h;(1) = 1, Vi, and omit h(1) henceforth.



C. Optimization Problem

With the definitions of Aol and throughput, we present the
optimization problem that is central to this paper.

Aol Optimization

mell | K—oo

1
OPT* = mi lim ——E
min { m o

M ui(k) <1,Vk.

The minimum throughput constraints are depicted in (8b) and
the interference constraints are in (8c). The scheduling policy
that results from (8a)-(8c) is referred to as Aol-optimal.

For a given network setup (M, p;, ¢;, «;), let OPT* be the
Expected Weighted Sum Aol achieved by the Aol-optimal
policy 7*. Similarly, let OPT,, be the Aol achieved by some
policy n € II. The optimality ratio of 7 is given by

OPT
n_ U]
(U OPT"

9

and we say that policy 7 is ¥"7-optimal. Naturally, the closer
1 is to 1, the better is the Aol performance of policy 7. The
optimality ratio is used in the upcoming sections to compare
the performance of different scheduling policies.

ITII. SCHEDULING POLICIES

In this section, we propose three low-complexity scheduling
policies with strong Aol performances. The first two provably
satisfy the throughput constraints for every feasible set {q; }},
and the third accounts for the throughput constraints, but
provides no guarantee. To evaluate the Aol performance of
each policy, we find their corresponding optimality ratio 7.
Moreover, in Sec. IV, we simulate and compare these policies
to the state-of-the-art in the literature.

Prior to introducing the policies, we obtain a lower bound to
the Aol optimization (8a)-(8c) which is used in the derivation
of the optimality ratios ©". Then, we present three scheduling
policies: 1) Optimal Stationary Randomized policy; 2) Max-
Weight policy; and 3) Whittle’s Index policy. The first is
obtained by solving the Aol optimization (8a)-(8c) over the
class of Stationary Randomized Policies. The second and third
policies are derived using Lyapunov Optimization [21] and the
Restless Multi-Armed Bandit framework [22], respectively.

A. Lower Bound

In this section, we use a sample path argument to derive a
lower bound to the Aol optimization (8a)-(8c).

Theorem 1. The optimization problem in (10a)-(10c) provides
a lower bound Lp to the Aol optimization (8a)-(8c), namely
Lg < OPT" for every network setup (M, p;, q;, ;).

Lower Bound

1 X 1
LB:%{%{W;% ((fﬂ)} (10a)
st GF > q; Vi (10b)
M ui(k) <1,Vk. (10c)

Proof. Consider a scheduling policy m € II that satisfies all
throughput and interference constraints running on a network
for the time-horizon of K slots. Let {2 be the sample space
associated with this network and let w € € be a sample
path. For a given sample path w, the total number of packets
delivered by node ¢ during the K slots is denoted D;(K) =
SO di(k) and the inter-delivery time associated with each
of those deliveries is denoted I;[m]. In particular, let I;[m] be
the number of slots between the (m — 1)th and mth packet
deliveries from node i, Vm € {1,---, D;(K)}'. After the last
packet delivery from node 4, the number of remaining slots is

R;. Hence, the time-horizon can be written as

Di(K)
K= Z Lim]+R; ,Vie{1,2,---, M} . (11)
m=1

According to the evolution of h;(k) in (6), the slot that
follows the (m — 1)th packet delivery from node i has an Aol
of h;(k) = 1. Since the mth packet is delivered only after
I;[m] slots, we know that h;(k) evolves as {1,2,---, I;[m]}.
This pattern is repeated throughout the entire time-horizon,
including the last R; slots. As a result, the time-average Age

of Information of node 7 can be expressed as

1 P! (Liim]+ 1) I;m]  (Ri+1)R;
?Zhl(k) K 2 2
k=1 m=1
D;(K)
_ = DZ(K) 1 2 R722
=3 |78 B ZIi[m]—&-K—i—l . (12

where the last equality uses (11) to replace the two linear terms
by K.

