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Abstract— LED-based optical communication is emerging as
a low-cost, high-data-rate alternative to the traditional acoustics
mode of underwater communication. However, it is challenging
to establish and maintain Line-Of-Sight (LOS) between the
receiver and the transmitter, especially when such systems are
used by mobile robots. Hence, there is a need for an active
alignment system that enables the receiver to constantly align
itself towards the direction of the transmitting device. In this
paper, we propose and implement an active alignment control
system capable of tracking a transmitting source moving in
the three-dimensional (3D) space. An extended Kalman filter
is used to estimate the components of the angle between the
receiver orientation and the receiver-transmitter line. Using the
estimate, a proportional-integral (PI) controller is implemented
to adjust the receiver orientation. The algorithm uses one mea-
surement of the light intensity from a single photo-diode, where
successive measurements are obtained via a circular scanning
technique. The amplitude of the scanning is adapted to the
alignment performance, to achieve a sound trade-off between
estimation accuracy, signal strength, and energy consumption.
Simulation and experimental results are presented to illustrate
the effectiveness of the proposed approach.

I. INTRODUCTION

Underwater wireless communication is necessary between

autonomous underwater robots deployed for collaborative

tasks, such as environmental monitoring, oil/gas exploration,

and assisting human divers, etc. Due to the heavy atten-

uation of radio frequency signals in water [1], currently,

acoustic communication is the prevailing method for un-

derwater robots to communicate with each other and/or

the base stations. However, acoustic communication suffers

from the drawbacks of low data rates, high latency, and

high power consumption [2]. Recently, light-emitting diode

(LED)-based optical communication has been proposed as

a promising low-cost, high-data-rate, low-power solution for

low-to-medium range underwater data transfer applications

[3], [4], [5]. A number of studies focused on increasing the

communication range and data rates of LED communication

systems have been reported. For example, Brundage designed

an optical communication system using a Titan blue lighting

LED [6], which performed error-free communication over 1

Mbps at distances up to 13 m. Doniec and Rus demonstrated

a bidirectional underwater wireless communication system

called AquaOptical II [7], which used 18 Luxeon Rebel

LEDs and an avalanche photo-diode (APD) and operated

over a distance of 50 m at a data rate of 4 Mbps.
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Due to the high directionality of the light signals, an

inherent challenge associated with wireless LED optical

communication is to establish and maintain close-to-line-of-

sight links. For many potential applications involving under-

water robots, maintaining a line-of-sight (LOS) is difficult

due to movement of the underlying robotic platform caused

by propulsion or ambient disturbances. Several approaches

have been proposed to address the LOS requirement in

optical communication systems. Pontbriand et al. used large-

area photomultiplier tubes, to increase the field of view

of the receiver [8]. Multiple LEDs and/or multiple photo-

diodes have been used to avoid the need for active pointing

during optical-communication [7], [9], [10], [11], [12]. Use

of quadrant detectors [13], [14] has also been reported

for optical beam tracking, where four photo-receivers were

arranged in a plane, facing the same direction. Most of the

former systems achieved the line of sight through redundancy

in transmitters and/or receivers, which resulted in a larger

footprint, higher cost, and higher complexity.

In our previous work [15], we implemented an active

alignment control scheme for LED communication systems,

where measurements from a single photo-diode were used.

The system was able to track a light transmitter, moving

in a 2-dimensional (2D) space. However, in a practical

underwater scenario, the robots move in a 3D space and there

is a need for active alignment control that could establish

and maintain the LOS with a transmitter moving in the 3D

space. In this work, we propose and implement an active

alignment control to maintain the LOS in the 3D space.

This paper is a significant extension of our earlier work

[16], which was limited to a preliminary simulation study. In

particular, this paper presents improved algorithms on both

estimation and control, and more importantly, the design

and implementation of the active alignment control system,

and evaluation in extensive simulation and experimentation.

For example, instead of using three measurements in an

iteration, we now demonstrate that a single measurement is

sufficient for guaranteeing the observability of the system if

the next two successive measurements, along with the present

measurement, are not taken from coplanar directions. This

has simplified the overall implementation of the algorithm

and reduced the computational cost, which is crucial for the

on-board implementation of the algorithm.

