




Image size (GB) →

0 1 2 3 4

A
c
ti
o
n
 t
im

e
 (

s
) 
→

0

50

100

150

y = 19 + 12x

y = 46 + 26x

Rebuild

Migrate

(a) Action time as a function of image size.

Image size (GB) →

0 1 2 3 4

C
o
n
n
e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
) 
→

0

50

100

150 y = 73 + 25x

y = 51 + 30x

Rebuild

Migrate

(b) Connectivity time as a function of image size.

Disk size (GB) →

0 1 2 3 4

M
ig

ra
ti
o
n
 c

o
s
t 
(s

) 
→

0

100

200

y = 34 + 44x

y = 62 + 38xConnectivity downtime

Action time

(c) Costs as a function of disk size.

Fig. 3. Empirical and modeled results for action time and connectivity downtime of rebuild and cold migrate as a function of the image size and disk size.
For Figure 3(c), the base image size is 0.25GB.

function. These rehoming decisions are then relayed to the

service or platform controller (e.g., OpenStack Nova), for

execution. Finally, logs from the execution are parsed and the

relevant statistics are passed to the model to update it for use

in future rehoming decisions.

IV. REHOMING COST ANALYSIS AND MODELING

We now present one of our key contributions — analysis and

modeling of the rehoming cost for different rehoming actions.

We specifically consider the rebuild and cold migrate rehoming

actions, and model two different costs: (i) time to perform

the rehoming action, as logged by OpenStack, referred to as

action time, and (ii) time until the service chain’s end-to-end

connectivity is restored, referred to as connectivity downtime;

we measure this by calculating the delay between successful

pings from client to server in the service chain. In general, the

rehoming cost can be expressed as a utility function in terms

of various individual costs; we focus on these two costs in this

paper as illustrative examples.

We consider a simple iPerf [8] service chain deployed in

CloudLab [9], consisting of an iPerf client VM, a router VM, a

firewall VM, and an iPerf server VM, to collect empirical data

for modeling (see Section V-A for details of our experimental

setup). We focus on modeling the rehoming costs for the

firewall VM; we expect similar results for other VMs as well,

though the post-bootup process may be different, depending on

the VM’s functionality. It is important to note that the results

in this section are for a single generic VM being rehomed;

we show in Section V-D how these results can be applied to

predict the optimal simultaneous rehoming actions for multiple

VMs in the service chain.

A. Empirical analysis of rehoming costs

Figures 3(a) and 3(b) show our empirical results (circles)

for the rehoming costs of rebuild and cold migrate of the

firewall VM as a function of the VM image size; we modify

the image size by adding some data to the base image and

taking snapshots. We see that the various costs (action time

and connectivity downtime) increase with the image size, as

expected. Also, connectivity downtime is typically higher than

action time as connectivity typically requires some post-boot

processes to execute, such as network configuration. However,

surprisingly, the superiority of one rehoming approach over

another depends on the rehoming cost metric.

In Figure 3(a), we see that the action time is higher for

migrate than for rebuild. This is to be expected as migrate

requires data transfer over the network, including contents of

the VM, from one host (source) to another (target), whereas

rebuild involves rebuilding the VM on the same host from

the base image. In Figure 3(b), we see that the connectivity

downtime is typically higher for rebuild than migrate. This is

because rebuild necessitates post-boot (re)configuration, such

as reconfiguring the network, which impacts the time to bring

up the VM. Specifically, we found that host-ssh keys need

to be regenerated on rebuild as the VM is treated as a first

boot; this is not the case for migration where the VM is not

treated as a fresh VM. This shows that the optimal rehoming

action depends on the specific cost (or utility) function being

considered. Figure 3(c) shows our empirical results (circles)

for the rehoming costs of cold migrate as a function of the

VM disk size; we use a base image size of 0.25GB for this

experiment and modify the disk size by adding software and

data. We see that all costs increase with the disk size under

migration, as expected. Note that the disk size does not matter

for rebuild as only the image is rebuilt and disk content is lost.

B. Modeling the rehoming costs

To leverage the above empirical results in practice, we now

build regression models for each rehoming action to allow

prediction of rehoming costs for other VMs, as in Section V.

