A Model-Driven Graybox Approach
to Rehoming Service Chains

Muhammad Wajahat*, Bharath Balasubramanian f, Anshul Gandhi*, Gueyoung Jung',
Shankaranarayanan Puzhavakath Narayanan'
*Stony Brook University{mwajahat,anshul} @ cs.stonybrook.edu
TAT&T Labs - Research {bharathb,gjung,snarayanan’} @research.att.com

Abstract—Network clouds are typically private clouds owned
by the network provider, consisting of a large number of
geo-distributed sites with heterogeneous capabilities and small
capacities. Each of these small clouds often run specialized service
chains of Virtual Network Functions (VNFs), which need to
meet strict Service Level Objectives (SLOs), especially along
the lines of availability (e.g., First responder services). Hence,
VNFs in such thinly provisioned clouds may need to be moved
(rehomed), both within and across sites, much more frequently
than in traditional public clouds (like Amazon’s EC2 cloud),
in order to meet the performance SLOs, when reacting to
various cloud events like hotspots, interference from co-located
VMs, failures and upgrades. Rehoming is also required by the
infrastructure (platform) providers for various other reasons such
as consolidation of resources for saving energy and improving
the platform utilization. In this paper, we propose a model-
based approach to show that naive strategies for rehoming,
applied uniformly across all VNFs of the service chain, are
often sub-optimal when considering different metrics like user-
perceived service disruption time and the time taken to complete
the rehoming action. Our model leverages the transparency
between the services and platforms on private clouds (grayness),
and provides appropriate rehoming recommendations based on
various factors including service characteristics and runtime
platform dynamics. We validate our models using a simple, yet
ubiquitously deployed service chain, and using out-of-the-box
rehoming options provided by Openstack, the most commonly
used open-source cloud. Our results show that our graybox
approach is able to achieve significant reductions in service
disruption times and time taken for the rehoming action.

I. INTRODUCTION

The drive towards network virtualization by large network
providers like AT&T and Verizon [1] is replacing special-
ized networking hardware with commodity hardware running
networking software. Due to this drive, buildings and cen-
tral offices hosting networking equipment now morph into
datacenters/sites of varying sizes hosting servers, leading to
widely geo-distributed private clouds all the way from the
center to the edge. Network provider deployments often have
a few hundred such sites spread across tens of countries, with
each site hosting anywhere between 10 and 500 compute
servers [2]. Further, these sites are thinly provisioned and
operate in resource constrained environments as they consist of
limited (possibly heterogeneous) hardware capabilities based
on the types of services they are envisioned to support.

The networking services hosted on these cloud sites often
include complex service chains of Virtual Network Functions

- — + Regular Service Path

—— Video Service Path

Load Balancer
4

14
E o

- 7 il -
Zz~ R

Other traffic

= = = — = DPIl+Router
-~
—_— e
1

— Firewall

Video traffic Video Optimizer pool

(VNFs). Figure 1 shows the example of a service chain at
the provider edge that optimizes the video traffic through the
Video Service Path, and lets all other traffic flow through
the Regular Service Path. These service chains typically have
stringent Service Level Objectives (SLOs) that need to be met,
especially along the lines of availability. For example, first
responder services (EMS, police, fire) require “5-9s” system
availability [3], [4].

An important challenge in maintaining such stringent SLOs,
especially in our thinly provisioned clouds, is the ability to
react quickly to various cloud events that affect the availability
and performance of these services. While events like hotspots
and interference due to workload shifts in colocated VMs,
lower the service performance, failures and upgrades lower
the availability of the service. In order to maintain the SLOs,
Network Providers often rehome (or move) one or more
VNFs (or VMs, used interchangeably) of the service chain
within the same site to a different host and sometimes even
to a different cloud site. While some of these events, such
as upgrades, are predictable, others are unpredictable and
require reactive measures to quickly restore SLO compliance.
Rehoming is also required by cloud operators for improving
resource and energy efficiency (via consolidation of VNFs),
and for leveraging newer hardware capabilities (via migration
of service chains to the new infrastructure).