Define the operator M[x] that computes the sample mean
of any set x. In particular, let the sample mean of I;[m| and
IZ[m] be

- 1 Di(K)
MIL] = 57 m; Lim] ; (13)
~ 1 D;i(K)
MIE) = gy 2 Klml- (14)
? m=1

Substituting M[7?] into (12) and then applying Jensen’s in-
equality, yields

K
SR (Di;(K) (i) + 2 1) . as)
k=1

Naturally, I;[1] is the number of slots between the first slot and the first
packet delivery from node 1.



combining (11) into (13) and then substituting the result in
(15), gives

KZh

By minimizing the LHS of (16) analytically with respect to

the variable R;, we have
} L + 1
2\ Di(K)+1 '

1 K
7 D hi(k) >
k=1

Taking the expectation of (17) and applying Jensen’s inequal-
ity, yields

> (PO L)

K Dy(K) 'K (16)

a7

+1 (18)
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Applying the limit K — oo to (18) and using the definition
of throughput in (3), gives
1
1) .
3 (q i )

Combining (19) and the objective function in (7), yields

K@JZE 19
a;
i BV —Klinoer ZE

> Ly = +1
— a; | = .
T2M ~= qr

Finally, substituting (20) into the Aol optimization (8a)-(8c)
gives the Lower Bound (10a)-(10c). [ |

(20)

To obtain the expression in (20), we applied Jensen’s in-
equality twice and minimized (16) analytically with respect to
R;. Each of those steps could have led to a loose lower bound
Lp. However, in the next section, we use this lower bound
to obtain a tight optimality ratio, ¥® < 2, for a Stationary
Randomized policy. Moreover, we evaluate the tightness of
Lp using numerical results in Sec. IV.

B. Optimal Stationary Randomized policy

Denote by Il the class of Stationary Randomized Policies
and let R € Il be a scheduling policy that, in each slot
k, selects node i with probability u; € (0,1] and idles with
probability ;4. Each policy in IIr is fully characterized
by the set of scheduling probabilities {u;}2,, where p; =
Elu;(k)], Vi, Vk and pige = 1 — Zﬁl ;. Next, we find the
Optimal Stationary Randomized policy R* that solves the Aol
optimization (8a)-(8c) over the class Iz C II and derive the
associated optimality ratio 1%,

Proposition 2. Consider a policy R € Ilg with scheduling
probabilities {p;}M . The long-term throughput and the ex-
pected time-average Aol of node i can be expressed as

Ci-R = pilli ; 21)

1
lim — E[h
Kgnoo Z pl,uz

(22)

Proof. In any given slot k:, the BS receives a packet from
node ¢ if this node is scheduled and the corresponding packet
transmission is successful. The probability of this event is p; z4;.
Moreover, the inter-delivery times I;[m] of node ¢ are i.i.d.
with P{I;[m] = n} = pip;(1 — pips)" "1, Vn € {1,2,--- }.

Clearly, under policy R, the sequence of packet deliveries
is a renewal process. Thus, we can use renewal theory to
derive (21) and (22). In particular, by the definition of long-
term throughput (3) and the expression for the expected time-
average Aol of node i, we have

1
R KlgnOo — ZE 7[17:[7”“ =pipi;  (23)
by @ Bl 11
KIE%O*ZE = L) T2 T @Y

where (a) follows from the elementary renewal theorem and
(b) from its generalization for renewal-reward processes [23,
Sec. 5.7]. [ |

Substituting both expressions from Proposition 2 into the
Aol optimization (8a)-(8c) gives the equivalent optimization
problem over the class ITr presented below.

Optimization over Randomized policies

M
1 Q5
OPTR- = min { — 25a
R erélhnR { M ; Dilbi } ( )
St pifts > qi , Vi ; (25b)
S <1,V (25¢)

Notice that under the class Iz, conditions (25¢) and (8c) are
equivalent. The Optimal Stationary Randomized policy R* is
characterized by the set {ul 1 that solves (25a)-(25c).

Theorem 3 (Optimality Ratio for R*). The optimality ratio
of R* is such that YT < 2, namely the Optimal Stationary
Randomized policy is 2-optimal for every network setup.

Proof. Let GF be the throughput associated with the policy that
solves the Lower Bound (10a)-(10c). Consider the policy R €
g with long-term throughput ¢% = p;u; = ¢~ for each node
i. Since % = g~, it follows that R satisfies all throughput
constraints. Comparing L in (10a) with the objective function
associated with R, namely OPTp, yields

OPTx » OPTz _ OPTj
— =
2 v OPT* — Lp

where OPT* comes from (8a) and OPT g+ from (25a). Recall
that Ly < OPT* < OPTg- < OPTp. |

<Lg <2, (26



Corollary 4. The Optimal Stationary Randomized policy R*
is also the solution for the Lower Bound problem (10a)-(10c).

