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ABSTRACT

We describe a search-based approach to generating new levels for

bullet hell games, which are action games characterized by and

requiring avoidance of a very large amount of projectiles. Levels

are represented using a domain-specific description language, and

search in the space defined by this language is performed by a novel

variant of the Map-Elites algorithm which incorporates a feasible-

infeasible approach to constraint satisfaction. Simulation-based

evaluation is used to gauge the fitness of levels, using an agent based

on best-first search. The performance of the agent can be tuned

according to the two dimensions of strategy and dexterity, making

it possible to search for level configurations that require a specific

combination of both. As far as we know, this paper describes the

first generator for this game genre, and includes several algorithmic

innovations.
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1 INTRODUCTION

Games of the same series or genre often share a number of game-

play elements and can sometimes feel as if they play very similarly.
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As such, games sometimes are differentiated based on the qual-

ity and quantity of their content. Some genres and series exhibit

this emphasis on content more strongly than others, and it is in

this space that Procedural Content Generation (PCG) [20] can be

particularly useful.

Content in the bullet hell genre is oftenmeasured by its challenge,

so developers often attempt to make their games punishingly hard.

However, players come with a wide variety of skill levels, and so

many bullet hell games add multiple difficulty levels in the hope

that the game can present challenging content to a wider variety

of players. It is entirely possible for designers to miss the mark on

easier content, making it too close in difficulty to harder content or

making it too easy to be interesting. This is a fundamental challenge

that can arise in game design, and one that may be lightened with

PCG techniques.

In this paper, we describe a PCG algorithm implementation de-

signed to generate bullet patterns for bullet hell games. Of particular

interest to this work is the infrastructure enabling the algorithm

to generate the patterns, as well as the algorithm itself, and the

means by which created patterns are evaluated. To that end, we

present Talakat, a description language designed to encapsulate

and describe bullet hell patterns, a variation upon the MAP-Elites

algorithm that generates Talakat descriptions, and a simulation

evaluation method that guides evolution toward levels of specific

challenge along the two dimensions strategy and dexterity.

2 BACKGROUND

Bullet hell is a subgenre of shoot ’em up games, where player char-

acters fire projectiles at enemies, which similarly fire projectiles

at the player. The goal of these games is generally to defeat ene-

mies while avoiding the projectiles that are fired at them. Notable

shoot ’em ups include SpaceWar (CoCoPaPa Soft, 1962) and Space

Invaders (Taito, 1978). Bullet hell games share this fundamental

concept, but are distinguished by a much higher quantity of bullets

as well as higher difficulty. Notable recent bullet hell games include

Jamestown: Legend of the Lost Colony (Final Form Games, 2011) and

Touhou Tenkuushou Hidden Star in Four Seasons (Team Shanghai

Alice, 2017).

The games of the bullet hell genre typically share a single core

formula [2], and the gameplay of many modern bullet hell games is

strikingly similar to that of games from 1995. Instead, many bullet

hell games are differentiated by the quality of their levels. This

does, however, raise the question of what qualities are desirable in
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a bullet hell level. Principal among these is playability. Games that

are difficult by design often walk a fine line between satisfyingly

challenging and simply impossible to complete. Playtesting is of

course important in ensuring playability, but a game that is chal-

lenging by design will require highly skilled (and harder to find)

players to validate a game. Additionally, players often expect bullet

hell games to be challenging. Some levels heavily emphasize what

is referred to as skillful dodging, which reward high dexterity and

fast reflexes. Bullet hell levels can also require the identification of

safe spots or planned paths, and reward intelligent planning and

long-term strategy.

2.1 Procedural Content Generation

Both industry and research groups have developed methods of

procedural content generation in games. In the industry, proce-

dural level generation has been particularly prevalent in strategy,

dungeon-crawling, and role-playing games. PCG in games dates as

far back as Rogue (Epyx, 1980), and remains a mainstay of modern

game design. Franchises such as Diablo (Blizzard, 1996), Mystery

Dungeon (Spike Chunsoft, 1993), and Disgaea (Nippon Ichi Software,

2003) have featured level generation as a core feature and a key

selling point. The idea of effectively infinite content is an appealing

one to both consumers and developers.