The typical approach to rehoming involves applying the
same corrective action, such as VM migration, to all VNFs
in a service chain. However, this may not be the optimal
approach given the heterogeneity across VNFs in a chain. For
example, consider a hotspot in one of the physical servers on
which the video optimizer VNFs are hosted for the service
chain in Figure 1. Knowing that the video optimizer VNFs
are stateless makes rebuilding (which shuts down and recreates
the VM) a quicker option when compared to the more time-
consuming cold or live migration action. Further, the optimal

set of actions depend on the exact metric(s) being considered
— if optimizing for the time taken to complete the rehoming
action, rebuild may be a better option; however, if optimizing
for the application downtime, migration may be better as it
can minimize the disruption of user traffic. Finally, the optimal
rehoming actions could change dynamically as the state of the
VMs (e.g., the disk size) or the state of the underlying platform
(e.g., total traffic) evolve over time.

In this paper, we present a model-based approach to identify
the optimal set of rehoming actions across all VNFs for a
given service chain. We adopt a graybox approach to the cloud
and leverage the exchange of information across the platform
and the services in private clouds to minimize the cost of
rehoming. Specifically, given a service chain of VNFs, and
a set of rehoming actions, we find the best combination of
actions for the different VNFs of the chain. The key idea
behind our approach is to develop models for each action that
capture the impact of various parameters that affect the service
downtime and the time taken for the rehoming action of the
VNFs. Our models leverage information exchange between the
services and platforms on private clouds, such as specifications
on whether a service is stateful (hence has to be migrated) or
stateless (hence can potentially be rebuilt).

We experimentally validate our models and rehoming rec-
ommendations using a simple service chain deployment on
an Openstack cloud, and using out-of-the box rebuild and
migrate actions provided by Openstack. Our results show that,
by understanding the characteristics of the VNFs, our graybox
approach to rehoming is able to reduce the time taken for the
rehoming action by as much as 42% and the service downtime
by as much as 8%. Our results also show that our models can
estimate the time taken by a rehoming action for a single
VNF or all the VNFs in the service chain with reasonable
accuracy. We conclude by illustrating the challenges involved
in estimating the service downtime for the entire chain due to
dependencies between the VNFs and the impact of a rehoming
action on the shared infrastructure resources like bandwidth.

II. WHY DOES SERVICE-SPECIFIC INFORMATION MATTER
TO REHOMING?

In this section, we motivate the need for a graybox approach,
that is, the need for service information in helping the network
provider perform optimal rehoming actions for service chains.
We perform a simple, yet illuminating experiment on a real
testbed (details of the experimental setup in Section V) with
a service chain consisting of two ubiquitous VNFs: a network
firewall filtering packets to a web service hosted on an Apache
Tomcat web server. In the absence of any information from the
client who owns the service chain, when these service chains
have to be rehomed, the provider has no choice but to migrate
both VNFs, thus preserving all their state. Clearly, the firewall
is a stateful service given its stored filtering rules, and hence
the only possible rehoming action for it is migration. However,
if the service can provide a simple piece of information to the
network provider that its web server VM is stateless, then the

Action Firewall Web Server | Connectivity
Action Time | Action Time Downtime
Migrate Both 245s 197s 336s
Migrate Firewall . .
Rebuild Web Server 226s 191s 324s
TABLE I

RESULTS FOR THE ILLUSTRATIVE EXAMPLE IN SECTION II.

provider has two potential rehoming actions: migrating the
web server VM or rebuilding it from scratch on a new host.

Our experimental results confirm that these actions have
implications on several metrics, affecting both VNFs of the
service chain. In Table I, we illustrate the effect of two
rehoming combinations: (a) migrate both VMs, and (b) migrate
firewall, rebuild web server on three different metrics: (i)
firewall action time, i.e., time taken for the rehoming action
of firewall to complete, (ii) web server action time, and
(iii) the connectivity downtime of the service chain as a
whole. All our results have been averaged across multiple
independent runs (see Section V for full details). The table
clearly shows that for all three metrics the “migrate firewall,
rebuild web server” option achieves better performance than
“migrate both”. Hence, armed with service information, for
this example, the provider can perform the more intuitively
optimal action of migrating the (stateful) firewall and simply
rebuilding the (stateless) web server. Our graybox approach
enables us to understand the characteristics of the VNF like
replication, statefulness, etc., which are defined along with the
VNF models as part of the VNF certification process [5], [6].

