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Thioredoxins (THRXs)—small globular proteins that reduce other proteins—
are ubiquitous in all forms of life, from Archaea to mammals. Although
ancestral thioredoxins share sequential and structural similarity with the
modern-day (extant) homologues, they exhibit significantly different functional
activity and stability. We investigate this puzzle by comparative studies of their
(ancient and modern-day THRXs") native state ensemble, as quantified by the
dynamic flexibility index (DFI), a metric for the relative resilience of an amino
acid to perturbations in the rest of the protein. Clustering proteins using DFI
profiles strongly resemble an alternative classification scheme based on their
activity and stability. The DFI profiles of the extant proteins are substantially
different around the a3, a4 helices and catalytic regions. Likewise, allosteric
coupling of the active site with the rest of the protein is different between
ancient and extant THRXs, possibly explaining the decreased catalytic activity
at low pH with evolution. At a global level, we note that the population of low-
flexibility (called hinges) and high-flexibility sites increases with evolution. The
heterogeneity (quantified by the variance) in DFI distribution increases with the
decrease in the melting temperature typically associated with the evolution of
ancient proteins to their modern-day counterparts.

This article is part of a discussion meeting issue ‘Allostery and molecular
machines’.

1. Introduction

Modern proteins have evolved through small changes from ancient times. Much
of this information is encoded in protein classes from different species in the three
kingdom:s of life (bacteria, Archaea and Eukarya). With the advances in phyloge-
netics and DNA-synthesis techniques, the various ancient genes, including those
from the last common ancestors of bacteria, bilaterian animals and vertebrates,
have been resurrected in the laboratories. These studies have provided crucial
insights on the environmental adaptations and the evolution of functions [1-8]:
(i) ancestral proteins are more robust, showing high thermal and chemical stab-
ility [9-13] and, more interestingly, (ii) protein structures are conserved more
than protein sequences throughout the molecular evolution [12-15]. Thus, the
current challenge in molecular evolution is to understand the molecular mechan-
ism of how nature alters the function and biophysical properties through amino
acid substitutions, while conserving the three-dimensional structure.

In parallel to the advancements in phylogenetics, recent biophysical studies
of proteins have shown that all positions are dynamically linked to each other
within a network of interactions, where the strength of each link varies across
the protein. This network of interactions leads to intrinsic fluctuations—encoded
in the structure and sequence—that govern protein function [4,16-32]. The obso-
lete view of the single native structure has long been replaced by ‘an ensemble of
substates’ that accurately represent the native state [25]. To shed light into the
mechanism of evolution and study how evolution shapes the native ensemble,
we have developed a method called dynamic flexibility index (DFI) analysis

© 2018 The Author(s) Published by the Royal Society. Al rights reserved.
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[33]. DFI is a position-specific measure that quantifies the resili-
ence of a given position (amino acid) to the perturbations
occurring at various parts of the protein using linear response
theory. Hence, it mimics the multidimensional response when
the protein’s conformational space is probed upon interaction
with small molecules or other cellular constituents. The DFI
is related to a given site’s relative contribution to the
conformational entropy of the protein. Because it is a
position-specific metric, it also allows us to quantify the
change in flexibility per position throughout evolution. The
DFI identifies flexible and rigid positions within the three-
dimensional interaction network of the protein structure.
The low DFI sites are rigid sites (i.e. hinge sites) and are
robust to perturbations owing to their interaction network
within the three-dimensional structure. However, they effi-
ciently transfer perturbations to the rest of the protein chain,
similar to joints in a skeleton. Thus, they play a critical role
in conformational dynamics, and usually correspond to func-
tionally critical, conserved sites in a protein [33]. On the other
hand, high DFI sites are flexible, thus mutations/substitutions
on these highly flexible sites are more acceptable. Our earlier
work of DFI analysis on over 100 human proteins has shown
that there is a strong positive correlation between DFI and
evolutionary rates. This demonstrates that rigid sites are
more conserved while highly evolving sites correspond to
sites with high flexibility [33]. DFI analysis of evolution of
different protein families including GFP proteins [34], 3-lacta-
mase inhibitors [12] and nuclear receptors [35] has shown that
alteration of conformational dynamics through allosteric
regulations leads to functional changes. Furthermore, our
site-specific dynamics-based metric, dynamic coupling
index (DCI), reveals that enzymatic function is regulated by
dynamically coupled residues, which form an allosteric com-
munication network with the active sites. Evolution uses
substitutions on these sites to regulate dynamics of the active
sites and binding interfaces [34,36].