The solid lines in Figures 3(a) and 3(b) show our regression

fit for the action time and connectivity downtime, respectively,

as a function of image size for rebuild and migrate. We

find that a linear model works well for these observations

with an R
2 value of 0.97 and 0.91 for the action time of

rebuild and migrate, respectively, and an R
2 value of 0.98

and 0.91 for the connectivity downtime of rebuild and migrate,

respectively. The linear trend suggests that the rehoming costs

are proportional to the image size, as expected (since the image

needs to be copied in case of rebuild and migrate).

Finally, Figure 3(c) shows our regression fit (solid lines)

for the various migrate costs as a function of disk size. A

linear fit works very well in this case, with an R
2 value of

0.99 and 0.98 for the action time and connectivity downtime,

respectively. Recall that disk size does not impact the cost of

rebuild, so we do not model this case.

Given the dependence of migration costs on image size and

disk size, we also build multiple linear regression models for

3





FW image WS image FW disk WS disk Rehoming FW action WS action FW model WS model opt prediction

6GB
12MB 16MB

MB 137s 154s 153s (11.5%) 153s (0.4%)
yes

MFRW 143s 133s 153s (6.7%) 91s (31.7%)

2GB 146MB
MB 210s 127s 250s (19.5%) 159s (25.7%)

yes
MFRW 236s 99s 250s (6.0%) 91s (8.0%)

10GB
696MB 33MB

MB 245s 197s 287s (17.2%) 254s (28.9%)
yes

MFRW 226s 191s 287s (26.8%) 140s (26.6%)

3.7GB 47MB
MB 372s 279s 434s (16.8%) 255s (8.6%)

yes
MFRW 374s 161s 434s (16.0%) 140s (12.8%)

TABLE II
EXPERIMENTAL AND MODEL-PREDICTED RESULTS FOR THE ACTION TIME OF FW AND WS UNDER VARIOUS SCENARIOS.

FW image WS image FW disk WS disk Rehoming Downtime FW model WS model Downtime model opt prediction

6GB
12MB 16MB

MB 256s 161s 162s 162s (36.8%)
no

MFRW 241s 161s 221s 221s (8.3%)

2GB 146MB
MB 281s 255s 168s 255s (9.1%)

-
MFRW 259s 255s 221s 255s (1.4%)

10GB
696MB 33MB

MB 336s 290s 259s 290s (13.7%)
no

MFRW 324s 290s 323s 323s (0.4%)

3.7GB 47MB
MB 466s 431s 259s 431s (7.4%)

-
MFRW 453s 431s 323s 431s (4.8%)

TABLE III
EXPERIMENTAL AND MODEL-PREDICTED RESULTS FOR THE CONNECTIVITY DOWNTIME OF OUR SERVICE CHAIN UNDER VARIOUS SCENARIOS.

have similar costs, with an average difference of 2.6% across

all 4 cases, with a maximum of 12.7% difference for the 6GB

image size and 2 GB FW disk size scenario. This is to be

expected as the FW action in MB and MFRW is the same

— migrate. The observed difference is due to the variation in

experiments, despite the several runs.

Without a graybox approach, the network provider would

have to assume that both VNFs are stateful and only con-

sider MB as a viable option, as otherwise there is the risk

of losing data when performing a state-oblivious rehoming

action. However, with the graybox approach, we consider the

stateful/stateless nature of the VNFs, and realize that MFRW is

also a viable option. Thus, using partial information from the

tenant, the network provider can save significantly on action

time, by as much as 42% in case of WS action time for 10GB

image size and 47MB WS disk size experiments. This result

also shows that homogeneous rehoming actions (such as MB)

are not always optimal, and heterogeneous actions (such as

MFRW) should also be considered.

2) Connectivity downtime: We see, from Table III, that

MFRW provides slightly lower connectivity downtime than

MB for all scenarios. The average reduction in downtime is

about 5%, with a peak reduction of 8% for the 6GB image

size and 2GB FW disk size experiments. This again shows

that a graybox approach can provide better rehoming results,

using the MFRW option, than naive (homogeneous) rehoming,

which would only use MB. We relied on this argument when

motivating the graybox approach in Section II.

3) Application downtime: While not shown here, we find

that the application downtime numbers are similar to the con-

nectivity downtime numbers reported under the “Downtime”

column of Table III. In particular, the application downtime

(time until the client VM can access the content hosted by

Tomcat on WS) continues to be slightly lower under MFRW

than under MB.

However, when we augment the Tomcat server of WS to

also install the JDK 7 SDK and additional application code

hosted online (to deploy additional WAR files), we find that the

application downtime is lower under MB than under MFRW.

