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Thioredoxins (THRXs)—small globular proteins that reduce other proteins—

are ubiquitous in all forms of life, from Archaea to mammals. Although

ancestral thioredoxins share sequential and structural similarity with the

modern-day (extant) homologues, they exhibit significantly different functional

activity and stability. We investigate this puzzle by comparative studies of their

(ancient and modern-day THRXs’) native state ensemble, as quantified by the

dynamic flexibility index (DFI), a metric for the relative resilience of an amino

acid to perturbations in the rest of the protein. Clustering proteins using DFI

profiles strongly resemble an alternative classification scheme based on their

activity and stability. The DFI profiles of the extant proteins are substantially

different around the a3, a4 helices and catalytic regions. Likewise, allosteric

coupling of the active site with the rest of the protein is different between

ancient and extant THRXs, possibly explaining the decreased catalytic activity

at low pH with evolution. At a global level, we note that the population of low-

flexibility (called hinges) and high-flexibility sites increases with evolution. The

heterogeneity (quantified by the variance) in DFI distribution increases with the

decrease in the melting temperature typically associated with the evolution of

ancient proteins to their modern-day counterparts.

This article is part of a discussion meeting issue ‘Allostery and molecular

machines’.
1. Introduction
Modern proteins have evolved through small changes from ancient times. Much

of this information is encoded in protein classes from different species in the three

kingdoms of life (bacteria, Archaea and Eukarya). With the advances in phyloge-

netics and DNA-synthesis techniques, the various ancient genes, including those

from the last common ancestors of bacteria, bilaterian animals and vertebrates,

have been resurrected in the laboratories. These studies have provided crucial

insights on the environmental adaptations and the evolution of functions [1–8]:

(i) ancestral proteins are more robust, showing high thermal and chemical stab-

ility [9–13] and, more interestingly, (ii) protein structures are conserved more

than protein sequences throughout the molecular evolution [12–15]. Thus, the

current challenge in molecular evolution is to understand the molecular mechan-

ism of how nature alters the function and biophysical properties through amino

acid substitutions, while conserving the three-dimensional structure.

In parallel to the advancements in phylogenetics, recent biophysical studies

of proteins have shown that all positions are dynamically linked to each other

within a network of interactions, where the strength of each link varies across

the protein. This network of interactions leads to intrinsic fluctuations—encoded

in the structure and sequence—that govern protein function [4,16–32]. The obso-

lete view of the single native structure has long been replaced by ‘an ensemble of

substates’ that accurately represent the native state [25]. To shed light into the

mechanism of evolution and study how evolution shapes the native ensemble,

we have developed a method called dynamic flexibility index (DFI) analysis
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Figure 1. Cartoon representation of AECA THRX. The active sites, CGPC, are
shown in stick representation; the b-strand, b5, is shown in purple; and the
a-helices, a3 in orange and a4 in blue.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170184

2

 on August 1, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
[33]. DFI is a position-specific measure that quantifies the resili-

ence of a given position (amino acid) to the perturbations

occurring at various parts of the protein using linear response

theory. Hence, it mimics the multidimensional response when

the protein’s conformational space is probed upon interaction

with small molecules or other cellular constituents. The DFI

is related to a given site’s relative contribution to the

conformational entropy of the protein. Because it is a

position-specific metric, it also allows us to quantify the

change in flexibility per position throughout evolution. The

DFI identifies flexible and rigid positions within the three-

dimensional interaction network of the protein structure.

The low DFI sites are rigid sites (i.e. hinge sites) and are

robust to perturbations owing to their interaction network

within the three-dimensional structure. However, they effi-

ciently transfer perturbations to the rest of the protein chain,

similar to joints in a skeleton. Thus, they play a critical role

in conformational dynamics, and usually correspond to func-

tionally critical, conserved sites in a protein [33]. On the other

hand, high DFI sites are flexible, thus mutations/substitutions

on these highly flexible sites are more acceptable. Our earlier

work of DFI analysis on over 100 human proteins has shown

that there is a strong positive correlation between DFI and

evolutionary rates. This demonstrates that rigid sites are

more conserved while highly evolving sites correspond to

sites with high flexibility [33]. DFI analysis of evolution of

different protein families including GFP proteins [34], b-lacta-

mase inhibitors [12] and nuclear receptors [35] has shown that

alteration of conformational dynamics through allosteric

regulations leads to functional changes. Furthermore, our

site-specific dynamics-based metric, dynamic coupling

index (DCI), reveals that enzymatic function is regulated by

dynamically coupled residues, which form an allosteric com-

munication network with the active sites. Evolution uses

substitutions on these sites to regulate dynamics of the active

sites and binding interfaces [34,36].

Here we analysed the evolution of thioredoxin (THRX).

THRXs are versatile, small globular protein molecules com-

prising about 108 amino acid residues. They belong to a

class of oxidoreductase enzymes present in all living organ-

isms from Archaebacteria to humans. These are labelled

as the ultimate moonlighting proteins with functions as ubi-

quitous as being a reducing agent for other proteins in

biological reactions [37,38].

THRXs from Archaea to humans share about 27–69%

sequence similarities and a common three-dimensional fold

with a central b-sheet core surrounded by four a-helices

[13,39]. The structure of the reduced and oxidized states of

THRX has been studied extensively over the last few decades.