III. SOLUTION DESIGN

Our solution to rehoming relies on a model-driven approach
to predicting the costs of various rehoming actions. Specifi-
cally, we first perform experiments on each VM hosting the
VNF for various actions (rebuild and migrate), and then, using
the empirical data, we model the various costs of rehoming
as a function of the VM and cloud infrastructure parameters.
Finally, we leverage these models at run-time to predict the
right set of (possibly heterogeneous) simultaneous rehoming
actions to perform for the different VNFs of a service chain
to optimize for the specified cost metric.

Rehoming Actions
(e.g., migrate, rebuild)

1
1 1
¢ 1 H Optimized rehoming

Rehoming Trigger 1 ZZ recommendations
Service/VNF

1
. . . P 1
(from platform health monitors, | Cost estimation using models Optimize I (VNE Action, Cost)
1 Controllers
1

Runtime Platform properties
(e.g., il b idth)

Service/VNF characteristics
(e.g., service)

| (time taken for rehoming Cost
1 action, service disruption)

service closed loop controls)

Graybox Rehoming Service

Fig. 2. Illustration of our solution design.

Figure 2 shows the design of our solution. We assume that
the decision to rehome is triggered by an external service, such
as a monitoring system (e.g., Ceilometer in OpenStack [7]).
Once triggered, our solution leverages the pre-existing cost
models to determine the optimal rehoming actions for each
VNF in the service chain based on the provided cost/utility

T
T 150} Rebuild o < 50 Rebuild 1 1200 ’ y = 62 + 38x
= © Migrate y = 46 + 26x e © Migrate @ |[=—Actiontime
2 E b
(0]
g 1007 5 100 © ¥ =51+30x 8
£ 3 $ < 100
S 5ol 250 % y = 34 + 44x
© = S
< 2 g
0 - 2 o 0 .
0 1 2 3 4 S o 1 2 3 4 0 1 2 3 4
o

Image size (GB) —

(a) Action time as a function of image size.

Fig. 3.
For Figure 3(c), the base image size is 0.25GB.

function. These rehoming decisions are then relayed to the
service or platform controller (e.g., OpenStack Nova), for
execution. Finally, logs from the execution are parsed and the
relevant statistics are passed to the model to update it for use
in future rehoming decisions.

IV. REHOMING COST ANALYSIS AND MODELING

We now present one of our key contributions — analysis and
modeling of the rehoming cost for different rehoming actions.
We specifically consider the rebuild and cold migrate rehoming
actions, and model two different costs: (i) time to perform
the rehoming action, as logged by OpenStack, referred to as
action time, and (ii) time until the service chain’s end-to-end
connectivity is restored, referred to as connectivity downtime;
we measure this by calculating the delay between successful
pings from client to server in the service chain. In general, the
rehoming cost can be expressed as a utility function in terms
of various individual costs; we focus on these two costs in this
paper as illustrative examples.

We consider a simple iPerf [8] service chain deployed in
CloudLab [9], consisting of an iPerf client VM, a router VM, a
firewall VM, and an iPerf server VM, to collect empirical data
for modeling (see Section V-A for details of our experimental
setup). We focus on modeling the rehoming costs for the
firewall VM; we expect similar results for other VMs as well,
though the post-bootup process may be different, depending on
the VM’s functionality. It is important to note that the results
in this section are for a single generic VM being rehomed;
we show in Section V-D how these results can be applied to
predict the optimal simultaneous rehoming actions for multiple
VMs in the service chain.