This is because under MFRW the WS is rebuilt, and since

we now require Tomcat to use SDK and host additional WAR

files, the WS has to (apt-get) install SDK and download the

additional code upon reboot, resulting in higher application

downtime; note that this does not affect connectivity downtime

which is the time until client can ping the WS. By contrast,

under MB, the WS is migrated and so contains the SDK and

additional (already compiled) WAR files after migration, thus

obviating the need to (re)install these components. This further

motivates the graybox approach which can leverage such

information (additional post-bootup requirements) to make

a more informed rehoming decision; in this case, MB is

preferred over MFRW.

D. Model Evaluation

We now evaluate the efficacy of our model-based rehoming

recommendations. We follow the approach detailed in Sec-

tion III to make our recommendations for the rehoming action

for each VNF of the service chain in Tables II and III (test

data) based on the regression models built in Section IV using

single VNF rehoming experiments (training data).

1) Action time prediction: Starting with the action time pre-

dictions in Table II (columns “FW model” and “WS model”),

we find that our average prediction error for the FW rehoming

action is 15.1% and that for the WS rehoming action is 17.9%,

across all rows. We also use our predictions to recommend

the optimal rehoming actions; in this case, the options are

MB and MFRW. For this, we use the sum of action times as

the metric to decide on the rehoming actions. Column “opt

prediction” in Table II shows whether we correctly predict the

optimal rehoming actions by comparing with the empirical

values of action times obtained for FW action and WS action.

5



We see that our model is able to accurately predict the optimal

rehoming option for the action time metric in all scenarios.

2) Connectivity downtime prediction: Our average predic-

tion error for the connectivity downtime (column “Downtime

model”) is 10.3% across all rows of Table III. We now apply

our predictions to recommend the optimal rehoming action

for connectivity downtime as the metric. For this, we use the

maximum of the predicted FW downtime and WS downtime.

We find that our recommendation does not match empirical

observations (column “opt prediction” in Table III). In some

cases (marked as “-”), a comparison cannot be made as our

model predicts that MB and MFRW should have similar

downtime, but there is some difference observed in practice.

Looking at the empirical and model-predicted downtimes in

Table III, we see that the model consistently underpredicts the

connectivity downtime. This is to be expected as our model

does not yet take network contention into account; this is

because the model is trained on single VM rehoming but is

being applied to simultaneous rehoming which incurs higher

network contention. This result also shows that it is not trivial

to extrapolate results observed for a single VM rehoming

to predict those for multi VM rehoming. These observations

motivate the need for further work in this direction, which we

discuss in Section VII.

VI. RELATED WORK

The prior work in this area has mostly been on model-

driven approaches, but focused only on VM migration. For

example, Nathan et al. [12] perform a thorough evaluation of

existing models to predict VM migration time and propose

a new model that takes into account other important factors

such as the writable working set size and pages that are

frequently dirtied. Mistral [13] attempts to optimize the overall

data center utility by choosing adaptation actions such as

increasing the CPU allocation, migrating VMs, and restarting

hosts. Hence, Mistral may lead to sub-optimal decisions from

the perspective of each service chain. On the other hand, we

focus on the specific actions that can be taken for rehoming

service chains to optimize chain-specific metrics such as action

time and connectivity downtime. Wood et al. [14] espouses a

graybox approach for VM migration taking into account OS

and application-level statistics. Our graybox rehoming simply

involves information from the user as to the nature of the VMs

(stateful/stateless) in the service chain. While there has been

work on holistic models for service chains, their focus has

mostly been on various factors that influence initial placement

such as the hardware and resource constraints [15], [16].

VII. CONCLUSION AND FUTURE WORK

Service chain rehoming, in response to hotspots, upgrades or

failures, is an important aspect of cloud management. In thinly

provisioned network provider clouds, rehoming has to be

performed much more often than in public clouds and thus has

considerable implications on both cloud utilization and service

availability. However, network clouds are typically private

Image

Size

Disk

Size

Band-

width

Instance

Size

Page Dirty

Rate

Migrate Yes Yes Future Future Future

Rebuild Yes No Future Future No

Live Migrate Future No Future Future Yes

Drain & Move Future Future Future Future Future

TABLE IV
FACTORS AFFECTING DIFFERENT REHOMING ACTIONS.

clouds wherein the service owner (customer) can provide

information to the network provider to enable more informed,

and hence optimal rehoming actions. In this paper, we present

a graybox approach to rehoming service chains in private cloud

environments. By leveraging information about the service, we

design a model-based approach to determining the optimal

rehoming action for each VM of a customer’s service chain

deployment. Our experimental results on a CloudLab testbed

highlight both the efficacy of our model and the performance

improvement that can be achieved by a graybox solution.