Their structures contain a highly conserved functional

site comprising of two neighbouring redox-active cysteines,

Cys-Gly-Pro-Cys (CGPC) [40,41]. The cysteines participate

in various redox reactions. The protein is maintained in its

reduced state with its functional site having two thiols with

cysteines using another class of reducing agents called

thioredoxin reductases (ThxRs) like nicotinamide adenine

dinucleotide phosphate, flavin adenine dinucleotide (FAD),

etc. [38,40,42]. The reduced state of THRX facilitates the

reduction of the target protein while turning itself into an oxi-

dized state with a disulfide bond between its two functional

cysteines. Although the oxidized state and the reduced state

of the protein are very similar to each other in their fold

(with most of the differences localized around the disulfide
active site), chemical denaturation [43] and thermal [44,45]

unfolding experiments suggest that THRXs are more stable

in their oxidized state. The mutagenesis analyses of THRXs

have shown that the C-terminal a-helix, a4, is known to

play a critical role in the folding kinetics of the protein [46].

A shorter helix, a3, has been identified as important for

the thermal stability of the fold, having several stabilizing

mutations [47]. The central core with b-strand b5 acts like a

bridge for interaction between the two a-helices [47]

(figure 1).

Despite a significant difference in the sequences between

ancestral and extant enzymes, the ancestral THRXs, which

existed almost 4 billion years ago, display the canonical THRX

fold with only minimal structural changes [3,39,48]. However,

during 4 billion years of evolution, the stability of THRXs has

decreased to adapt to the cooling temperatures of the Earth

(in mesophilic lineage). Moreover, the catalytic rates of ancestral

THRXs at low pH are different from those of extant ones.

In summary, THRXs achieved adaptation to a cooler and

less acidic Earth by altering their stability and changing their

catalytic rates while maintaining the same three-dimensional

fold. To provide insights into how variation in sequence

alters stability and function while conserving the three-dimen-

sional structure, we explore how the native state ensemble has

evolved throughout evolution of THRX. To this aim, we per-

formed 1-ms-long molecular dynamics simulations for all

ancestral and extant THRXs, and obtained their DFI profiles.

Comparison of the DFI profiles between ancestral and extant

THRXs on each branch shows a common pattern. The a3

helix, which contributes the most to stability, exhibits enhanced

flexibility in modern THRXs, correlating with the decrease in

stability observed in modern enzymes. The increased flexibility

of a3 was also associated with increased rigidity in the a4 helix

along with conserved rigidity of the b-sheet core. This may

have helped to maintain the three-dimensional fold through

the evolution of THRXs. The clustering of the DFI profiles of

all nine THRXs and mapping that onto a two-dimensional

landscape of experimentally measured stability and catalytic

rates suggest that the native ensemble of THRXs holds the

clue to adaptation at a cooler ambient temperature and lower

acidic environment.

http://rstb.royalsocietypublishing.org/
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Figure 2. Cartoon representations of ancestral and extant THRXs from bacterial thioredoxins LBCA and E. coli THRX, respectively, colour coded with their DFI profiles.
Red sites are the most flexible and blue sites are the least flexible (i.e. rigid). We observe a shift in the flexibility profiles of the helices a3 and a4 through evolution
owing to changes in thermal stability. By contrast, the b-sheet core remains rigid throughout evolution, highlighting its importance in mediating the interaction
between a3 and a4 helices necessary for the THRX fold.
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2. Results and discussion
(a) The change in dynamic flexibility index profiles

provides insight on decrease in melting
temperatures during evolution of THRX

We note a marked difference between the flexibility profiles of

the ancestral and extant THRXs, particularly the flexibilities of

helices a3 and a4. Through mutagenesis analysis it has been

shown that disruption of a3 impacts the overall stability of

the THRXs [47]. Interestingly, we observed the enhancement

in the flexibility of a3 in Escherichia coli (figure 2).

DFI profile comparison between LBCA and E. coli
(figure 2) shows flexibility–rigidity compensation between

the a3 helix and the a4 helix. Specifically, we note that the

a3 helix in E. coli has substantially higher DFI values when

compared with LBCA, while the opposite is seen in the a4

helix. However, the core region of the b-sheet does not

show any noticeable alteration in flexibility between E. coli
and LBCA apart from a slight enhancement in rigidity of

the b5 b-strand.

These observations can be further correlated with the

measured differences in stability due to differences in amino

acids in these regions. After performing a sequence alignment

between E. coli, LBCA and LPBCA, we note that the ancestral

protein LPBCA (close homologue of LBCA) has a critical

mutation, P68A (E. coli position 68 versus the LPBCA aligned

position), in the a3 helix region when compared with E. coli.
This substitution is typically stabilizing [47]. In the context

of two other critical mutations, G74S and K90 L, seen in

LPBCA, it has been hypothesized that the a3 helix may tilt

towards arginine (R) 89 (another mutation in LPBCA), allow-

ing for a strong charge–dipole interaction [47]. However, E.
coli THRX does not allow such favourable interactions owing

to the different amino acids in these positions. Particularly,

89 is threonine (T) instead of arginine (R) in E. coli. Thus, the

loss of this favourable interaction may explain the lowered

stability of E. coli THRX and the enhanced flexibility of the

a3 helix as evident from their DFI profiles.

We tested this hypothesis in the context of LBCA. Similar

to LPBCA, we note that LBCA also has all the three critical

mutations, i.e. P68A, G74S and K90 L. Furthermore, after
alignment, we see that position 89 has a positively charged

amino acid, lysine, in LBCA.

Motivated by these similarities between LBCA and

LPBCA, we further analysed the relative orientation between

the a3 helix dipole and the side chain of lysine (K) (at the

equivalent of position 89) in LBCA. We observed that the

relative orientation between the a3 helix dipole and K89 (as

seen in sequence alignment) is more rigid in LBCA (electronic

supplementary material, figure SI-1), whereas T, at position

89 in E. coli, has a fluctuating orientation with the a3 helix

(electronic supplementary material, figure SI-1). This differ-

ence indicates that a favourable interaction between the

charge and the dipole (of the a3 helix) may be operative in

LBCA—similar to LPBCA—and responsible for the higher

stability of LBCA and also the rigidity of its a3 helix when

compared with E. coli THRX.