Proof. Using the same argument as in the proof of Theorem 3,
in particular ¢/* = p;u; = ¢F, it follows that the scheduling
policy that solves the Optimization over Randomized policies
(25a)-(25c¢) also solves the Lower Bound (10a)-(10c). |

Theorem 5 (Optimal Stationary Randomized policy). The
scheduling probabilities {p; }M | that result from Algorithm 1
are the unique solution to (25a)-(25¢) and, thus, characterize
the Optimal Stationary Randomized policy R*.

Algorithm 1 Unique solution to KKT Conditions
Yi < Ozipi/Mqiz Vi e {1,2,~ .- ,M}
7« max;{v;}
< (@i/pi) max{1; \/v/v} Vi
S p14ps+-+ pym
while S < 1 do
decrease «y slightly
repeat steps 3 and 4 to update p; and S
end while
pi = i, Vi, and y* =y
return (u7, 43, - 5 s 7")

R AN A R ol e

._
4

Proof. To find the set of scheduling probabilities {u:}2,
that solve the optimization problem (25a)-(25¢c), we analyze
the KKT Conditions. Let {\;}, be the KKT multipliers
associated with the relaxation of (25b) and ~ be the multiplier
associated with the relaxation of (25¢). Then, for \; > 0, Vi,
~v >0 and p; € (0,1], Vi, we define

A4'j£: pzﬂz
M

+> i (g — pipi) (Zml>, 27)
=1

= +00. Then, the KKT

L(p5,Mi,7y)

and, otherwise, we define £(p;, A, )
Conditions are

(i) Stationarity: V,,,L(u;, Ai,7) = 0;

(ii)) Complementary Slackness: V(Zi]\il wi —1)=0;

(iii) Complementary Slackness: A;(q; — pipi) = 0, Vi;

(iv) Primal Feasibility: p;u; > q; , Vi, and Z?il wi < 1;

(v) Dual Feasibility: A\; > 0,Vi, and v > 0.
Since E(uz, i, 'y) is a convex function, if there exists a vector
(s 3M AN M ) 4*) that satisfies all KKT Conditions, then
this vector is unique. Hence, the scheduling policy R* € Il
that optimizes (25a)-(25c¢) is also unique and is characterized
by {u;} M. Next, we find the vector ({pf M, {\ M, ~%).

To assess stationarity, V,,, £(1i, A, ) = 0, we calculate the
partial derivative of £(u;, \;,7y) with respect to ;. It follows
from the derivative that

(28)

From complementary slackness, v(zgl i —1) =0, we
know that either v = 0 or Zﬁl ;i = 1. Equation (28) shows
that the value of ~ can only be zero if A\; = 0 and p; — oo,
which violates p; € (0,1]. Hence, we obtain

M
v>0 and ZM=1~

i=1

(29)

Notice that Zl 1 i = 1 implies in ;g = 0.

Based on dual feasibility, \; > 0, we can separate nodes
i€ {l,---, M} into two categories: nodes with A; > 0 and
nodes with A\; = 0.

Category 1) node ¢ with \; > 0. It follows from complemen-
tary slackness, \;(¢; — pip;) = 0, that

q;
= = . (30)
Pi
Plugging this value of y; into (28) gives the inequality \;p; =
v —~; > 0, where we define the constant
Q5 Pj
i = . 31
%= g 31)

Category 2) node ¢ with \; = 0. It follows from (28) that

2
di a [
7=%(1> o= T
Pili piV Y

In summary, for any fixed value of v > 0, the scheduling
probability of node i is

_ % { ’Yi}
i = —maxql;,/—p .
p; v

Notice that for a decreasing value of 7, the probability pu;
remains fixed or increases. Our goal is to find the value of ~*
that gives {p;}M, satisfying the condition S, p¥ = 1.

Proposed algorzthm to find ~v*: start with v = max{~;}.
Then, according to (33), all nodes have u; = ¢;/p; and, by
the feasibility condition in (5), it follows that

(32)

(33)

M

S

i=1

—<1
pi

(34)

Now, by gradually decreasing v and adjusting {y;}M, ac-
cording to (33), we can find the unique ~* that fulfills
Zﬁl ;i = 1. The solution v* exists since 7 — 0 implies
in Z£1 ; — o0o. The uniqueness of v* follows from the
monotonicity of p; with respect to . This process is described
in Algorithm 1 and illustrated in Fig. 1.