Here we analysed the evolution of thioredoxin (THRX).
THRXs are versatile, small globular protein molecules com-
prising about 108 amino acid residues. They belong to a
class of oxidoreductase enzymes present in all living organ-
isms from Archaebacteria to humans. These are labelled
as the ultimate moonlighting proteins with functions as ubi-
quitous as being a reducing agent for other proteins in
biological reactions [37,38].

THRXs from Archaea to humans share about 27-69%
sequence similarities and a common three-dimensional fold
with a central B-sheet core surrounded by four o-helices
[13,39]. The structure of the reduced and oxidized states of
THRX has been studied extensively over the last few decades.
Their structures contain a highly conserved functional
site comprising of two neighbouring redox-active cysteines,
Cys-Gly-Pro-Cys (CGPC) [40,41]. The cysteines participate
in various redox reactions. The protein is maintained in its
reduced state with its functional site having two thiols with
cysteines using another class of reducing agents called
thioredoxin reductases (ThxRs) like nicotinamide adenine
dinucleotide phosphate, flavin adenine dinucleotide (FAD),
etc. [38,40,42]. The reduced state of THRX facilitates the
reduction of the target protein while turning itself into an oxi-
dized state with a disulfide bond between its two functional
cysteines. Although the oxidized state and the reduced state
of the protein are very similar to each other in their fold
(with most of the differences localized around the disulfide

Figure 1. Cartoon representation of AECA THRX. The active sites, (GPC, are
shown in stick representation; the [3-strand, 35, is shown in purple; and the
a-helices, a3 in orange and o4 in blue.

active site), chemical denaturation [43] and thermal [44,45]
unfolding experiments suggest that THRXs are more stable
in their oxidized state. The mutagenesis analyses of THRXs
have shown that the C-terminal a-helix, a4, is known to
play a critical role in the folding kinetics of the protein [46].
A shorter helix, a3, has been identified as important for
the thermal stability of the fold, having several stabilizing
mutations [47]. The central core with B-strand B5 acts like a
bridge for interaction between the two o-helices [47]
(figure 1).

Despite a significant difference in the sequences between
ancestral and extant enzymes, the ancestral THRXs, which
existed almost 4 billion years ago, display the canonical THRX
fold with only minimal structural changes [3,39,48]. However,
during 4 billion years of evolution, the stability of THRXs has
decreased to adapt to the cooling temperatures of the Earth
(in mesophilic lineage). Moreover, the catalytic rates of ancestral
THRXSs at low pH are different from those of extant ones.

In summary, THRXs achieved adaptation to a cooler and
less acidic Earth by altering their stability and changing their
catalytic rates while maintaining the same three-dimensional
fold. To provide insights into how variation in sequence
alters stability and function while conserving the three-dimen-
sional structure, we explore how the native state ensemble has
evolved throughout evolution of THRX. To this aim, we per-
formed 1-ps-long molecular dynamics simulations for all
ancestral and extant THRXs, and obtained their DFI profiles.
Compearison of the DFI profiles between ancestral and extant
THRXs on each branch shows a common pattern. The a3
helix, which contributes the most to stability, exhibits enhanced
flexibility in modern THRXSs, correlating with the decrease in
stability observed in modern enzymes. The increased flexibility
of a3 was also associated with increased rigidity in the a4 helix
along with conserved rigidity of the B-sheet core. This may
have helped to maintain the three-dimensional fold through
the evolution of THRXs. The clustering of the DFI profiles of
all nine THRXs and mapping that onto a two-dimensional
landscape of experimentally measured stability and catalytic
rates suggest that the native ensemble of THRXs holds the
clue to adaptation at a cooler ambient temperature and lower
acidic environment.
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Figure 2. (artoon representations of ancestral and extant THRXs from bacterial thioredoxins LBCA and E. coli THRX, respectively, colour coded with their DFI profiles.
Red sites are the most flexible and blue sites are the least flexible (i.e. rigid). We observe a shift in the flexibility profiles of the helices «3 and 4 through evolution
owing to changes in thermal stability. By contrast, the [3-sheet core remains rigid throughout evolution, highlighting its importance in mediating the interaction

between o3 and o4 helices necessary for the THRX fold.