Turning our attention to the a4 helix, guided by mutagen-

esis experiments [47], we again noted a set of key mutations

between E. coli and LPBCA responsible for folding stability

differences between the two proteins. For example, S95P and

Q98A—both occurring near the end of the a4 helix in

LPBCA—cause a reduction in stability. It has been hypo-

thesized that both the serine (S) and glutamine (Q) in E. coli
may stabilize the loop connecting the a4 helix and the b5

b-strand by possibly using dipole–dipole interactions. How-

ever, upon mutating to alanine (A) (for Q98A) and proline

(P) (for S95P) in LPBCA, these dipolar interactions are lost,

causing a decrease in stability and consequently high flexi-

bility. A second set of mutations, L94Q and F102R (also

present in the a4 helix region), in LPBCA have been further

implicated to lowering the melting temperature by possibly

destabilizing the hydrophobic network between the a4 helix

and the b5 b-strand [47]. All these mutations are also present

in LBCA, as determined by the sequence alignment, apart

from L94R, present in LBCA, instead of L94Q in LPBCA.

This suggests that the same physical principles, i.e. loss of

charge–dipole or dipole–dipole interaction and/or disruption

of the hydrophobic network, may be responsible for the higher

flexibility of the a4 helix in LBCA compared with E. coli, as

observed by DFI analysis.

Similar changes, particularly the compensation for the

change in DFI profiles of the a3 and a4 helices, have also been

http://rstb.royalsocietypublishing.org/
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Figure 3. (a) Comparison of the coupling of catalytic sites (CGPC) in ancestral THRX (AECA) with extant human THRX using a percentile ranking of the dynamic
coupling index (%DCI). We observe a striking difference in the couplings of the a3 region in the respective proteins with their corresponding active sites, suggesting
their role in altering catalytic rates. This difference can also be visualized on the cartoon representations (b) of AECA and human THRXs where red represents sites
highly coupled to the active sites, CGPC (grey spheres) and blue as sites with no significant coupling.
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observed in the evolutionary branch of human THRXs when the

DFI profiles of AECA THRX and human THRX were compared

[47] (electronic supplementary material, figure SI-2). Overall,

based on the mutagenesis analysis [47] and DFI comparison

between ancestral and extant THRXs, a plausible mechanism

of how THRX has evolved to lower stability is suggested.

While the increased flexibility of the a3 helical region achieved

a decrease in stability to adapt to cooler ambient temperatures,

the rigidity conservation of the core and increased rigidity in

helix a4 ensured conservation of the canonical THRX fold

throughout evolution. The proposed mechanism should be

further verified with experimental analysis in the future.

(b) Dynamic coupling of the active site alters
throughout evolution

Comparison between the catalytic rates of the last ancestral

THRX and their extant variant on each branch in phylogeny

shows that the kinetic rates of disulfide bond reduction have

decreased during the evolution at pH 5 [3]. Particularly, in

the human branch, there is an approximately six-fold decrease

in the kinetic rates between its first ancestor, AECA, and the

modern-day Human THRX. Our earlier work on protein evol-

ution shows that nature uses distal sites that are dynamically

coupled with the active sites to control the active site’s

dynamics [49–51]. Thus, we analysed how the DCI (see

Material and methods for the definition) of the active site

changed during THRX evolution (figure 3a).

Interestingly, we observed that the dynamic coupling of

the a3 helix with the active site has decreased drastically

between the ancestral and extant THRXs in the human

branch (figure 3a,b). We noted the same difference between

the ancestral and extant THRXs in the E. coli branch (electronic
supplementary material, figure SI-3). Previous studies have

also shown that the a3 helix is part of the substrate-binding

region and the change in dynamics of this binding region

plays a critical role in the catalytic activity of the protein [52].

Thus, the decrease in the allosteric dynamic coupling of the

a3 helix region with the catalytic site may be linked with the

lowered activity observed in modern-day THRXs. However,

careful mutagenesis experiment is needed to conclusively

prove or disprove this hypothesis.
(c) The variance in dynamic flexibility index profile
distribution correlates with change in melting
temperature

DFI analysis of an ancestral versus extant THRXs in the E. coli
and human branches provides insight on how the ‘fine-tuning’

of flexibility profiles of some functionally important structural

features is used during evolution. Comparing the distribution

of flexibility of various residue positions in ancestral THRXs

with the extant ones can additionally reveal information

about the change in their native landscape through evolution.

The distribution of the flexibility of residues in each THRX

protein is obtained by binning the residues according to their

DFI scores (figure 4).

Interestingly, the distribution of the DFI profile for the

4-Gyr-old THRX (LBCA) differs from that of extant THRX

(E. coli) (figure 4a,b). The high flexibility tail region of the

distribution gets more populated in modern THRXs. Like-

wise, the probability density at low DFI has also increased

in THRX of modern organisms, representing a gain of high-

flexibility and low-flexibility regions during evolution. This

behaviour was observed not only in the bacterial but also

http://rstb.royalsocietypublishing.org/
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in the human branch of THRX’s evolutionary tree

(figure 4c,d). The redistribution of flexible sites in THRX

structures helps proteins ‘fine-tune’ their activity in accord-

ance with the functional requirement.

This characteristic pattern of increasing ‘width’ of the dis-

tributions with evolution is further supported by the high

correlation between the variance of the DFI distributions of

THRX proteins and their corresponding melting tempera-

tures (correlation, R ¼ 20.86 and p ¼ 3.2 � 1023)

(figure 5a). In addition, because the decreasing melting temp-

erature correlates with the evolution time, we also note

significant correlation between the evolution time of THRX

proteins and their variance in DFI distributions (correlation,

R ¼ 0.77 and p ¼ 1.6 � 1022) (figure 5b).