A circular scanning technique is used to ensure the system

observability in successive light intensity measurements,

which are used by the EKF-based algorithm to estimate

the orientation angles with respect to the transmitter. A

PI control algorithm then uses these estimates to generate
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the motor commands to orient the receiver in the desired

transmitter-receiver line. In addition, to save energy and

maximize signal strength at the steady state, the amplitude of

the circular scanning is adapted according to the alignment

performance: starting with a high scanning amplitude so that

the successive measurements are distinguishable to enable

good estimation accuracy and then decreasing the amplitude

to reduce the energy consumption and attain maximum light

intensity when the steady state is reached. Both simulation

and experimental results verify the efficacy of the proposed

algorithm.

The rest of the paper is organized as follows. In Section

II, the hardware implementation of the 3D alignment control

mechanism is first described, followed by the modeling

of the received light intensity in Section III. The model

is then used to develop a state-space dynamic model for

the estimation algorithm development. In Section IV the

estimation and tracking control algorithms are described.

Simulation setup and results are presented in Section V,

while experimental setup and results are discussed in Section

VI. Finally, concluding remarks are provided in Section VII.

II. SYSTEM SETUP

In this section, we describe the experimental setup used

in our work. We first discuss the components of our re-

ceiver system. A photo-diode from Advanced Photonix (part

number PDB-V107) is chosen for the receiver, and it has

high quantum efficiency at 410 nm, low dark current, and

fast rise time (20 ns). This makes it a suitable device for

communication with bandwidth on the order of 100 KHz to 1

MHz. Fig. 1 shows the mechanism for adjusting the receiver

orientation in the 3D space. The mechanism consists of two

stepper motors: the first one at the base, also referred to as

the base stepper motor, is used for adjusting the azimuthal

orientation, while the second stepper motor, through a miter

bevel gear assembly, is used for adjusting the elevation of

the receiver orientation. This configuration maintains the

low moment of inertia of the rotating stage and minimizes

the load on the base stepper motor, which improves overall

efficiency as compared to the alternative, where the stepper

motor axes are perpendicular to each other. A lens is mounted

on the photo-diode to increase the field of view. An Intel

Edison microprocessor board is used for the required on-

board computation. Slip rings are also used for a smooth

transmission of power and electrical signals between the

rotating stage and the base stage. For the transmitter, we

use an off-the-shelf blue LED (Cree XR-E Series LED from

Cree Inc) which provides 30.6 lumens at 1 A.

III. MODELING

In this section, we briefly, discuss the light intensity model

and then formulate the state-space model for an estimation

problem, where a scenario of two robots is considered.

A. Light signal strength model

The model adopted here largely follows [17] with mi-

nor adjustments to suit the experimental prototype used in

Stepper 
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Board
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Fig. 1. Experimental setup, where the receiver photo-diode with two-DOF
active orientation adjustment is shown.

this paper. The model takes into account all stages of the

transmitter and receiver circuits, including LED, lens, photo-

diode, and amplifiers. The model mainly describes the effect

of relative position and orientation between the transmitter

and the receiver on the signal strength. Fig. 2 illustrates the

two 3D coordinate systems, referred to as the base frame

(o − x′y′z′) and the receiver frame (o − xyz), respectively,

and defines all the variables of interest associated with our

analysis. The receiver’s location is chosen as the origin

of the coordinate systems. The rotational axis of the base

stepper motor is considered as the y′ axis (the superscript

prime is used for the base coordinate system). The line

joining the receiver and the transmitter is chosen as the x
axis of the receiver frame. Now, the axis perpendicular to

the plane containing x and y′ axes is defined as z and z′

axis for the respective coordinate systems. The remaining

y-axis for the receiver frame and the x′-axis for the base

frame are inferred by the right-hand rule. The parameter d
is the distance between the receiver and the transmitter. The