Algorithm 1 outputs the set of scheduling probabilities
{u}M, and the parameter v*. The set {)\*}M 1 is obtalned
using (28). Hence, the unique vector ({u}}M, {\}M, ~%)
that solves the KKT Conditions is found. ]

In order to fulfill the throughput constraints (25b), every
scheduling policy in Iz must allocate at least p; > ¢;/p; to
each node ¢. What differentiates policies in Il is how they
distribute the remaining resources, 1 — Zgl qi/pi, between
nodes. According to Algorithm 1, the Optimal Stationary Ran-
domized policy R* supplies additional resources, u} > ¢;/pi,



to nodes with high value of ~;, namely nodes with a high
priority «; or a low value of ¢;/p;. Notice that if a node
with low ¢;/p; was given the minimum required amount of
resources, it would rarely transmit and its Aol would be
high. In contrast, policy R* allocates the minimum required,
Wi = q;/p;, to nodes with low priority «; or high ¢;/p;.

The policies R € Il discussed in this section are as
simple as possible. They select nodes randomly, according to
fixed scheduling probabilities {y;}}, calculated offline by
Algorithm 1. Despite their simplicity, it was shown that R*
is 2-optimal regardless of the network setup (M, p;,q;, a;).
In the following sections, we develop scheduling policies that
take advantage of additional information, such as the current
Aol of each node, for selecting nodes in an adaptive manner.

C. Max-Weight policy

Using techniques from Lyapunov Optimization, we derive
the Max-Weight policy associated with the Aol optimization
(8a)-(8c). Max-Weight is a scheduling policy designed to
reduce the expected increase in the Lyapunov Function. The
Lyapunov Function outputs a positive scalar that is large when
the network is in undesirable states, namely when nodes have
high Aol or less throughput than the minimum required ¢;. In-
tuitively, the Max-Weight policy keeps the network in desirable
states by controlling the growth of the Lyapunov Function.
Prior to presenting the Max-Weight policy, we introduce the
notions of throughput debt, network state, Lyapunov Function
and Lyapunov Drift.

Let x;(k) be the throughput debt associated with node 7 at
the beginning of slot k. The throughput debt evolves as

k

xi(k+1) = kg — Zdi(t) .

t=1

(35)

The value of kq; can be interpreted as the minimum number
of Eackets that node ¢ should have delivered by slot £+ 1 and

1 di(t) is the total number of packets actually delivered in
the same interval. Define the operator (.)* = max{(.),0} that
computes the positive part of a scalar. Then, the positive part
of the throughput debt is given by z; (k) = max{x;(k);0}.
A large debt (k) indicates to the scheduling policy 7 € II

Values of y and y; Values of y and y;

Y1
Y
Yy F I Y3
Y2
1 2 3 _node 1 2 3 pode
(a) Initial y = ;4 index (b) Optimal }* index

Fig. 1. Illustration of Algorithm 1 in a network with 3 nodes. On the left,
the initial configuration with v = max{~;}. On the right, the outcome ~*
implies that under policy R* node 2 will operate with minimum required
scheduling probability p2 = g2/p2, while the other two nodes will operate
with a scheduling probability that is larger than the minimum.

that node ¢ is lagging behind in terms of throughput. In fact,

strong stability of the process x; (k), namely
| K
im — +
Jim ;E[wl (k)] < o0, (36)

is sufficient to establish that the minimum throughput con-
straint, g7 > g;, is satisfied [21, Theorem 2.8].
Denote by Sy = (hi(k),z; (k))M, the network state at the

beginning of slot k& and define the Lyapunov Function by

M
L(Sk) := %Z (aihf(k) +V [xj(k)}z) ;

i=1

(37

where V' is a positive real value that depicts the importance of
the throughput constraints. Observe that L(Sy) is large when
nodes have high Aol or high throughput debt. To measure the
expected change in the Lyapunov Function from one slot to
the next, we define the Lyapunov Drift

A(Sk) = E{L (Sk+1) - L (Sk) |Sk} . (38)

The Max-Weight policy is designed to keep L(Sy) small
by reducing A(S) in every slot k. Next, we present an upper
bound on A(Sj) that can be readily used to design the Max-
Weight policy. The derivation of this upper bound is centered
around the evolution of h;(k) in (6) and the evolution of x; (k)
in (35). The complete proof can be found in [24] and the upper
bound follows