Overall, this result is in agreement with our previous

results [12,34] that evolution shapes the conformational land-

scape of the native state. We observed two major changes in

DFI distributions consistent in all branches. First, the DFI pro-

files change as the sequences evolve. Second, the probability
distributions at the beginning (ancestral sequences) are more

compact, having a higher probability towards mid- to high

DFI values. This type of distribution ensures evolvability

through mutation of various flexible positions in the protein

because flexible sites typically correspond to highly evolving

residues [53–55]. On the other hand, as we get closer to the

modern enzymes, the distribution widens. There is an increase

in the probability of the low DFI range along with a longer tail

of high DFI values. In other words, a well-distributed set of

very rigid and very flexible sites could be an evolutionary

mechanism to adapt to low temperature and/or adjust to

functional need.

(d) Dynamic flexibility index captures the functional
evolution in thioredoxin

To test how the DFI profiles of nine THRXs capture the change

in function throughout evolution, we clustered their DFI

profiles using PCA analysis (see Material and methods). The

http://rstb.royalsocietypublishing.org/
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Figure 6. Clustering of ancestral and extant THRXs based on their DFI profiles (a) and based on their experimental rate constants of disulfide bond reduction [56]
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THRXs that clustered together in accordance with the simi-

larities in their flexibility profiles (figure 6a) also exhibit

similar rate constants for disulfide bond reduction obtained

from single-molecule experiments [3]. For example, ancestral

THRXs LACA and AECA, belonging to the Archaea branch,

have very high rate constants. Consistently, DFI clustering

arranges them in the same group. On the other hand, LBCA

THRX, from the bacterial branch, which evolved around the

same period as AECA (around 4 billion years ago), is in a

different cluster with LPBCA and LGPCA. LBCA, LPBCA

and LGPCA all have much lower rates for disulfide bond

reduction than those of LACA and AECA. Interestingly,

human, LAFCA and LECA THRX, all grouped together in a

common cluster, share similar kinetic rates of disulfide bond

reduction. We also note E. coli, having the lowest reduction

rate of all other THRXs, is clustered in a separate group

(figure 6a).

While the above argument clearly explains subclasses, the

clustering also raises a question about merging different sub-

groups to bigger groups. For example, how do we rationalize

that the LACA–AECA dyad is grouped in the same class

(red) with the triad LGPCA, LPBCA–LBCA in spite of the

two subclasses having widely different catalytic rates? Interest-

ingly, we note LACA, AECA, LGPCA, LPBCA and LBCA are

all highly stable compared with the triad LAFCA, human

and LECA. Thus, DFI-based classification can be best under-

stood by both catalytic rates (kcat, M21 s21) [3] and free

energy of folding [56]. It is interesting to note that although

DFI solely uses the native state ensemble, it can successfully

sculpt the landscape in these two coordinates (figure 6b).

Based on stability and catalytic activity, THRXs can be grouped

into three broad categories: (i) highly stable agents (AECA and

LACA with high activity; LBCA, LPBCA and LGPCA with low

activity), (ii) moderately stable agents (human, LAFCA and

LECA) with moderate catalytic activity and (iii) marginally

stable, low catalytic activity (E. coli) (figure 6a,b).

In summary, clustering solely based on DFI profiles suc-

cessfully captures the clustering based on catalytic rates and

stability. This suggests that evolution shaped the native state

ensemble of THRXs to adapt and function at cooler tempera-

tures and lower acidic ambient conditions. It is also in

agreement with our previous analysis on protein evolution

[12,50], highlighting that evolution exploits native state

conformational dynamics to alter function.
3. Conclusion
Despite the significant structural similarities between ancestral

and extant THRXs, they evolved towards lower stability and

kinetic turnover rates. To gain insights into the underlying mol-

ecular mechanism, we explored how changes in the native state

ensemble might have impacted the evolution of THRX pro-

teins. To do this, we compared the difference in their DFI

profiles. The enhanced flexibility of the a3 helix in the extant

proteins, compared with their ancestral counterparts, is com-

pensated by the decrease in flexibility of the a4 helix and may

be responsible for lowering their stability to adapt to cooler

ambient temperatures, while keeping the fold conserved. We

further noted that the dynamic coupling of important positions

with the catalytic site has changed during evolution. Particu-

larly, the decrease in allosteric dynamic coupling of the a3

helical region—critical in substrate binding—with the catalytic

site in extant THRXs may be associated with the decrease in cat-

alytic activity at lower acidic conditions.

Comparison of the distribution of the flexibility of residues

between ancestral and extant proteins revealed that the popu-

lation density of high- and low-flexibility sites increases as they

evolve. These common features observed in evolution suggest

a ‘fine-tuning’ of their native ensemble to adjust to ambient con-

ditions in accordance with the evolution in their function. The

high correlation between the variance of flexibility distribution

of proteins and their melting temperature quantitatively

supports this hypothesis.

In addition, clustering these proteins based on their flexi-

bility profiles closely matches grouping using their kinetic

rates of disulfide bond reduction and thermal stability. These

observations, in agreement with our previous results, highlight

that nature uses native state conformational dynamics to adapt

and evolve.
4. Material and methods
(a) Molecular dynamics simulation protocol
All starting structures were taken from the Protein Data Bank using

the respective accession numbers for the proteins LBCA (4BA7),

AECA (3ZIV), LAFCA (2YPM), LECA (2YOI), LACA (2YNX),

LGPCA (2YN1), LPBCA (2YJ7), E. coli (2TRX) and human

(1ERU) THRX [57–59]. Next the Hþþweb server was used to pre-

dict the protonation state of the histidine side chains [60–62]. The
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refined structure was then loaded into TLEAP using the ff14SB

force field [63]. The disulfide bond was kept in the oxidized

state. Protein hydrogens were then added and a 9.0 Å cubic box

of TIP3P surrounding water atoms was added, followed by neutra-

lizing ions [64,65]. Systems were then energy-minimized using the

SANDER module of AMBER 14 [66–68]. The first cycle of mini-

mization reduced the energy and steric clashes of the solvent

with the protein restricted using harmonic restraints. The second

cycle of minimization was then performed without the harmonic

restraints, so the entire solution could adjust to the local minimum.