transmission angle γ is the angle between the transmitter

and the transmitter-receiver line, which is also termed as

the communication line in this paper. The angles, θ and φ,

are the two orthogonal components of the angle made by

the receiver’s normal with the communication line, where

φ represents the yaw and θ represents the pitch orientation

in the receiver frame. Using a spatial intensity curve Iγ of

the transmitter LED, which represents the light intensity at a

unit distance for different transmitter angles, the intensity at

points with same radial distance from the transmitter can be

calculated if the intensity at γ = 0◦ is known. The intensity

of light reaching a spatial point at a distance d and at an

angle γ can be summarized as

Eγ(d) = Iγe
−cd/d2 (1)
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Fig. 2. Illustration of two 3D coordinate systems and the variables
associated with the relative position and orientation between the transmitter
and the receiver.

where c is the attenuation coefficient for the medium in

which the light is transmitted. Considering the effect of the

receiver’s orientation and area, the final power at the receiver

can be written as:

Pin = Eγ(d)A0f(φ, θ) (2)

where A0 denotes the detector area and f(φ, θ) characterizes

the dependence of the received light intensity on the inci-

dence angles φ and θ. The term f(φ, θ) is a setup-dependent

term. For our setup, we have found the function f(φ, θ)
using Gaussian curve fitting of normalized measurement data

(Fig. 3) that were collected for different orientations of the

receiver. It is observed that the measurement data is circularly

symmetric about the peak. Henceforth, for practical purposes

and simplicity in analysis, f(φ, θ) can be approximated by

a product of two one dimensional Gaussian-type functions

g(φ) and g(θ):
f(φ, θ) = g(φ)g(θ) (3)
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Fig. 3. Light intensity data for estimation of f(φ, θ).

where g(·) is a bimodal Gaussian function obtained by

curve fitting [16]. The full signal strength model can be

summarized as

Vd = CIγe
−cdg(φ)g(θ)/d2 (4)

where Vd is the voltage signal and C is a constant of

proportionality, which depends on the area of receiver photo-

diode and various parameters associated with the filter and

amplifier circuits.

B. State-space problem formulation

From Fig. 2 and Eq. (4), we can see that there are four

independent variables, γ, d, φ and θ, that characterize the

received signal strength. One could take these four variables

as the states to be estimated by the system, and then try

to drive them towards their desired values through control.

However, often times the underlying robotic platforms are

engaged in other tasks and may not constrain or modify

their motions to accommodate communication. What is much

more practical is to control the receiver’s orientation (φ
and θ), since it is a completely local decision due to the

independent rotation base for the transceiver. In a two-way

communication setting, since the transmitter and the receiver

on each robot are pointing in the same direction, adjusting

φ and θ to zero on each robot automatically aligns each

transmitter with the line connecting two robots. In light of

this discussion, we can combine terms involving γ and d in

a single variable and define the state variables as

x =





x1
x2
x3





△
=





CIγe
−cd/d2

φ
θ



 (5)

The value of x is dependent on the distance and relative

orientation between the receiver and the transmitter. In a

typical scenario, the receiver does not have information about

how the transmitter and its underlying robotic platform move.

So we will assume that the relative dynamics between the

two communicating robots is slow enough that it can be

captured with Gaussian noises. In particular, the dynamics of

the states defined in (5) can be represented in the discrete-

time domain as

xk =





x1,k
x2,k
x3,k



 =





x1,k−1 + w1,k−1

x2,k−1 + u2,k−1 + w2,k−1

x3,k−1 + u3,k−1 + w3,k−1



 (6)

where w1,k , w2,k and w3,k are the process noises, assumed to

be independent, white, Gaussian noises. These noise terms,

up to some extent can account for the slow dynamics of

xk, which are not modeled explicitly. The terms u2,k and

u3,k are the control inputs through which the receiver’s

orientation is changed. These two inputs are related to motor

commands by a rotational transformation, which is discussed

later. The kth measurement Vd,k can be expressed in terms of

the state variables, where an additive white Gaussian noise

vk, assumed to be independent from the process noises, is

included:

Vd,k = x1,kg(x2,k)g(x3,k) + vk (7)

Given the measurement, the goal is to estimate x1,k, x2,k and

x3,k based on which the control term uk = [u2,k, u3,k]
T

is designed, to drive x2 and x3 towards 0◦, which is the

orientation with the maximum light intensity.