Researchers have developed and presented a number of methods

that can be used to generate levels in games. Especially popular in

this area of research is generation through evolutionary strategies.

Shaker et al discuss a means of generating personalized content for

Super Mario Bros through grammatical evolution [19]. Browne et al.

present the application of genetic programming toward the proce-

dural generation of games through the Ludi system, resulting in the

development of games such as Yavalath [1]. Sentient Sketchbook

utilizes a user-driven evolutionary algorithm to generate levels for

tile-based games [13]. Closer to the generation of bullet patterns is

the work presented by Hastings et al., which utilized online user-

driven neuroevolution techniques to procedurally generate novel

shot types for the game Galactic Arms Race [7]. We aim to use a

variation on MAP-Elites [15] with a simulation-based evaluation

to measure the quality and difficulty of a created level.

A key requirement of most procedural level generation is a rea-

sonable and workable representation of generated content. For

example, the Video Game Description Language (VGDL) repre-

sents content using a high-level description language that defines

entities and the behaviors between them [5] [18]. Game genera-

tion using VGDL has involved methodologies that mutate interac-

tions between game entities by modifying the script that generates

them [16]. Work involving PCG in Super Mario Bros demonstrates

the number of ways a level representation can take. For exam-

ple, Snodgras et al. generates levels using a higher order Markov

chain [22]. By contrast, Shaker et al. represented Mario levels using

abstract grammar based representations [19]. Tracery also presents

a grammar that can be used to procedurally generate game text.

The grammar acts as an abstract representation of parameters along

which the text is to be generated [3]. Using a grammar representa-

tion, it is possible to procedurally generate content using techniques

akin to grammatical evolution [17].

2.2 Simulation-based content evaluation

It is also important to have means to validate and evaluate the

generated content. One way to evaluate game content is simulation-

based evaluation using AI agents. Smith et al. make use of AI agents

to validate the playability of a platformer level in the Tanagra

framework [21]. Isaksen et al. use large-scale simulation-based

evaluation to explore the space of Flappy Bird variants and identify

sets of variables that result in interesting variants [8]. Silva et al.

also demonstrated the usage of AI-based playtesting in gameplay

analysis as well as the identification of unexpected imperfections

in the Ticket To Ride (Days of Wonder, 2004) board game [4]. For

bullet hells, one of the most important considerations is difficulty.

Difficulty, however, is a complex and fraught topic. Jennings-Teats

et al. present an implementation of Dynamic Difficulty Adjustment

(DDA) that generates levels with a difficulty specifically tailored

toward an individual player, creating harder content as the player

improves. This makes use of a feedback-based model, in which

player involvment and evaluation is required for the generation of

difficult content [10]. Isaksen et al. present a model of difficulty as a

function of dexterity and strategy, as well as an AI-based approach

to measuring these quantities [9]. Bullet hell patterns generally fall

neatly within this framework, emphasizing either dexterity-in the

form of surgical movements or quick reactions-or strategy-in the

form of safe spots, paths, and misdirections.

3 TALAKAT

Talakat 1 is a description language that describes bullet hell levels.

A Talakat script constitutes a single bullet hell level. Figure 1 shows

the full grammar of Talakat. Figure 2 shows an example of a Talakat

script. A single script is divided into two parts: the Spawner section

and the Boss section.

3.1 Spawners Section

The spawners section contains information about the bullet spawn-

ers. Bullet spawners are invisible objects that are responsible for

producing either bullets or additional spawners. The spawners sec-

tion consists of an array of spawner definitions. Each spawner has

a unique ‘id’ to identify it, as well as parameters that define its

spawning behavior. These parameters can include angle, speed,

number of spawned objects, etc. Complex patterns can be gener-

ated by overlaying different spawners on top of one another. For

example, Figure 2 utilizes three spawners: łonež, łtwož, and łthreež.