Heating, density equilibration and production were all then

run using the GPU-accelerated PMEMD module of AMBER 14

[68]. These simulations were performed with periodic boundary

conditions and the bond lengths of all covalent hydrogen bonds

were constrained using SHAKE [67]. Direct-sum, non-bonded

interactions were cut off at 9.0 Å, and long-range electrostatics

was calculated using the particle mesh Ewald method [69–71].

The heating phase ran over 100 ps from 0 to 300 K. The density

of the system was then allowed to equilibrate over 5 ns at constant

temperature and pressure. All production simulations were run

using the Langevin thermostat and Berendsen barostat to keep

temperature and pressure, respectively, constant. A timestep of

2 fs was used and structural conformations were saved every

10 ps. All simulations were allowed to progress to 1 ms of total

simulation time, deemed the minimal required simulation time

for convergence based on our earlier study [72].

(b) Dynamic flexibility index
DFI measures the amount of resilience a residue experiences

in response to perturbations in the rest of the protein. The dynamic

response profile of the protein is explored using the perturba-

tion response scanning (PRS) technique [73,74]. The original

approach is based on the elastic network model (ENM) in which

the nodes represent Ca atoms [54,75] and the pairwise potential

between each atom is given by the potential of a harmonic

spring. A small perturbation in the form of random Brownian

kick is applied sequentially to each Ca atom in the elastic network.

As a first-order approximation, this perturbation mimics the forces

exerted by an approaching protein or a ligand in a crowded cellular

environment. The perturbations on a single residue result in a

cascade of perturbations to all other atoms in the network, indu-

cing a global response. The fluctuation response profile of the

positions upon perturbation of a single residue is obtained using

linear response theory and given by the equation

DR3N�1 ¼ H�1
3N�3N F3N�1, ð5:1Þ

where H is the Hessian matrix, a 3N � 3N matrix composed of the

second-order derivatives of the harmonic potential with respect to

the components of the position vectors for the chain of length N,

giving the position covariance of the residue pairs in equilibrium,

F is the external unit force vector applied at N residues in the

protein and DR is the response of the force. The force is applied

in all the directions at each residue and the magnitude of the

response profile is averaged to give an isotropic measure of

response.

However, a disadvantage of the ENM-based PRS model is

that the coarse-grained network makes it insensitive to changes

arising from the biochemical properties of amino acids. There-

fore, in order to compare the family of THRXs, having similar

back-bone structures, we replace the inverse of the Hessian

with the covariance matrix obtained from molecular dynamic

simulations (discussed in the previous section).

DR3N�1 ¼ G3N�3NF3N�1: ð5:2Þ

Here, G is the covariance matrix containing the dynamic properties

of the system. The covariance matrix contains the data for long-range

interactions, solvation effects and biochemical specificities of all

types of interactions. The DFI is calculated by computing the
fluctuation response of all the residues in a protein (i.e.

DRj
i, i ¼ 1,::N) by applying a unit force (isotropic) as perturbation

at a specific position (i.e. site j) using equation (4.2). We repeat this

single-residue perturbation for all residues (i.e. 1 � j � N) in the

protein. Consequently, the perturbation matrix, A is constructed,

AN�N ¼
jDR1j1 � � � jDRN j1

..

. . .
. ..

.

jDR1jN � � � jDRN jN

2
64

3
75, ð5:3Þ

where jDRjji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðDRÞl2

q
is the magnitude of fluctuation response

at site ‘i’ due to the perturbations at site ‘j’. A sum of a given row

of perturbation matrix gives the net average displacement of the

residue from its equilibrium position when all the residues are

perturbed by an isotropic unit force one at a time. The DFI score of

a position ‘i’ is defined as the net response of that position normal-

ized with the net displacement of the whole protein when all the

residues are perturbed, i.e.

DFIi ¼
PN

j¼1 jDRjjiPN
i¼1

PN
j¼1 jDRjji

: ð5:4Þ

Thus, a higher DFI score of a residue position ‘i’ implies a more flex-

ible site and a low score implies a rigid site with lower response to

perturbations in the protein.

Recently, we have extended this method to identify dynamic

coupling between any given residue and functionally important

residues by introducing a new metric called the DCI. The DCI

metric can identify sites that are distal to functional sites but

impact active-site dynamics through dynamic allosteric coupling

[49,50,76]. This type of allosteric coupling is important; sites

with strong dynamic allosteric coupling to functionally critical

residues (dynamic allosteric residue coupling (DARC) spots),

regardless of separation distance, also contribute to the function.

Thus, a mutation at such a site can disrupt the allosteric dynamic

coupling or regulation, leading to functional degradation. As

defined, the DCI is the ratio of the sum of the mean square fluctu-

ation response of the residue ‘i’ upon functional site perturbations

(i.e. catalytic residues) to the response of residue ‘i’ upon pertur-

bations on all residues. DCI enables us to identify DARC spot

residues, which are more sensitive to perturbations exerted on resi-

dues critical for function. This index can be used to identify the

residues involved in allosteric regulation. It is expressed as

DCIi ¼
PNfunctional

j jDRjji=NfunctionalPN
j¼1 jDRjji=N

, ð5:5Þ

where jDRjji is the response fluctuation profile of residue ‘i’ upon per-

turbation of residue ‘j’. The numerator is the average mean square

fluctuation response obtained over the perturbation of the function-

ally critical residues Nfunctional, and the denominator is the average

mean square fluctuation response over all residues. Similar to DFI,

the DCI profiles can also be computed using the covariance matrix

obtained from molecular dynamics simulations or the inverse

Hessian of the ENM. In this study, we used the covariance matrices.