M
A(Sk) < =Y EA{ui(k) [k} Wilk) + B(k),  (39)
where W; (k) and B(k) are given by
Wik) = S ha(k)la(k) + 2] + Vpia] (k) (40)
B(k) = Z {ai [hi(k) + ;] +V [ch(lc)qZ + ;] } . (41

Both W;(k) and B(k) are fully characterized by the network
state Sy and network setup (M, p;, ¢;, ;). Hence, both can be
used by admissible policies for making scheduling decisions.
However, notice that the term B(k) in (39) is not affected by
the choice of u; (k). Thus, for minimizing the upper bound in
(39), the Max-Weight policy selects, in each slot &, the node
with highest value of W;(k), with ties being broken arbitrarily.
Denote the Max-Weight policy as MW

Theorem 6. The Max-Weight policy satisfies any feasible set
of minimum throughput requirements {q;} .

Theorem 7 (Optimality Ratio for MW). For any given
network setup (M, p;, q;,«;), the optimality ratio of MW is
such that

1
pMW < g4 — 42)
Lg

g M
i=1
In particular, for every network with V < 2 Zf\il a;/M, the
Max-Weight policy is 4-optimal.



The proofs of Theorems 6 and 7 follow from the analysis
of the expression in (39) and are provided in [24], where an
alternative Max-Weight policy is shown to be 2-optimal.

Recall that the Optimal Stationary Randomized policy R*
selects nodes randomly, according to fixed scheduling prob-
abilities {p;}M,. In contrast, the Max-Weight policy MW
uses feedback from the network, namely h;(k) and x; (k), to
guide scheduling decisions. Despite the added complexity, we
expect the feedback loop to improve the performance of MW .
In fact, numerical results in Sec. IV demonstrate that MW
outperforms R* in every network configuration simulated.
However, by comparing Theorems 3 and 7, it might seem that
R* yields a better performance than MW . This is because the
analysis associated with MW is more challenging, leading to
an optimality ratio 1) that is less tight than 1. Next, we
develop an index policy based on Whittle’s Index [22] that is
surprisingly similar to MW and has a similar performance.

D. Whittle’s Index policy

To find Whittle’s Index, we transform the Aol optimization
(8a)-(8c¢) into a relaxed Restless Multi-Armed Bandit (RMAB)
problem. This is possible because every node in the network
evolves as a restless bandit. To obtain the relaxed RMAB
problem, we first substitute the K interference constraints in
(8c) by the single time-averaged constraint

K M

%ZZE[W(@] <1.

k=11i=1

(43)

Next, we relax this time-averaged constraint, by placing (43)
into the objective function (8a) together with the associated La-
grange Multiplier C' > 0. The resulting optimization problem
is called relaxed RMAB and its solution lays the foundation
for the design of Whittle’s Index. A detailed description of
this method can be found in [22], [25], [26].

One of the challenges associated with this method is that
Whittle’s Index is only defined for problems that are indexable.
Unfortunately, it can be shown that due to the throughput
constraints, ¢ > g¢;, the relaxed RMAB resulting from
the transformation of the Aol optimization is not indexable.
To overcome this, we relax the throughput constraints (8b),
placing them into the objective function of (8a)-(8c) as follows

Relaxed Aol Optimization

K M
—— : . 1
OPT = min {Klgnoo yZavi kz Z {ai]E [hi(k)] +

=11i=1

+6; (p - E[ui(k;)]) ] } (44a)

st. 0; >0,V ; (44b)
M wi(k) <1,k . (44¢)

~.

Each Lagrange Multiplier 6; is associated with a relaxation
of gI > ¢;. These multipliers are called throughput incentives
for they represent the penalty incurred by scheduling policies
that deviate from the corresponding throughput constraint.

Applying the transformation described at the beginning of this
section to the relaxed Aol optimization (44a)-(44c) yields

Doubly relaxed RMAB

K M
— !
OPTp = min {Klgnoo i kz_l ; [aiE [hi(k)] +
C 62 %
+(C = O)E [us(R)] - 7 + . } } (452)
st 0;>0.Vi; (45b)
C>0. (45¢)

Next, we solve the doubly relaxed RMAB, establish that the
relaxed Aol optimization is indexable and obtain a closed-form
expression for the Whittle’s Index.