IV. ESTIMATION AND ALIGNMENT

ALGORITHMS

In this section, we first explore the observability of our

system and then introduce the circular scanning technique,
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followed by the design of a feedback controller and the

discussion on the implementation of the EKF algorithm.

A. Observability of the system

Given that the measurement model (7) is nonlinear, an

extended Kalman filter [18] is explored for solving the

estimation problem. From the (linear) state equation (6),

define

A =





1 0 0
0 1 0
0 0 1



 , B =





0 0
1 0
0 1



 (8)

Then the system dynamics can be written as:

xk = Axk−1 +Buk−1 +wk−1 (9)

with wk = [w1,k, w2,k, w3,k]
T

. Denoting the system’s lin-

earized output matrix at the kth time instant as Ck , C(xk),
one can express the observability matrix at that time instant

as [18]

Ok =





Ck
Ck+1A
Ck+2A

2



 =





Ck
Ck+1

Ck+2



 (10)

Therefore, for the system to be observable, Ok needs to

be non-singular. One of the possible ways to ensure this

criterion is to make the three consecutive Ck’s to be linearly

independent with each other, which implies that we need

at least 3 consecutive independent measurements of light

intensity. In this situation, the measurements would be inde-

pendent if they are taken from three non-planar orientations

of the receiver. Hence, we introduce a circular scanning

technique, where the two motors of the receiver mechanism

are commanded to move in such a way that the direction of

the photo-diode moves in a circular manner centered around

a mean orientation. This mean orientation, which is what the

control input modulates, is (x2, x3).
The scanning pattern design is based on two parameters:

scanning amplitude δr and angular step δψ (see Fig. 4), where

δr regulates the angular distance of the measurement points

from the mean angular position, and the subscript r denotes

that it is the radius of the circular scanning pattern. The

notation δψ accounts for the angular displacement between

the two successive measurement points. The relative angular

position of a measurement point with respect to the mean

(x2, x3) at the kth instant is defined as ψk, which has two

orthogonal components αk and βk as shown in (11):










ψk = ψk−1 + δψ

βk = δr cos(ψk),

αk = δr sin(ψk)

(11)

Fig. 4 illustrates the scanning technique. The receiver

photo-diode moves around the mean (x2, x3) in successive

steps of size δψ. The measurement is taken at each ψk and

is considered as our output yk:

yk = x1,kg(x2,k + βk)g(x3,k + αk) + vk (12)

Fig. 5 illustrates the overall flow of our estimation and

control method. The estimates x̂2 and x̂3 and their integral

Fig. 4. Illustration of the circular scanning sequence, with mean (x2, x3)
and the last three angular positions of scanning ψk , ψk−1 and ψk−2

states are fed to a PI controller to generate the control terms.

The control terms with the addition of the scanning terms are

translated to the base coordinate system using a rotational

transformation. The motor commands are generated using

these transformed terms.

Receiver mean’s 
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Fig. 5. Block diagram illustrating the flow of the proposed method.

B. Design of a feedback controller

A PI controller will be used to drive the receiver towards

the transmitter. While in implementation the EKF-based state

estimates will be used as feedback, here we assume direct

state feedback in order to analyze the constraints on the

controller gains for ensuring stability. The controllers are

written as
{

u2,k = −GPx2,k −GIz2,k

u3,k = −GPx3,k −GIz3,k
(13)

where z2,k and z3,k are the integrals of states x2,k and x3,k
respectively, defined by:

zi,k ,

k−1
∑

n=0

Txi,n = zi,k−1 + Txi,k−1, i ∈ {2, 3} (14)

where T is the sampling time. GP and GI are positive

constants which account for the proportional and integral
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gains of the controller, respectively. Given the symmetry over

x2 and x3, the same PI parameters are used for both of the

control terms in Eq. (13). The closed-loop system is:













x1,k
x2,k
z2,k
x3,k
z3,k













=













1 0 0 0 0
0 1−GP −GI 0 0
0 T 1 0 0
0 0 0 1−GP −GI
0 0 0 T 1

























x1,k−1

x2,k−1

z2,k−1

x3,k−1

z3,k−1













(15)