(c) Clustering the DFI profiles of thioredoxin proteins
We clustered the DFI profiles of different extant and ancestral

THRXs by comparing their percentile rankings. To compare the

flexibility profiles, the proteins are aligned according to their mul-

tiple sequence alignment and are concatenated into a data matrix

X. Singular value decomposition (SVD) is a statistical procedure

to factorize the data into the orthonormal basis, which represents

the vector space containing data. It is similar to principal com-

ponent analysis which could be used to understand the structure

of data or to increase the signal-to-noise ratio in data by eliminating

the redundant dimensions and mapping it on a lower-dimensional

space. Clustering by SVD acts as an effective noise filter by isolat-

ing the highest variances among data points in the top principal
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vectors. Consequently, the remaining insignificant singular vectors

can be omitted from the reconstruction.

The DFI profiles of all proteins are merged into a matrix X, of

dimensions (m� n). Here m is the number of datasets (proteins) we

are clustering together, each having n number of attributes (number

of residues). On performing SVD, X is decomposed as follows:

[X]m�n ¼ [U]m�m[S]m�n[V]n�n ð5:6Þ

Here, U and Vare unitary matrices with orthonormal columns and are

called left singular vectors and right singular vectors, respectively, and

S is a diagonal matrix with diagonal elements known as the singular

values of X.

The singular values of X, by convention, are arranged in a

decreasing order of their magnitude; s ¼ fsig represent the var-

iances in the corresponding left and right singular vectors. The

set of highest singular values representing the largest variance in

the orthonormal singular vectors can be interpreted to show the

characteristics in the data X and the right singular vectors create

the orthonormal basis which spans the vector space representing

the data. The left singular vectors contain weights indicating the

significance of each attribute in the dataset as wi ¼ S
r
k¼1skjuikj.

Using these features of the decomposed singular vectors, we can

create another matrix, X� using only the highest ‘r’ singular

values which can mimic the basic characteristics of the original

dataset. Thus, X� can be represented as

[X�]m�r ¼ [V�]m�r[S
�]r�r : ð5:7Þ

Here,S� contains only largest r singular values and V� contains the

corresponding right singular vectors. The data are now clustered

hierarchically based on the pairwise distance between different

proteins in the reconstructed DFI data with reduced dimensions.

For a pair of datasets (or between flexibility profiles of any

two proteins) j1 and j2, the distance between them in the original

set of data was given by

d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðX j1
i � X

j2
i Þ

2

s
, ð5:8Þ
which in reduced dimensions can be calculated as

d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

i¼1

ðX� j1
i � X

� j2
i Þ

2

s
: ð5:9Þ

These pairwise distances are used as the parameters for

clustering the flexibility profiles of THRX. We calculated the mul-

tiple sequence alignment of ancestral and modern THRXs. The

DFI profiles are aligned with respect to LBCA, taking into con-

sideration the gaps in sequences of other THRX proteins, and

the data are clubbed into a dataset matrix X. The three largest

singular values are used for reconstruction of data and cluster-

ing. The pairwise distance between each protein using the

equation above is used for clustering them hierarchically.

A bottom-up approach is used for the hierarchical clustering,

where initially each protein is assigned its own cluster and then,

in successive iteration, closest clusters are merged together into a

common cluster. In this approach, the distance between clusters

is defined by the average pairwise distance between their

components (average linkage clustering [77]). In the end, the

clusters are represented hierarchically using a dendrogram,

where the vertical axis denotes the Euclidean distance between

various clusters and among their sub-clusters.
Data accessibility. This article has no additional data.

Authors’ contributions. S.B.O. and K.G. conceived and designed the study.
T.M. and J.H. performed and analysed simulations, and generated
the results. T.M., J.H., K.G. and S.B.O. wrote the manuscript.

Competing interests. We declare we have no competing interests.

Funding. Support from NSF-MCB Award 1715591 and Scialog Fellow
Award by RCSA and the Gordon & Betty Moore Foundation is grate-
fully acknowledged by S.B.O. K.G. acknowledges support from
National Science Foundation (NSF) (award number 1149992) and
Research Corporation for Science Advancement.

Acknowledgement. We thank Lucas Sawle for the help with the all-atom
molecular dynamics simulation.
References
1. Carroll SM, Bridgham JT, Thornton JW. 2008
Evolution of hormone signaling in elasmobranchs
by exploitation of promiscuous receptors. Mol. Biol.
Evol. 25, 2643 – 2652. (doi:10.1093/molbev/
msn204)

2. Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW.
2007 Crystal structure of an ancient protein. Science
317, 1544 – 1548. (doi:10.1126/science.1142819)

3. Perez-Jimenez R et al. 2011 Single-molecule
paleoenzymology probes the chemistry of
resurrected enzymes. Nat. Struct. Mol. Biol. 18,
nsmb.2020. (doi:10.1038/nsmb.2020)

4. Wilson C et al. 2015 Kinase dynamics. Using ancient
protein kinases to unravel a modern cancer drug’s
mechanism. Science 347, 882 – 886. (doi:10.1126/
science.aaa1823)

5. Bar-Rogovsky H, Hugenmatter A, Tawfik DS. 2013
The evolutionary origins of detoxifying enzymes:
the mammalian serum paraoxonases (PONs) relate
to bacterial homoserine lactonases. J. Biol. Chem.
288, 23 914 – 23 927. (doi:10.1074/jbc.M112.
427922)