A. Empirical analysis of rehoming costs

Figures 3(a) and 3(b) show our empirical results (circles)
for the rehoming costs of rebuild and cold migrate of the
firewall VM as a function of the VM image size; we modify
the image size by adding some data to the base image and
taking snapshots. We see that the various costs (action time
and connectivity downtime) increase with the image size, as
expected. Also, connectivity downtime is typically higher than
action time as connectivity typically requires some post-boot
processes to execute, such as network configuration. However,
surprisingly, the superiority of one rehoming approach over
another depends on the rehoming cost metric.

Image size (GB) —

(b) Connectivity time as a function of image size.

Disk size (GB) —

(c) Costs as a function of disk size.

Empirical and modeled results for action time and connectivity downtime of rebuild and cold migrate as a function of the image size and disk size.

In Figure 3(a), we see that the action time is higher for
migrate than for rebuild. This is to be expected as migrate
requires data transfer over the network, including contents of
the VM, from one host (source) to another (target), whereas
rebuild involves rebuilding the VM on the same host from
the base image. In Figure 3(b), we see that the connectivity
downtime is typically higher for rebuild than migrate. This is
because rebuild necessitates post-boot (re)configuration, such
as reconfiguring the network, which impacts the time to bring
up the VM. Specifically, we found that host-ssh keys need
to be regenerated on rebuild as the VM is treated as a first
boot; this is not the case for migration where the VM is not
treated as a fresh VM. This shows that the optimal rehoming
action depends on the specific cost (or utility) function being
considered. Figure 3(c) shows our empirical results (circles)
for the rehoming costs of cold migrate as a function of the
VM disk size; we use a base image size of 0.25GB for this
experiment and modify the disk size by adding software and
data. We see that all costs increase with the disk size under
migration, as expected. Note that the disk size does not matter
for rebuild as only the image is rebuilt and disk content is lost.

B. Modeling the rehoming costs

To leverage the above empirical results in practice, we now
build regression models for each rehoming action to allow
prediction of rehoming costs for other VMs, as in Section V.
The solid lines in Figures 3(a) and 3(b) show our regression
fit for the action time and connectivity downtime, respectively,
as a function of image size for rebuild and migrate. We
find that a linear model works well for these observations
with an R? value of 0.97 and 0.91 for the action time of
rebuild and migrate, respectively, and an R? value of 0.98
and 0.91 for the connectivity downtime of rebuild and migrate,
respectively. The linear trend suggests that the rehoming costs
are proportional to the image size, as expected (since the image
needs to be copied in case of rebuild and migrate).

Finally, Figure 3(c) shows our regression fit (solid lines)
for the various migrate costs as a function of disk size. A
linear fit works very well in this case, with an R? value of
0.99 and 0.98 for the action time and connectivity downtime,
respectively. Recall that disk size does not impact the cost of
rebuild, so we do not model this case.

Given the dependence of migration costs on image size and
disk size, we also build multiple linear regression models for

migration costs using the empirical results obtained above. Our
final migration cost model for action time is 8 + 49D + 2471
(R? value of 0.77), and that for connectivity downtime is 22+
47D + 231 (R? value of 0.78), where I is the image size and
D is the disk size, in GB. For rebuild cost models, we use
the regression fits listed in Figures 3(a) and 3(b): 19+ 121 for
action time and 73 4 25/ for connectivity downtime.

Note that the above modeling approach relies on our em-
pirical results, which are specific to the underlying infras-
tructure. We will investigate the possibility of making these
models infrastructure-independent in future work by including
hardware-level details, such as available bandwidth and CPU
processor speed, as part of the modeling step.

V. EXPERIMENTAL RESULTS FOR CHAIN REHOMING

We now present our experimental results for rehoming
of a service chain wherein multiple VNFs of the service
chain are simultaneously rehomed; this scenario mimics a
real deployment where the entire chain needs to be rehomed
in response to either a hotspot or a maintenance or failure
issue. We will also present evaluation results of our model-
based rehoming approach in this section. We first describe our
experimental setup, and then discuss our evaluation results.