Since the states are decoupled, one of the eigenvalues would

be 1 (corresponds to state x1, which is not controllable) and

the other four would be repeated eigenvalues of the 2 × 2
submatrix highlighted above (say A′), which would be the

roots of Eq. (16):

λ2 − (2−GP )λ+ (1−GP +GIT ) = 0 (16)

For the subsystem to be stable, the PI parameters are chosen

in such a way that both eigenvalues of the A′ matrix lie

inside the unit circle, centered at the origin of a complex

plane.

C. Implementation of extended Kalman filter

With the dynamics equation (6) and the measurement

equation (12), an extended Kalman filter (EKF) can be im-

plemented. The complete algorithm is explained as follows.

There are three covariance matrices, namely, P , Q and R,

associated with an EKF. P is the conditional error covariance

matrix and P f represents the forecast of the covariance

matrix. Q is the process noise covariance matrix, and R is

the measurement noise covariance. At step k,

1) Prediction phase : Both state estimates (x̂) and error

co-variance matrix (P f ) are predicted:

x̂
f
k =





x̂1,k
x̂2,k
x̂3,k



 =





x̂1,k−1

x̂2,k−1 + u2,k−1

x̂3,k−1 + u3,k−1



 (17)

P fk = APk−1A
T +Q (18)

where x̂fm,k denotes the estimate of the mth state at

kth interval and superscript f stands for ‘forecast’.

2) Estimated output:

From (12), we get

ŷk = x̂1,kg(x̂2,k + βk)g(x̂3,k + αk) (19)

Now the C matrix can be computed as:

Ck =
∂h(x̂fk)

∂x̂fk
=

[

Ck,1 Ck,2 Ck,3
]

(20)

where,










Ck,1 = g(x̂2,k + βk)g(x̂3,k + αk)

Ck,2 = x̂1,kg
′(x̂2,k + βk)g(x̂3,k + αk)

Ck,3 = x̂1,kg(x̂2,k + βk)g
′(x̂3,k + αk)

(21)

with g′(·) being the derivative of g(·).

3) Update/analysis phase:










Kk = P fk C
T
k (CkP

f
k C

T
k +R)−1

x̂k = x̂
f
k +Kk(yk − ŷk)

Pk = (I −KkCk)P
f
k

(22)

It is to be noted that Pk and x̂k without any super-

scripts denote the updated values after the analysis

phase.

4) Now, the control terms are computed as
{

u2,k = −GP x̂2,k −GI ẑ2,k

u3,k = −GP x̂3,k −GI ẑ3,k
(23)

where the terms ẑ2,k and ẑ3,k are the integrals of the

estimates x̂2,k and x̂2,k, respectively.

D. Generation of motor commands

It is to be noted that the above analysis is done in a

local coordinate system (the receiver frame) and we need to

translate those control terms to the base coordinate system

to generate motor commands. Let θbk be the elevation of

the photo-diode’s mean orientation (center of the scanning

pattern, which is known) at the kth iteration. The superscript

b stands for the base coordinate system. The translation of

the control terms to the base coordinate system is as follows:






















ub2,k = arctan2(cos(u3,k) sin(u2,k), cos(u3,k)

cos(u2,k) cos(θ
b
k)− sin(u3,k) sin(θ

b
k))

ub3,k = arcsin(cos(u3,k) cos(u2,k) sin(θ
b
k) + sin(u3,k)

cos(θbk))− θbk
(24)

Now the new elevation and azimuthal angles of the photo-

diode’s mean position in the base coordinate system are
{

θbk+1 = θbk + ub3,k

φbk+1 = φbk + ub3,k
(25)

The actual photo-diode’s orientation consists of the scanning

terms as well. Translating the scanning terms to the base

coordinate system results in the actual net orientation of the

receiver:






