Spawner łonež generates 4 instances of spawner łtwož evenly over

an arc of 360◦ (4 spawners at 90◦ intervals) every 4 frames. Every

12 frames, the spawner rotates 10 degrees. Spawner łtwož spawns

3 bullets evenly over an arc of 30◦, each of which move at a speed

of 4 pixels/frame. The end result of this pattern is a boss that fires

3 bullets in a small arc in four directions three times, rotates 10

degrees, and repeats. Spawner łthreež spawns 2 bullets over an

angle of 360◦ while rotating 2 degrees per frame and changing

direction once the spawner has rotated 180◦, creating a pattern that

fires bullets in a sweeping motion. Figure 3 shows this spawner

configuration in action.

1Detailed documentation of the grammar can be found at
https://github.com/amidos2006/Talakat/wiki/Scripting-Language
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⟨script⟩ ::= ⟨spawners⟩ ⟨boss⟩

⟨spawners⟩ ::= ⟨spawner⟩ | ⟨spawner⟩ ⟨spawners⟩

⟨spawner⟩ ::= id ⟨spawnerParameter⟩ ⟨spawnedParameter⟩

⟨bulletParameter⟩

⟨spawnerParameter⟩ ::= ⟨spawnPattern⟩ patternTime patternRe-

peat ⟨angleCSV ⟩ ⟨radiusCSV ⟩

⟨spawnPattern⟩ ::= ‘bullet’ ⟨spawnPattern⟩ | ‘wait’

⟨spawnPattern⟩ | id ⟨spawnPattern⟩ | ϵ

⟨spawnedParameter⟩ ::= ⟨numberCSV ⟩ ⟨angleCSV ⟩ ⟨speedCSV ⟩

⟨bulletParameter⟩ ::= ⟨radiusCSV ⟩ ⟨colorCSV ⟩

⟨numberCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨angleCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨speedCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨radiusCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨colorCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨type⟩ ::= ‘circle’ | ‘inverse’

⟨boss⟩ ::= bossPosition bossHealth ⟨script⟩

⟨script⟩ ::= ⟨scriptEvent⟩ | ⟨scriptEvent⟩ ⟨script⟩

⟨scriptEvent⟩ ::= trigger ⟨events⟩

⟨events⟩ ::= ⟨event⟩ | ⟨event⟩ ⟨events⟩

⟨event⟩ ::= ⟨spawnEvent⟩ | ⟨clearEvent⟩

⟨spawnEvent⟩ ::= ‘spawn’ id speed angle | ‘spawn’ ‘bullet’ speed

angle

⟨clearEvent⟩ ::= ‘clear’ id | ‘clear’ ‘bullets’ | ‘clear’ ‘spawners’

Figure 1: Talakat language as a context free grammar. An-

gular brackets values such as <spawners> are non terminal,

quoted values such as ‘bullet’ are string terminals, while

other values such as minValue are number terminals.

3.2 Boss Section

The boss section contains information about the level. It defines

boss health, boss position, and contains the level script which details

boss behavior. Figure 2 contains an example of a simple boss section.

Boss health controls the length of the level. In figure 2, the length of

the level is specified to be 3000 frames. For this version of Talakat,

one point of boss health is depleted per frame regardless of player

action, making health and duration one and the same. Boss position

controls the placement of the boss in the level. In figure 2, the

boss will be in the upper center part of the level. The level script

describes events that trigger when the boss’ health reaches certain

thresholds. In figure 2, the boss has two events: the first event

spawns spawner łonež and triggers when boss health is at 100%

(that is, the boss opens with this event), and the second event clears

{

spawners:{

one:{

pattern:["two"],

patternTime:"4",

spawnerAngle:"0,360,10,12,circle",

spawnedSpeed:"0",

spawnedNumber:"4",

spawnedAngle:"360"

},

two:{

pattern:["bullet"],

patternRepeat:"1",

spawnedAngle:"30",

spawnedNumber:"3",

spawnedSpeed: "4"

}

three:{

pattern:["bullet"],

patternTime:"4",

spawnerAngle:"0,180,2,0,reverse",

spawnedSpeed:"2",

spawnedNumber:"2",

spawnedAngle:"360"

}

},

boss:{

bossHealth: 3000,

bossPosition: "0.5, 0.2",

script:[

{

health:1,

events:["spawn,one"]

},

{

health:0.5,

events:["clear,spawners", "spawn,

three"]

}

]

}

}

Figure 2: An example of a full Talakat script.

all of the previous spawners and spawns spawner łthreež when the

boss’ health reaches 50%.