A. Experimental Setup

Our experimental testbed comprises of bare metal servers in
the CloudLab OpenStack setup (Clemson site). Each server has
two Intel E5-2683 CPUs with 256GB Memory and a dual-port
Intel 10Gbe NIC (X520). For the OpenStack (Mitaka) setup,
one of the machines acts as the controller and the remaining
are configured as compute nodes. We deploy our service chain
on VMs hosted on this OpenStack setup.

Figure 4 illustrates our service chain composed of a client
VM (outside the network provider cloud), a firewall VM,
and an application/web server (Tomcat) VM; similar chains
are commonly employed in practice to securely serve end-
users [10]. The client VM employs httperf [11] as the web
load generator and logs end-to-end response times. The client
VM has 4vCPU, 8GB RAM, and 80GB Disk, the firewall VM
has 2vCPU, 4GB RAM, and 40GB Disk, and the web server
VM has 4vCPU, 8GB RAM, and 80GB Disk. We use Ubuntu
14.04 server (kernel version 3.13.0-123) as the OS for all VMs.

Each VM has multiple NICs and IP forwarding enabled in
order to route traffic through the chain; static routes are config-
ured on each VM to properly route traffic. The corresponding
ports for these NICs are also configured in neutron to allow
traffic pass through. The firewall VM has static routes and uses
[PTables to enforce rules to allow only certain traffic meant
for the application server. The web server VM serves client
content using Tomcat via a Java servlet that uses JSP.

B. Methodology

Our focus in the experiments will be on the action time of
rebuild and migrate for the firewall VM, referred to as FW,

Fig. 4. Illustration of our service chain used for experimental results compris-
ing a client VM, a stateful firewall VM (FW), and a Tomcat application/web
server VM (WS), deployed in the network provider cloud.

and the Tomcat web server, referred to as WS. Additionally,
we will consider the connectivity downtime of the service
chain (time until the client VM can ping the WS), and the
application downtime, which is the time until the client
can access the files hosted on the WS. Note that application
downtime is a chain specific metric, and in our case is expected
to be typically higher than connectivity downtime as the WS
needs to start up Tomcat and other relevant services before the
client can access the content hosted by Tomcat on the WS.

Under our graybox approach, we consider that the net-
work provider knows about the statefulness of FW and the
statelessness of WS (see Section II). Thus, the only possible
rehoming action for FW is migrate (since rebuild will result in
loss of state), whereas WS can be migrated or rebuilt. Based
on the above, we experiment with the following simultaneous
rehoming options:

« Migrate Both (MB): In this rehoming approach both the
FW and the WS are simultaneously migrated. Note that
OpenStack decides the target host for migration.

+ Migrate FW Rebuild WS (MFRW): In this rehoming
approach we migrate FW but rebuild WS.

We repeat each experiment 6 times and report the average
numbers, after removing outliers.

C. Experimental Results

Tables II (columns “FW action” and “WS action”) and III
(column “Downtime”) show our experimental results for ac-
tion time and connectivity downtime, respectively, for various
scenarios under Migrate Both (MB) and Migrate FW Rebuild
WS (MFRW) rehoming actions. Note that the scenarios listed
in these tables are different from those analyzed in Section IV
because: (i) they have different image sizes (larger than those
considered before), (ii) two VNFs are being simultaneously
rehomed, and (iii) the service chain is different. Thus, we
consider these experiments as our test set when evaluating our
model-based approach (that was trained on the experimental
observations in Section IV) in Section V-D.

1) Action time: Starting with Table II, we see that MFRW
has lower WS action time than MB in all cases, with an
average reduction of about 20%. This shows that rebuild has
a lower action time than migrate, which we also observed in
Section IV. For FW action time, we see that MB and MFRW

[FW image | WS image | FW disk | WS disk [Rehoming [[FW action | WS action |

FW model

[

WS model

[[opt prediction]

MB 37s T54s 153s (115%) | 153s (04%)
B 12MB 16MB 3 1FRwW 1435 133s 1535 6.7%) | 91s 31.7%) yes
B ovp | VB 2105 275 2505 (19.5%) | 1595 (25.7%) "