βbk+1 = arctan 2(cos(αk+1) sin(βk+1), cos(αk+1)

cos(βk+1) cos(θ
b
k+1)− sin(αk) sin(θ

b
k)) + ψk+1

αbk+1 = arcsin(cos(αk+1) cos(βk+1) sin(θ
b
k+1)

+ sin(αk+1) cos(θ
b
k+1))

(26)

where βbk+1
and αbk+1

are the yaw and pitch orientations

of the photo-diode respectively. The final commands sent to

the motors would be the difference of the next computed

orientation with the current orientation:
{

M1,k = βbk+1 − βbk

M2,k = αbk+1 − αbk
(27)

Furthermore, some additional adjustments have been made

to improve the performance of the method. For instance,

instead of activating the control commands from the very
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beginning when the estimates have relatively large errors, the

control is activated when the confidence about the estimates

is high enough.In particular, a normalized filtered error

function for the measurement is used as a metric to indicate

the confidence of the estimator:

ek =
1

3

k
∑

i=k−2

yi − ŷi
yi

(28)

A lower value of ek indicates the high confidence on the

estimates, so, the controller is activated when the error ek
is less than a certain threshold (0.3 is used in this work).

In addition, an adaptive scanning approach is used, which is

discussed in the next section.

V. SIMULATION RESULTS

The algorithm discussed is simulated in MATLAB. All

the parameters related to the simulation implementation are

listed in Table I. To explore the effects of unknown slow

dynamics, a constant disturbance term κ is introduced in the

dynamics of both x2 and x3. This disturbance is unknown to

the EKF and emulates the practical scenario of the transmitter

revolving around the receiver while facing the receiver. The

simulated dynamics is thus




x1,k
x2,k
x3,k



 =





x1,k−1 + w1,k−1

x2,k−1 + u2,k−1 + κT + w2,k−1

x3,k−1 + u3,k−1 + κT + w3,k−1



 (29)

TABLE I

PARAMETERS USED IN SIMULATION.

Parameter Value Description

x̂f
0

[3, 0, 0]T Initial value of the estimates

P f
0

diag([1, 10, 10]) Initial error-covariance matrix

Qsys diag([0.01, 0.1, 0.1])
System’s process noise-
covariance matrix

Q diag([0.1, 1, 1])
EKF’s process noise-
covariance matrix

Rsys 0.1
System’s measurement noise-
covariance matrix

R 1
EKF’s measurement noise-
covariance matrix

[GP , GI ] [0.5, 0.1] PI controller gains

δr 7 Scanning amplitude

[δl, δl] [2,10] Scanning amplitude limits

δψ 30 Scanning angular step-size

T 80 ms Sampling time

Fig. 6 illustrates a simulation run in angular coordinates

of x2 and x3, when the disturbance κ is 1 ◦/s. Here, as

per our definition, the transmitter is at the origin. The blue

squares denote the mean of the scans and the green trajectory

represents the net estimated orientation of the receiver with

the scanning terms included. Fig. 7 shows the evolution of the

states and the estimates in the course of the EKF run. It can

be observed that it takes about 10 seconds for the estimates

to converge to true values, and once this is achieved, the

controller shifts the scanning circle towards the transmitter,

which is situated at the origin. The receiver’s orientation

stays around the origin despite the constant disturbance.

Moreover, we can also observe that although the maximum

possible intensity is 5 V (true value of x1), the intensity

measurements and its estimate oscillate about the mean of

3.5 V. This loss in intensity is because of the scanning

motion. This loss in intensity can be critical at the time

of actual communication, as lower light intensity results in

lower signal to noise ratio (SNR) and could result in a higher

bit error rate.