2. Results and discussion

(a) The change in dynamic flexibility index profiles
provides insight on decrease in melting

temperatures during evolution of THRX
We note a marked difference between the flexibility profiles of
the ancestral and extant THRXs, particularly the flexibilities of
helices a3 and a4. Through mutagenesis analysis it has been
shown that disruption of a3 impacts the overall stability of
the THRXs [47]. Interestingly, we observed the enhancement
in the flexibility of a3 in Escherichia coli (figure 2).

DFI profile comparison between LBCA and E. coli
(figure 2) shows flexibility—rigidity compensation between
the a3 helix and the a4 helix. Specifically, we note that the
a3 helix in E. coli has substantially higher DFI values when
compared with LBCA, while the opposite is seen in the a4
helix. However, the core region of the B-sheet does not
show any noticeable alteration in flexibility between E. coli
and LBCA apart from a slight enhancement in rigidity of
the B5 B-strand.

These observations can be further correlated with the
measured differences in stability due to differences in amino
acids in these regions. After performing a sequence alignment
between E. coli, LBCA and LPBCA, we note that the ancestral
protein LPBCA (close homologue of LBCA) has a critical
mutation, P68A (E. coli position 68 versus the LPBCA aligned
position), in the a3 helix region when compared with E. coli.
This substitution is typically stabilizing [47]. In the context
of two other critical mutations, G74S and K90 L, seen in
LPBCA, it has been hypothesized that the a3 helix may tilt
towards arginine (R) 89 (another mutation in LPBCA), allow-
ing for a strong charge—dipole interaction [47]. However, E.
coli THRX does not allow such favourable interactions owing
to the different amino acids in these positions. Particularly,
89 is threonine (T) instead of arginine (R) in E. coli. Thus, the
loss of this favourable interaction may explain the lowered
stability of E. coli THRX and the enhanced flexibility of the
a3 helix as evident from their DFI profiles.

We tested this hypothesis in the context of LBCA. Similar
to LPBCA, we note that LBCA also has all the three critical
mutations, i.e. P68A, G74S and K90 L. Furthermore, after

alignment, we see that position 89 has a positively charged
amino acid, lysine, in LBCA.

Motivated by these similarities between LBCA and
LPBCA, we further analysed the relative orientation between
the a3 helix dipole and the side chain of lysine (K) (at the
equivalent of position 89) in LBCA. We observed that the
relative orientation between the a3 helix dipole and K89 (as
seen in sequence alignment) is more rigid in LBCA (electronic
supplementary material, figure SI-1), whereas T, at position
89 in E. coli, has a fluctuating orientation with the a3 helix
(electronic supplementary material, figure SI-1). This differ-
ence indicates that a favourable interaction between the
charge and the dipole (of the a3 helix) may be operative in
LBCA—similar to LPBCA—and responsible for the higher
stability of LBCA and also the rigidity of its a3 helix when
compared with E. coli THRX.

Turning our attention to the a4 helix, guided by mutagen-
esis experiments [47], we again noted a set of key mutations
between E. coli and LPBCA responsible for folding stability
differences between the two proteins. For example, S95P and
Q98A—both occurring near the end of the o4 helix in
LPBCA—cause a reduction in stability. It has been hypo-
thesized that both the serine (S) and glutamine (Q) in E. coli
may stabilize the loop connecting the a4 helix and the B5
B-strand by possibly using dipole—dipole interactions. How-
ever, upon mutating to alanine (A) (for Q98A) and proline
(P) (for S95P) in LPBCA, these dipolar interactions are lost,
causing a decrease in stability and consequently high flexi-
bility. A second set of mutations, L94Q and F102R (also
present in the a4 helix region), in LPBCA have been further
implicated to lowering the melting temperature by possibly
destabilizing the hydrophobic network between the a4 helix
and the B5 B-strand [47]. All these mutations are also present
in LBCA, as determined by the sequence alignment, apart
from L94R, present in LBCA, instead of L94Q in LPBCA.
This suggests that the same physical principles, i.e. loss of
charge—dipole or dipole—dipole interaction and / or disruption
of the hydrophobic network, may be responsible for the higher
flexibility of the a4 helix in LBCA compared with E. coli, as
observed by DFI analysis.