4 CONSTRAINED MAP-ELITES

Generating levels for a bullet hell game is a non-trivial problem. In

addition to playability, one must consider difficulty, visual aesthet-

ics, distribution, etc. Designing a fitness function to incorporate

these dimensions is challenging. Additionally, there is more than

one interesting level in the search space. For example: higher bullet

count does not guarantee a more difficult level. Therefore, using
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appear to be largely invariant across all experiments. It is entirely

possible that risk is an effective difficulty analog that is unaffected

by dexterity and strategy. This renders it less useful than entropy

as a means of identifying more or less demanding levels in this

specific experiment.

Figure 6 shows examples from the 9 experiments. We aimed to

show levels with high entropy values to demonstrate the differences

in difficulty generated by the experiments. The top row of images

shows levels with entropy 8, the middle row shows images of levels

with entropy 6, and the bottom row shows images of levels with

entropy 4. Each of these values were chosen as they are higher than

highest entropy achieved by an elite in an experiment with a lower

dexterity. Therefore, levels in the top row should be too dexterously

demanding for medium-dexterity agents, and levels depicted in

the middle row should be too hard for low dexterity agents. Al-

though the same relation cannot be definitively stated for strategy,

visual observation and analysis shows distinctive differences in the

amount of planning required for high strategy levels versus low

strategy levels. For example, the level shown in figure 6i begins with

an empty stage, and quickly floods the left side with bullets after a

short period of time. An agent without enough decision-making

time to predict this will fail to move to the safe right side before it

becomes closed off. Similar requirements are evident in the levels

depicted by images 6f and 6c. Both levels open by splitting the level

into sections, and firing bullets into certain sections some time

later. A low strategy agent is less likely to be able to predict which

sections will be safe in the time it is allotted, and inevitably die.

This requirement is less pronounced but still present in medium

strategy levels. Images 6e and 6f show levels with somewhat jagged

walls of bullets. An agent can dodge the immediate threat by going

between bullets, only to find itself trapped in the concave structure

created by the jagged shape. From observing the images of levels

created by the experiments, we believe that strategy did have some

impact on the design of generated levels, even if the influence is

not reflected in the statistics presented by figure 5.

7 CONCLUSION

In this paper, we presented Talakat a new framework that can be

used to describe bullet hell levels. We also introduced a hybrid evo-

lutionary algorithm called Constrained MAP-Elites that combines

the MAP-Elites technique and the Feasible-Infeasible 2-Population

genetic algorithm. We showed that the Constrained MAP-Elites can

be used with Talakat to generate variations of levels. We suggest

using Constrained MAP-Elites as a technique in level generation as

game levels are very subjective. Instead of trying to define a łgoodž

level, one can use multiple metrics as different dimensions of the

Constrained MAP-Elites and utilize only playability for the fitness

function. From the analysis of the histograms in the 9 experiments

as well as high-performing levels, we confirmed that it is possible

to create levels of varying difficulty.

For future work, we aim to investigate the possibility of generat-

ing aesthetically pleasing bullet hell levels in addition to challenging

ones. A recent trend in bullet hell level design is the emphasis on

patterns that are thematically coherent or pleasing to the eye. It

may be possible to treat visual aesthetics as an additional dimen-

sion in the Constrained MAP-Elites or as part of a level’s fitness

function. How exactly that would be evaluated is unclear, although

machine learning looks to be a promising avenue. We also aim to

apply the Constrained MAP-Elites method to other types of games,

for example those in the General Video Game Level Generation

Framework [11]. We would also like to investigate the use of differ-

ent metrics such as the ones presented by Liapis et al [14] as the

dimensions for Constrained MAP-Elites.
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