To avoid such scenarios and minimize the power con-

sumed in the scanning, we introduce an adaptive scanning

technique. Here, the normal scanning amplitude is made

proportional to the normalized filtered error ek:

δr,k = max (δl,min (10ek, δh)) (30)

where δl and δh denote the lower and upper bounds of

the scanning amplitude, respectively. Due to the requirement

of three independent measurements from the observability

criterion, the scanning amplitude cannot be made zero. Fig. 8

Fig. 6. Illustration of the simulation run on angular coordinates (x2,x3)
with a constant scanning amplitude δr = 7◦ under a constant disturbance
κ = 1◦/s.

shows plots of a simulation run with the implementation of

adaptive scanning. It can be seen that once the convergence

is achieved, the scanning amplitude goes to its minimum

value and remains there unless the error ek increases due to

some external disturbance. The steady state light intensity

measurement is also increased to 95% of the maximum

available intensity.

VI. EXPERIMENTAL RESULTS

In this section, we verify the efficacy of our algorithm

by implementing it on the hardware setup discussed in

Section II. The transmitter is mounted on a static clamp.

Similar to the simulation, the artificial disturbance κ, is

also implemented on the on-board program, to emulate the

unknown relative angular motion between the receiver and

the transmitter. When no control is implemented, this dis-

turbance will rotate the receiver away from the transmitter-

facing direction. For the initial condition, the receiver is

kept at an angle of about 30 degrees from the transmitter-

facing direction. Fig. 9 shows the evolution of the estimated
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Fig. 8. Simulation results with adaptive scanning amplitude and disturbance
κ = 1◦/s.

states and the intensity measurement. Since we do not have

access to the true values of the state (it is possible to

determine the true states by using some external motion-

tracking system but that is beyond the scope of this work),

the convergence cannot be directly verified. However, it

can be seen that x̂1 reaches a steady state value in about

15 seconds and slightly oscillates about it. Similarly, x̂2
and x̂3 settle to the neighborhood of zero. Moreover, the

measurement and its estimate both start from some low

values and then oscillate around higher steady-state values.

During the experiment, it is visually observed that the center

of the scanning movement starts facing the transmitter after

some time. Hence, it is reasonable to conjecture that the

estimates have converged to the neighborhood of the actual

states and an alignment with the transmitter direction is

achieved. Furthermore, unlike what is observed in simulation,

there are appreciable oscillations in the estimated states with

the same scanning amplitude of 7 degrees. This might be

because of factors accounted for, such as backlash in the

gears of motors, inconsistency in the stepper motor rotation,

and error in the identified elevation angle of the receiver

photo-diode, which is used in the rotational transformation

in generating motor commands. Such oscillations are further

minimized by the adaptive scanning technique. Fig. 10 shows
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Fig. 9. Experimental results with constant scanning amplitude δr = 7◦

under a constant disturbance κ = 1◦/s.

the plots for an experimental run when the adaptive scanning

is implemented. It is observed that all of the estimates and

the measurement converge to their respective steady state

values with significantly smaller oscillations compared with

the non-adaptive scanning case. The adaptive scanning also

leads to reduced control effort, since when δr is low, the

motor commands become smaller in each iteration.
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VII. CONCLUSIONS

In this work, an active alignment control method for

LED-based optical communication system was proposed.

With a light intensity model, the estimation problem was

first formulated in the state-space domain. A circular scan-

ning technique was introduced to take successive intensity

measurements that were used in an EKF-based estimation

algorithm. The estimates were then used by the PI controller

to generate the control commands for alignment, which were

later translated to the motor commands using the rotational

transformation. The disturbance accounting for the unknown

relative motion between the transmitter and the receiver

was captured as part of a white Gaussian noise. Both in

simulation and the experiments, the tracking efficacy of the

method was verified in the presence of a constant distur-

bance. Furthermore, an adaptive strategy for the scanning

amplitude was implemented, which was demonstrated to

provide higher intensity measurement and consume lower

energy at the steady state.

For future work, we first plan to implement this alignment

algorithm on two receiver-transmitter modules to enable

the bi-directional communication between them. Moving

forward, the effectiveness of the proposed system will be

explored in the underwater setting, which motivated the

LED-based optical communication in the first place. In

particular, we will mount the communication modules on

two underwater robots, and investigate the improvement of

the algorithm to address additional challenges introduced by

water disturbances and robot motion.
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