Similar changes, particularly the compensation for the
change in DFI profiles of the a3 and o4 helices, have also been
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Figure 3. (a) Comparison of the coupling of catalytic sites (CGPC) in ancestral THRX (AECA) with extant human THRX using a percentile ranking of the dynamic
coupling index (%DCI). We observe a striking difference in the couplings of the o3 region in the respective proteins with their corresponding active sites, suggesting
their role in altering catalytic rates. This difference can also be visualized on the cartoon representations (b) of AECA and human THRXs where red represents sites
highly coupled to the active sites, CGPC (grey spheres) and blue as sites with no significant coupling.

observed in the evolutionary branch of human THRXs when the
DFI profiles of AECA THRX and human THRX were compared
[47] (electronic supplementary material, figure SI-2). Overall,
based on the mutagenesis analysis [47] and DFI comparison
between ancestral and extant THRXs, a plausible mechanism
of how THRX has evolved to lower stability is suggested.
While the increased flexibility of the o3 helical region achieved
a decrease in stability to adapt to cooler ambient temperatures,
the rigidity conservation of the core and increased rigidity in
helix a4 ensured conservation of the canonical THRX fold
throughout evolution. The proposed mechanism should be
further verified with experimental analysis in the future.

(b) Dynamic coupling of the active site alters
throughout evolution

Comparison between the catalytic rates of the last ancestral
THRX and their extant variant on each branch in phylogeny
shows that the kinetic rates of disulfide bond reduction have
decreased during the evolution at pH 5 [3]. Particularly, in
the human branch, there is an approximately six-fold decrease
in the kinetic rates between its first ancestor, AECA, and the
modern-day Human THRX. Our earlier work on protein evol-
ution shows that nature uses distal sites that are dynamically
coupled with the active sites to control the active site’s
dynamics [49-51]. Thus, we analysed how the DCI (see
Material and methods for the definition) of the active site
changed during THRX evolution (figure 3a).

Interestingly, we observed that the dynamic coupling of
the o3 helix with the active site has decreased drastically
between the ancestral and extant THRXs in the human
branch (figure 3a,b). We noted the same difference between
the ancestral and extant THRXSs in the E. coli branch (electronic

supplementary material, figure SI-3). Previous studies have
also shown that the a3 helix is part of the substrate-binding
region and the change in dynamics of this binding region
plays a critical role in the catalytic activity of the protein [52].
Thus, the decrease in the allosteric dynamic coupling of the
a3 helix region with the catalytic site may be linked with the
lowered activity observed in modern-day THRXs. However,
careful mutagenesis experiment is needed to conclusively
prove or disprove this hypothesis.

(c) The variance in dynamic flexibility index profile
distribution correlates with change in melting
temperature

DFI analysis of an ancestral versus extant THRXs in the E. coli
and human branches provides insight on how the ‘fine-tuning’
of flexibility profiles of some functionally important structural
features is used during evolution. Comparing the distribution
of flexibility of various residue positions in ancestral THRXs
with the extant ones can additionally reveal information
about the change in their native landscape through evolution.
The distribution of the flexibility of residues in each THRX
protein is obtained by binning the residues according to their
DFI scores (figure 4).