MFRW 7365 905 2505 (6.0%) | 9Ts (8.0%) ¥

MB 3455 1975 2875 (17.2%) | 254s (28.9%)

10GE 696MB | 33MB —yrpw 7265 T0Ts 2875 (26.8%) | 1405 (26.6%) yes
B 3725 2795 1335 (168%) | 2555 (3.6%) "

' MFRW 374s T61s 1335 (16.0%) | 1405 (12.8%) ¥

TABLE 1l

EXPERIMENTAL AND MODEL-PREDICTED RESULTS FOR THE ACTION TIME OF FW AND WS UNDER VARIOUS SCENARIOS.

[FW image | WS image | FW disk | WS disk [Rehoming [[Downtime [[FW model | WS model | Downtime model [[opt prediction |

MB 7565 Tols T62s 1625 (36.8%)
“GE 12MB 16MB —frRwW 24Ts T6Ts 215 2275 (8.3%) no
GB sons | MB 2815 7555 1685 7555 (9.1%) -

MFRW 7505 7555 2T 7555 (1.4%)

MB 3365 290 7505 3905 (13.7%)
10GE 696MB | 33MB e 32ds 2905 323s 3235 (04%) no
vos | ave | MB 2665 2315 7505 331s (7.4%) -

' MFRW 253 23T 3035 3315 (38%)

TABLE TII

EXPERIMENTAL AND MODEL-PREDICTED RESULTS FOR THE CONNECTIVITY DOWNTIME OF OUR SERVICE CHAIN UNDER VARIOUS SCENARIOS.

have similar costs, with an average difference of 2.6% across
all 4 cases, with a maximum of 12.7% difference for the 6GB
image size and 2 GB FW disk size scenario. This is to be
expected as the FW action in MB and MFRW is the same
— migrate. The observed difference is due to the variation in
experiments, despite the several runs.

Without a graybox approach, the network provider would
have to assume that both VNFs are stateful and only con-
sider MB as a viable option, as otherwise there is the risk
of losing data when performing a state-oblivious rehoming
action. However, with the graybox approach, we consider the
stateful/stateless nature of the VNFs, and realize that MFRW is
also a viable option. Thus, using partial information from the
tenant, the network provider can save significantly on action
time, by as much as 42% in case of WS action time for 10GB
image size and 47MB WS disk size experiments. This result
also shows that homogeneous rehoming actions (such as MB)
are not always optimal, and heterogeneous actions (such as
MFRW) should also be considered.

2) Connectivity downtime: We see, from Table III, that
MFRW provides slightly lower connectivity downtime than
MB for all scenarios. The average reduction in downtime is
about 5%, with a peak reduction of 8% for the 6GB image
size and 2GB FW disk size experiments. This again shows
that a graybox approach can provide better rehoming results,
using the MFRW option, than naive (homogeneous) rehoming,
which would only use MB. We relied on this argument when
motivating the graybox approach in Section II.

3) Application downtime: While not shown here, we find
that the application downtime numbers are similar to the con-
nectivity downtime numbers reported under the “Downtime”
column of Table III. In particular, the application downtime
(time until the client VM can access the content hosted by
Tomcat on WS) continues to be slightly lower under MFRW
than under MB.

However, when we augment the Tomcat server of WS to
also install the JDK 7 SDK and additional application code
hosted online (to deploy additional WAR files), we find that the
application downtime is lower under MB than under MFRW.
This is because under MFRW the WS is rebuilt, and since
we now require Tomcat to use SDK and host additional WAR
files, the WS has to (apt-get) install SDK and download the
additional code upon reboot, resulting in higher application
downtime; note that this does not affect connectivity downtime
which is the time until client can ping the WS. By contrast,
under MB, the WS is migrated and so contains the SDK and
additional (already compiled) WAR files after migration, thus
obviating the need to (re)install these components. This further
motivates the graybox approach which can leverage such
information (additional post-bootup requirements) to make
a more informed rehoming decision; in this case, MB is
preferred over MFRW.