The doubly relaxed RMAB is separable and thus can be
solved for each individual node. Observe that a scheduling
policy running on a network with a single node ¢ can only
choose between selecting node ¢ for transmission or idling
during slot k. The scheduling policy that optimizes (45a)-(45c)
for a given node : is characterized next.

Proposition 8 (Threshold policy). Consider the doubly re-
laxed RMAB problem (45a)-(45c) associated with a single
node 1. The optimal scheduling policy is a Threshold policy
that, in each slot k, selects node i when h;(k) > H; and idles
when 1 < h;(k) < H;. For positive fixed values of C' and 0;,
if C > 0;, the expression for the threshold is

301 1 1\> 2(C-6)
2 p; pi 2 DiC;

Otherwise, if C < 0;, the threshold is H; = 1.

H; = (46)

Proposition 8 follows from [15, Propostion 4]. Next, we
define the condition for indexability and establish that the
relaxed Aol optimization is indexable. For a given value of
C, let Z,(C) = {h;(k) € N|hi(k) < H;} be the set of
states h;(k) in which the Threshold policy idles. The doubly
relaxed RMAB associated with node ¢ is indexable if the set
Z;(C) increases monotonically from @ to N, as the value of
C' increases from 0 to +oo. Furthermore, the relaxed Aol
optimization is indexable if this condition holds for all nodes.
The condition on Z;(C) follows directly from Proposition 8
and is true for all nodes 7. Thus, we establish that the relaxed
Aol optimization (44a)-(44c) is indexable.

Given indexability, we define Whittle’s Index. Let C; (h;(k))
be the Whittle’s Index associated with node 4 in state h;(k).
By definition, C;(h;(k)) is the infimum value of C that makes
both scheduling decisions (transmit or idle) equally desirable
to the Threshold policy while in state h;(k). The scheduling
decisions are equally desirable when the multiplier C' is such
that H; = h;(k) + 1. Using (46) to solve this equation for the
value of C gives the following expression for the Index

Ci(hi(k)) = a;pi hi(k) [m(k) - 5 - 1] +0;. @D



After establishing indexability and obtaining the expression
for C;(h;(k)), we define Whittle’s Index policy. The Whittle’s
Index policy selects, in each slot k, the node with highest
value of C;(h;(k)), with ties being broken arbitrarily. Denote
the Whittle’s Index policy as W 1.

Theorem 9 (Optimality Ratio for W I). For any given network
setup (M, p;, qi, v;), the optimality ratio of W1 is such that

1 [1 & 7 Y
W1
< = L )
) _8+LB M;& 2M1Z=;al

In particular, for every network with Zf\il 0, <7 Zﬁ1 a;/2,
the Whittle’s Index policy is 8-optimal.

(48)

The proof of Theorem 9 is provided in [24]. The arguments
used for deriving 9"/ are analogous to the ones for deriving
W in Theorem 7. Those similarities come from the fact
that policies MW and W are almost identical. Comparing
the expressions for W; (k) and C;(h;(k)), in (40) and (47), re-
spectively, we can see that both have the term «;p;h7(k)/2 and
both have an isolated throughput term: W; (k) has Vp,x; (k)
and C;(h;(k)) has 6;. Naturally, we expect the performance of
both policies to be similar in terms of Aol. The key difference
between MW and W lies in the throughput term. While the
term Vp;x; (k) guarantees that MW satisfies the throughput
constraint, g7 > g¢;, the positive scalar ; represents an
incentive for W1 to comply with the constraint, but provides
no guarantee. The benefit of using a fixed 6; is that there is
no need to keep track of z; (k) for each node and at every
slot k.

The results in this section hold for any given set of positive
throughput incentives {0;} . Next, we propose an algorithm
that finds the values of 8; which maximize a lower bound on
the Lagrange Dual problem associated with the relaxed Aol
optimization (44a)-(44c). Observe that OPTp in (45a) is the
Lagrange Dual function associated with (44a)-(44c). Thus, we
can define the Lagrange Dual problem as maxc g, {OPTp}
subject to C' > 0 and 6; > 0,Vi. Since this dual problem is
challenging to address, we consider a lower bound:

max{£(C, xi)} < max{OPTp} < OPT".  (49)

C,xi
subject to x; = C' —6;, C > 0 and 6; > 0 for all nodes i,
where

M

1 o C g
L(C)xi) = — — - = |1- = 50
(Cxi) =57 pi M Zpi " 0
i=1 1=1
M 2
1y [ +[_} X 11
MV oaipi [pi 2 aipi pi 2

The throughput incentives 6); that result from the maximiza-
tion of L(C, x;) are given by Algorithm 2. They are used in the
next section to simulate the Whittle’s Index policy. Simulation
results show that the values of {0}, from Algorithm 2
reduce the throughput debt when compared to 6; = 0.