6. Smith SD, Wang S, Rausher MD. 2013 Functional
evolution of an anthocyanin pathway enzyme
during a flower color transition. Mol. Biol. Evol. 30,
602 – 612. (doi:10.1093/molbev/mss255)

7. Boucher JI, Jacobowitz JR, Beckett BC, Classen S,
Theobald DL. 2014 An atomic-resolution view of
neofunctionalization in the evolution of
apicomplexan lactate dehydrogenases. eLife 3,
e02304. (doi:10.7554/eLife.02304)

8. Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado
A, Perez-Jimenez R, Fernandez JM, Gaucher EA,
Sanchez-Ruiz JM, Gavira JA. 2013 Conservation of
protein structure over four billion years. Structure
1993. 21, 1690 – 1697. (doi:10.1016/j.str.2013.06.
020)

9. Trudeau DL, Kaltenbach M, Tawfik DS. 2016 On the
potential origins of the high stability of
reconstructed ancestral proteins. Mol. Biol. Evol. 33,
2633 – 2641. (doi:10.1093/molbev/msw138)

10. Akanuma S, Nakajima Y, Yokobori S, Kimura M, Nemoto
N, Mase T, Miyazono K, Tanokura M, Yamagishi A. 2013
Experimental evidence for the thermophilicity of
ancestral life. Proc. Natl Acad. Sci. USA 110, 11 067 –
11 072. (doi:10.1073/pnas.1308215110)

11. Hart KM, Harms MJ, Schmidt BH, Elya C, Thornton
JW, Marqusee S. 2014 Thermodynamic system drift
in protein evolution. PLoS Biol. 12, e1001994.
(doi:10.1371/journal.pbio.1001994)

12. Zou T, Risso VA, Gavira JA, Sanchez-Ruiz JM, Ozkan
SB. 2015 Evolution of conformational dynamics
determines the conversion of a promiscuous
generalist into a specialist enzyme. Mol. Biol. Evol.
32, 132 – 143. (doi:10.1093/molbev/msu281)

13. Risso VA et al. 2015 Mutational studies on
resurrected ancestral proteins reveal conservation of
site-specific amino acid preferences throughout
evolutionary history. Mol. Biol. Evol. 32, 440 – 455.
(doi:10.1093/molbev/msu312)

14. Bridgham JT, Ortlund EA, Thornton JW. 2009
An epistatic ratchet constrains the direction of
glucocorticoid receptor evolution. Nature 461,
515 – 519. (doi:10.1038/nature08249)

15. Choi I-G, Kim S-H. 2006 Evolution of protein
structural classes and protein sequence families.
Proc. Natl Acad. Sci. USA 103, 14 056 – 14 061.
(doi:10.1073/pnas.0606239103)

16. McLeish TCB, Cann MJ, Rodgers TL. 2015 Dynamic
transmission of protein allostery without structural
change: spatial pathways or global modes? Biophys.
J. 109, 1240 – 1250. (doi:10.1016/j.bpj.2015.08.009)

http://dx.doi.org/10.1093/molbev/msn204
http://dx.doi.org/10.1093/molbev/msn204
http://dx.doi.org/10.1126/science.1142819
http://dx.doi.org/10.1038/nsmb.2020
http://dx.doi.org/10.1126/science.aaa1823
http://dx.doi.org/10.1126/science.aaa1823
http://dx.doi.org/10.1074/jbc.M112.427922
http://dx.doi.org/10.1074/jbc.M112.427922
http://dx.doi.org/10.1093/molbev/mss255
http://dx.doi.org/10.7554/eLife.02304
http://dx.doi.org/10.1016/j.str.2013.06.020
http://dx.doi.org/10.1016/j.str.2013.06.020
http://dx.doi.org/10.1093/molbev/msw138
http://dx.doi.org/10.1073/pnas.1308215110
http://dx.doi.org/10.1371/journal.pbio.1001994
http://dx.doi.org/10.1093/molbev/msu281
http://dx.doi.org/10.1093/molbev/msu312
http://dx.doi.org/10.1038/nature08249
http://dx.doi.org/10.1073/pnas.0606239103
http://dx.doi.org/10.1016/j.bpj.2015.08.009
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170184

9

 on August 1, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
17. Bahar I, Lezon TR, Yang L-W, Eyal E. 2010 Global
dynamics of proteins: bridging between structure
and function. Annu. Rev. Biophys. 39, 23 – 42.
(doi:10.1146/annurev.biophys.093008.131258)

18. Bahar I, Chennubhotla C, Tobi D. 2007 Intrinsic
enzyme dynamics in the unbound state and relation
to allosteric regulation. Curr. Opin. Struct. Biol. 17,
633 – 640. (doi:10.1016/j.sbi.2007.09.011)

19. Chennubhotla C, Yang Z, Bahar I. 2008 Coupling
between global dynamics and signal transduction
pathways: a mechanism of allostery for chaperonin
GroEL. Mol. Biosyst. 4, 287 – 292. (doi:10.1039/
b717819k)

20. Tobi D, Bahar I. 2005 Structural changes involved in
protein binding correlate with intrinsic motions of
proteins in the unbound state. Proc. Natl Acad. Sci.
USA 102, 18 908 – 18 913. (doi:10.1073/pnas.
0507603102)

21. Boehr DD, Dyson HJ, Wright PE. 2006 An NMR
perspective on enzyme dynamics. Chem. Rev. 106,
3055 – 3079. (doi:10.1021/cr050312q)

22. Mazal H, Aviram H, Riven I, Haran G. 2018
Effect of ligand binding on a protein with a
complex folding landscape. Phys. Chem. Chem. Phys.
20, 3054 – 3062.