D. Model Evaluation

We now evaluate the efficacy of our model-based rehoming
recommendations. We follow the approach detailed in Sec-
tion III to make our recommendations for the rehoming action
for each VNF of the service chain in Tables II and III (test
data) based on the regression models built in Section IV using
single VNF rehoming experiments (training data).

1) Action time prediction: Starting with the action time pre-
dictions in Table II (columns “FW model” and “WS model”),
we find that our average prediction error for the FW rehoming
action is 15.1% and that for the WS rehoming action is 17.9%,
across all rows. We also use our predictions to recommend
the optimal rehoming actions; in this case, the options are
MB and MFRW. For this, we use the sum of action times as
the metric to decide on the rehoming actions. Column “opt
prediction” in Table II shows whether we correctly predict the
optimal rehoming actions by comparing with the empirical
values of action times obtained for FW action and WS action.

We see that our model is able to accurately predict the optimal
rehoming option for the action time metric in all scenarios.

2) Connectivity downtime prediction: Our average predic-
tion error for the connectivity downtime (column “Downtime
model”) is 10.3% across all rows of Table III. We now apply
our predictions to recommend the optimal rehoming action
for connectivity downtime as the metric. For this, we use the
maximum of the predicted FW downtime and WS downtime.
We find that our recommendation does not match empirical
observations (column “opt prediction” in Table III). In some
cases (marked as “-”), a comparison cannot be made as our
model predicts that MB and MFRW should have similar

downtime, but there is some difference observed in practice.

Looking at the empirical and model-predicted downtimes in
Table III, we see that the model consistently underpredicts the
connectivity downtime. This is to be expected as our model
does not yet take network contention into account; this is
because the model is trained on single VM rehoming but is
being applied to simultaneous rehoming which incurs higher
network contention. This result also shows that it is not trivial
to extrapolate results observed for a single VM rehoming
to predict those for multi VM rehoming. These observations
motivate the need for further work in this direction, which we
discuss in Section VII.

VI. RELATED WORK

The prior work in this area has mostly been on model-
driven approaches, but focused only on VM migration. For
example, Nathan et al. [12] perform a thorough evaluation of
existing models to predict VM migration time and propose
a new model that takes into account other important factors
such as the writable working set size and pages that are
frequently dirtied. Mistral [13] attempts to optimize the overall
data center utility by choosing adaptation actions such as
increasing the CPU allocation, migrating VMs, and restarting
hosts. Hence, Mistral may lead to sub-optimal decisions from
the perspective of each service chain. On the other hand, we
focus on the specific actions that can be taken for rehoming
service chains to optimize chain-specific metrics such as action
time and connectivity downtime. Wood et al. [14] espouses a
graybox approach for VM migration taking into account OS
and application-level statistics. Our graybox rehoming simply
involves information from the user as to the nature of the VMs
(stateful/stateless) in the service chain. While there has been
work on holistic models for service chains, their focus has
mostly been on various factors that influence initial placement
such as the hardware and resource constraints [15], [16].

VII. CONCLUSION AND FUTURE WORK

Service chain rehoming, in response to hotspots, upgrades or
failures, is an important aspect of cloud management. In thinly
provisioned network provider clouds, rehoming has to be
performed much more often than in public clouds and thus has
considerable implications on both cloud utilization and service
availability. However, network clouds are typically private

Image| Disk | Band-| Instance| Page Dirty
Size Size width | Size Rate
Migrate Yes Yes Future | Future Future
Rebuild Yes No Future | Future No
Live Migrate Future | No Future | Future Yes
Drain & Move Future | Future| Future| Future Future
TABLE IV

FACTORS AFFECTING DIFFERENT REHOMING ACTIONS.

clouds wherein the service owner (customer) can provide
information to the network provider to enable more informed,
and hence optimal rehoming actions. In this paper, we present
a graybox approach to rehoming service chains in private cloud
environments. By leveraging information about the service, we
design a model-based approach to determining the optimal
rehoming action for each VM of a customer’s service chain
deployment. Our experimental results on a CloudLab testbed
highlight both the efficacy of our model and the performance
improvement that can be achieved by a graybox solution.