We have several concrete steps of future work. First, we

wish to extend the set of possible rehoming actions. For

example, if a service VM is already replicated, then a potential

rehoming action is to just drain and move the VM traffic to

its replica. Second, we want to refine our VM-specific models

to incorporate more relevant infrastructure parameters, like the

available virtual memory and bandwidth, and provide unified

models that compose different rehoming actions to allow us

to predict the rehoming performance of the service chain as a

whole, as mentioned in Section V.

Table IV lists the various actions and factors that we wish

to consider for rehoming. The entries marked as “Yes” were

studied in this paper, whereas those marked “No” were found

to not have much impact on rehoming, and were thus omitted

from discussion. The entries marked as “Future” are the ones

we wish to explore as part of future work. We did experimen-

tally investigate live migration, but found that the results for

action time and connectivity downtime were noisy (likely due

to the variance in scheduling times of the different subphases

of live migration in OpenStack); we will explore live migration

more thoroughly in future work. Finally, we wish to fine-tune

our models to predict the rehoming performance of several

commonly found service chains, thereby creating a repository

of easily accessible information for customers and network

providers. The service chain used in our evaluation, though

representative of real deployments, is only one example; we

will experiment with other VNF service chains with different

functionalities and resource usage characteristics as part of

future work. Our eventual goal is to build a comprehensive

graybox solution that leverages service-specific information

to seamlessly manage customer service chains to maintain

performance SLOs in response to changing workload and

platform conditions. Our efforts in this paper represent the

first step towards this goal.

ACKNOWLEDGEMENTS

This work was partially supported by NSF CNS grants

1717588 and 1617046.

6



REFERENCES

[1] “Unraveling AT&Ts and Verizons Virtualization Vendors,”
https://www.sdxcentral.com/articles/news/unraveling-att-and-verizons-
virtualization-vendors/2016/08/.

[2] “AT&T DataCenter locations,” https://www.business.att.com/solutions/Service/cloud/colocation/data-
center-locations/.

[3] “First Responder Network,” https://www.firstnet.gov.
[4] “Public Safety Grade Features in FirstNet,”

https://www.illinois.gov/firstnet/resources/documents/faqs.pdf.
[5] “Momentum has grown for vnf certification,”

https://www.redhat.com/en/blog/momentum-has-grown-vnf-
certification.

[6] “Cisco enterprise nfv open ecosystem and qualified vnf vendors,”
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-
networks/enterprise-network-functions-virtualization-nfv/nfv-open-
ecosystem-qualified-vnf-vendors.html.

[7] Openstack.org, “Ceilometer,” https://wiki.openstack.org/wiki/Ceilometer.
[8] “iperf,” https://sourceforge.net/projects/iperf.
[9] “Cloudlab,” https://www.cloudlab.us/.

[10] “Load balancing/Firewalling Web server using a service chain,”
https://www.ctl.io/knowledge-base/network/how-to-view-source-ip-in-
web-server-logs-when-using-load-balancing/.

[11] D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web
Server Performance,” ACM Sigmetrics: Performance Evaluation Review,
vol. 26, pp. 31–37, 1998.

[12] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive
performance model of virtual machine live migration,” in Proceedings

of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: ACM, 2015, pp. 288–301. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2806838

[13] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-
tral: Dynamically managing power, performance, and adaptation cost in
cloud infrastructures,” in 2010 IEEE 30th International Conference on

Distributed Computing Systems, June 2010, pp. 62–73.
[14] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-

box and gray-box strategies for virtual machine migration,”
in Proceedings of the 4th USENIX Conference on Networked

Systems Design & Implementation, ser. NSDI’07. Berkeley, CA,
USA: USENIX Association, 2007, pp. 17–17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973447

[15] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual
network functions placement and routing optimization,” in
2015 IEEE 4th International Conference on Cloud Networking

(CloudNet). IEEE, Oct. 2015, pp. 171–177. [Online]. Available:
http://dx.doi.org/10.1109/cloudnet.2015.7335301

[16] H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on

Network and Service Management (CNSM) and Workshop, Nov 2014,
pp. 418–423.

7