Algorithm 2 Throughput Incentives

X aipil(1/¢:)* — (1/pi — 1/2)%]/2 Vi

2: C < max;{x;}

30 ¢y - pin/2min{C; xi} /(i) + (1/ps — 1/2)2 Vi
4 S 1+ 2+ -+ du

5: while S <1 do

6: decrease C' slightly

7: repeat steps 3 and 4 to update ¢; and S

8: end while

9: C* = C and x; = min{C*; x;} and 0] = C* — x}, Vi
10: return (07,65, ---,60%,)

IV. SIMULATION RESULTS

In this section, we simulate five transmission scheduling
policies: 1) Optimal Randomized, R*; 2) Max-Weightz, MW,
3) Whittle’s Index, W I; 4) Largest Weighted-Debt First, LD;
and 5) Whittle’s Index without throughput constraints, W P.
The first three policies are developed in Sec. III and the last
two are proposed in [1] and [15], respectively. Policy LD
selects, in each slot k, the node with highest value of z; (k) /p;,
where z;(k) is the throughput debt (35). It was shown in [1]
that LD satisfies any set of feasible throughput requirements
{q:}M, . Notice that LD does not account for Aol. Policy W P
was proposed in [15] for minimizing the Aol in broadcast
wireless networks. It is analogous to W I but with §; = 0, Vs
and it does not account for minimum throughput requirements.

We simulate a network with M nodes, each having different
parameters. Node ¢ has weight o; = (M + 1 —¢)/M, channel
reliability p; = 4/M and minimum throughput requirement
qi = e€p;/M, where ¢ € [0,1) represents the hardness of
satisfying the throughput constraints §; > ¢;. The larger the
value of ¢, the more challenging are the constraints. Notice
that € < 1 is necessary for the feasibility of {g;}}£,. Each
simulation runs for a total of K = M x 10° slots.

Figs. 2 and 3 show simulation results of networks with
different sizes, namely M € {5, 10,---,25,30}, while Fig. 4
shows networks with varying throughput constraints, in par-
ticular ¢ € {0.7,0.75,- -+ ,0.9,0.95,0.999}. Two performance
metrics are used to evaluate scheduling policies. Figs. 2 and 4
measure the Expected Weighted Sum Aol, E[J7], defined in
(7) and compare it with the lower bound Lp in (10a). Fig. 3
measures the maximum normalized throughput debt, defined
as max; {z; (K +1)/Kg¢;}. Each data point in Figs. 2, 3 and
4 is an average over the results of 10 simulations.

Our results clearly demonstrate the superior performance
of the Max-Weight policy. Fig. 3 shows that, as expected,
only W1 and W P violate the throughput requirements. Nev-
ertheless, by comparing W I and W P, it is evident that the
incentives 6 from Algorithm 2 reduced the throughput debt.
Figs. 2 and 4 show that the performance of MW, W1 and W P
are comparable to the lower bound. Since the lower bound
is only associated with policies that fulfill the throughput

2The Max-Weight policy is simulated with V' = M?2.



requirements, we conclude that the performance of MW is
close to optimal.

V. CONCLUDING REMARKS

In this paper, we considered a single-hop wireless network
with a number of nodes transmitting time-sensitive information
to a Base Station over unreliable channels. We addressed the
problem of minimizing the Expected Weighted Sum Aol of the
network while satisfying minimum throughput requirements
from the individual nodes. Three low-complexity schedul-
ing policies were developed: Optimal Stationary Randomized
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Fig. 2. Simulation of a network with fixed € = 0.9 and varying size M.
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Fig. 3. Simulation of a network with fixed € = 0.9 and varying size M.
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Fig. 4. Simulation of a network with size M = 30 and varying hardness €.

policy, Max-Weight policy, and Whittle’s Index policy. The
performance of each policy was evaluated both analytically
and through simulation. The Max-Weight policy demonstrated
the best performance in terms of both Aol and throughput. In-
teresting extensions include consideration of unknown channel
probabilities p; and periodic generation of packets.
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