We have several concrete steps of future work. First, we
wish to extend the set of possible rehoming actions. For
example, if a service VM is already replicated, then a potential
rehoming action is to just drain and move the VM traffic to
its replica. Second, we want to refine our VM-specific models
to incorporate more relevant infrastructure parameters, like the
available virtual memory and bandwidth, and provide unified
models that compose different rehoming actions to allow us
to predict the rehoming performance of the service chain as a
whole, as mentioned in Section V.

Table IV lists the various actions and factors that we wish
to consider for rehoming. The entries marked as “Yes” were
studied in this paper, whereas those marked “No” were found
to not have much impact on rehoming, and were thus omitted
from discussion. The entries marked as “Future” are the ones
we wish to explore as part of future work. We did experimen-
tally investigate live migration, but found that the results for
action time and connectivity downtime were noisy (likely due
to the variance in scheduling times of the different subphases
of live migration in OpenStack); we will explore live migration
more thoroughly in future work. Finally, we wish to fine-tune
our models to predict the rehoming performance of several
commonly found service chains, thereby creating a repository
of easily accessible information for customers and network
providers. The service chain used in our evaluation, though
representative of real deployments, is only one example; we
will experiment with other VNF service chains with different
functionalities and resource usage characteristics as part of
future work. Our eventual goal is to build a comprehensive
graybox solution that leverages service-specific information
to seamlessly manage customer service chains to maintain
performance SLOs in response to changing workload and
platform conditions. Our efforts in this paper represent the
first step towards this goal.

ACKNOWLEDGEMENTS

This work was partially supported by NSF CNS grants
1717588 and 1617046.

[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]
[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

“Unraveling AT&Ts and Verizons Virtualization Vendors,”
https://www.sdxcentral.com/articles/news/unraveling-att-and-verizons-
virtualization-vendors/2016/08/.

“AT&T DataCenter locations,” https://www.business.att.com/solutions/Service/cloud/colocation/data-
center-locations/.

“First Responder Network,” https://www.firstnet.gov.

“Public Safety Grade Features in FirstNet,”
https://www.illinois.gov/firstnet/resources/documents/faqs.pdf.
“Momentum has grown for vnf certification,”

https://www.redhat.com/en/blog/momentum-has-grown-vnf-
certification.

“Cisco enterprise nfv open ecosystem and qualified vnf vendors,”
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-
networks/enterprise-network-functions-virtualization-nfv/nfv-open-
ecosystem-qualified-vnf-vendors.html.

Openstack.org, “Ceilometer,” https://wiki.openstack.org/wiki/Ceilometer.
“iperf,” https://sourceforge.net/projects/iperf.

“Cloudlab,” https://www.cloudlab.us/.

“Load balancing/Firewalling Web server using a service chain,”
https://www.ctl.io/knowledge-base/network/how-to-view-source-ip-in-
web-server-logs-when-using-load-balancing/.

D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web
Server Performance,” ACM Sigmetrics: Performance Evaluation Review,
vol. 26, pp. 31-37, 1998.

S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive
performance model of virtual machine live migration,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: ACM, 2015, pp. 288-301. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2806838

G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-
tral: Dynamically managing power, performance, and adaptation cost in
cloud infrastructures,” in 2010 IEEE 30th International Conference on
Distributed Computing Systems, June 2010, pp. 62-73.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and gray-box strategies for virtual machine migration,”
in Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation, ser. NSDI'0O7. Berkeley, CA,
USA: USENIX Association, 2007, pp. 17-17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973447

B. Addis, D. Belabed, M. Bouet, and S. Secci, ‘“Virtual
network functions placement and routing optimization,” in
2015 IEEE 4th International Conference on Cloud Networking
(CloudNet). 1EEE, Oct. 2015, pp. 171-177. [Online]. Available:
http://dx.doi.org/10.1109/cloudnet.2015.7335301

H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in /0th International Conference on
Network and Service Management (CNSM) and Workshop, Nov 2014,
pp. 418-423.