23. Kar G, Keskin O, Gursoy A, Nussinov R. 2010
Allostery and population shift in drug discovery.
Curr. Opin. Pharmacol. 10, 715 – 722. (doi:10.1016/j.
coph.2010.09.002)

24. Tsai C-J, Nussinov R. 2014 A unified view of ‘how
allostery works’. PLoS Comput. Biol. 10, 1 – 12.

25. Tokuriki N, Tawfik DS. 2009 Protein dynamism and
evolvability. Science 324, 203 – 207. (doi:10.1126/
science.1169375)

26. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ,
Karplus M, Kern D. 2007 A hierarchy of timescales in
protein dynamics is linked to enzyme catalysis.
Nature 450, 913 – 916. (doi:10.1038/nature06407)

27. Zheng W, Brooks BR, Thirumalai D. 2006 Low-
frequency normal modes that describe allosteric
transitions in biological nanomachines are robust to
sequence variations. Proc. Natl Acad. Sci. USA 103,
7664 – 7669. (doi:10.1073/pnas.0510426103)

28. Dima RI, Thirumalai D. 2006 Determination of
network of residues that regulate allostery in
protein families using sequence analysis. Protein Sci.
Publ. Protein Soc. 15, 258 – 268. (doi:10.1110/ps.
051767306)

29. Liu T, Whitten ST, Hilser VJ. 2007 Functional
residues serve a dominant role in mediating the
cooperativity of the protein ensemble. Proc. Natl
Acad. Sci. USA 104, 4347 – 4352. (doi:10.1073/pnas.
0607132104)

30. Gruber R, Horovitz A. 2016 Allosteric mechanisms in
chaperonin machines. Chem. Rev. 116, 6588 – 6606.
(doi:10.1021/acs.chemrev.5b00556)

31. Buchenberg S, Sittel F, Stock G. 2017 Time-resolved
observation of protein allosteric communication.
Proc. Natl Acad. Sci. USA 114, E6804 – E6811.
(doi:10.1073/pnas.1707694114)

32. Sawle L, Huihui J, Ghosh K. 2017 All-atom
simulations reveal protein charge decoration in the
folded and unfolded ensemble is key in
thermophilic adaptation. J. Chem. Theory Comput.
13, 5065 – 5075. (doi:10.1021/acs.jctc.7b00545)

33. Nevin Gerek Z, Kumar S, Banu Ozkan S. 2013
Structural dynamics flexibility informs function
and evolution at a proteome scale. Evol. Appl. 6,
423 – 433. (doi:10.1111/eva.12052)

34. Kim H et al. 2015 A hinge migration mechanism
unlocks the evolution of green-to-red
photoconversion in GFP-like proteins. Structure
1993. 23, 34 – 43.

35. Glembo TJ, Farrell DW, Gerek ZN, Thorpe MF, Ozkan
SB. 2012 Collective dynamics differentiates
functional divergence in protein evolution. PLoS
Comput. Biol. 8, e1002428. (doi:10.1371/journal.
pcbi.1002428)

36. Kumar A, Butler BM, Kumar S, Ozkan SB. 2015
Integration of structural dynamics and molecular
evolution via protein interaction networks: a new
era in genomic medicine. Curr. Opin. Struct. Biol.
35(Suppl. C), 135 – 142. (doi:10.1016/j.sbi.2015.
11.002)

37. Holmgren A. 1985 Thioredoxin. Annu. Rev. Biochem.
54, 237 – 271. (doi:10.1146/annurev.bi.54.070185.
001321)

38. Mustacich D, Powis G. 2000 Thioredoxin
reductase. Biochem. J. 346, 1 – 8. (doi:10.1042/
bj3460001)

39. Romero-Romero ML, Risso VA, Martinez-Rodriguez
S, Ibarra-Molero B, Sanchez-Ruiz JM. 2016
Engineering ancestral protein hyperstability.
Biochem. J. 473, 3611 – 3620. (doi:10.1042/
BCJ20160532)

40. Eklund H, Gleason FK, Holmgren A. 1991 Structural
and functional relations among thioredoxins of
different species. Proteins 11, 13 – 28. (doi:10.1002/
prot.340110103)

41. Weichsel A, Gasdaska JR, Powis G, Montfort WR.
1996 Crystal structures of reduced, oxidized, and
mutated human thioredoxins: evidence for a
regulatory homodimer. Structure 4, 735 – 751.
(doi:10.1016/S0969-2126(96)00079-2)

42. Arnér ESJ, Holmgren A. 2000 Physiological functions
of thioredoxin and thioredoxin reductase.
Eur. J. Biochem. 267, 6102 – 6109. (doi:10.1046/j.
1432-1327.2000.01701.x)

43. Chakrabarti A, Srivastava S, Swaminathan CP,
Surolia A, Varadarajan R. 1999 Thermodynamics of
replacing an a-helical Pro residue in the p40S
mutant of Escherichia coli thioredoxin. Protein Sci. 8,
2455 – 2459. (doi:10.1110/ps.8.11.2455)

44. Ladbury JE, Kishore N, Hellinga HW, Wynn R,
Sturtevant JM. 1994 Thermodynamic effects of
reduction of the active-site disulfide of Escherichia
coli thioredoxin explored by differential scanning
calorimetry. Biochemistry 33, 3688 – 3692. (doi:10.
1021/bi00178a027)

45. Godoy-Ruiz R, Perez-Jimenez R, Ibarra-Molero B,
Sanchez-Ruiz JM. 2004 Relation between protein
stability, evolution and structure, as probed by
carboxylic acid mutations. J. Mol. Biol. 336,
313 – 318. (doi:10.1016/j.jmb.2003.12.048)

46. Vazquez DS, Sánchez IE, Garrote A, Sica MP, Santos
J. 2015 The E. coli thioredoxin folding mechanism:
the key role of the C-terminal helix. Biochim.
Biophys. Acta 1854, 127 – 137. (doi:10.1016/j.
bbapap.2014.11.004)
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