Interestingly, the distribution of the DFI profile for the
4-Gyr-old THRX (LBCA) differs from that of extant THRX
(E. coli) (figure 4a,b). The high flexibility tail region of the
distribution gets more populated in modern THRXs. Like-
wise, the probability density at low DFI has also increased
in THRX of modern organisms, representing a gain of high-
flexibility and low-flexibility regions during evolution. This
behaviour was observed not only in the bacterial but also
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Figure 4. The distributions of DFI profiles in the ancestral and extant THRX proteins belonging to the ancestor of the bacterial branch, LBCA (a), evolving to E. coli
(b), and the ancestor of the human branch, AECA (c), evolving to extant human THRX (d). We observe that through evolution the residues populate low-flexibility
and high-flexibility regions in the distribution, making it wider. The fraction of residues populating high-flexibility (DFI greater than 0.02) regions increased in E. coli

from 0% to approximately 4% and in humans from 1% to 4%. (Online version in colour.)
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Figure 5. (a) The variance in distribution of the flexibility profiles in ancestral and modern-day THRX proteins is observed to correlate strongly with their melting
temperatures [8], R = —0.86, indicating the implication of flexibility profiles in their thermostability. (b) The variance in DFI distributions is observed to increase
with evolution [8] and is strongly correlated with the time of evolution of the proteins, R = 0.77. (Online version in colour.)

in the human branch of THRX’s evolutionary tree
(figure 4c,d). The redistribution of flexible sites in THRX
structures helps proteins ‘fine-tune’ their activity in accord-
ance with the functional requirement.

This characteristic pattern of increasing ‘width’ of the dis-
tributions with evolution is further supported by the high
correlation between the variance of the DFI distributions of
THRX proteins and their corresponding melting tempera-
tures  (correlation, R=—-086 and p=32x 1073)
(figure 5a). In addition, because the decreasing melting temp-
erature correlates with the evolution time, we also note
significant correlation between the evolution time of THRX
proteins and their variance in DFI distributions (correlation,
R=0.77 and p = 1.6 x 10~ ?) (figure 5b).

Overall, this result is in agreement with our previous
results [12,34] that evolution shapes the conformational land-
scape of the native state. We observed two major changes in
DFI distributions consistent in all branches. First, the DFI pro-
files change as the sequences evolve. Second, the probability

distributions at the beginning (ancestral sequences) are more
compact, having a higher probability towards mid- to high
DFI values. This type of distribution ensures evolvability
through mutation of various flexible positions in the protein
because flexible sites typically correspond to highly evolving
residues [53-55]. On the other hand, as we get closer to the
modern enzymes, the distribution widens. There is an increase
in the probability of the low DFI range along with a longer tail
of high DFI values. In other words, a well-distributed set of
very rigid and very flexible sites could be an evolutionary
mechanism to adapt to low temperature and/or adjust to
functional need.

(d) Dynamic flexibility index captures the functional

evolution in thioredoxin
To test how the DFI profiles of nine THRXSs capture the change
in function throughout evolution, we clustered their DFI
profiles using PCA analysis (see Material and methods). The

¥8LOLLOT :€LE g 205 Y "suvi] fiyd  Bio'buiysijgndiraposiedor gisi H


http://rstb.royalsocietypublishing.org/

Downloaded from http://rstb.royalsocietypublishing.org/ on August 1, 2018

~
Q
=

»
o

N
W

N
=

highly|stable

distance

lessfactive

._.
)]

moderately stable/

moderately active

—
=]

marginally stable

low activity
highly active

o
W

N
7

(e}
E. colim—

”
\,
S

)
4.0
351 AECA - i
3.0 -
L moderately highly stable
= marginally| stable
~ 25 stable —
= L
20 i
151 .
FBCA @
E. coli
1.0 e . L z .
5 10 15
AG (kT)
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and change in free energy of folding AGaing [56] (b). The two clustering criteria give similar results as they segregate the nine THRX proteins based on their

activities and thermal stability.

THRXSs that clustered together in accordance with the simi-
larities in their flexibility profiles (figure 6a) also exhibit
similar rate constants for disulfide bond reduction obtained
from single-molecule experiments [3]. For example, ancestral
THRXs LACA and AECA, belonging to the Archaea branch,
have very high rate constants. Consistently, DFI clustering
arranges them in the same group. On the other hand, LBCA
THRX, from the bacterial branch, which evolved around the
same period as AECA (around 4 billion years ago), is in a
different cluster with LPBCA and LGPCA. LBCA, LPBCA
and LGPCA all have much lower rates for disulfide bond
reduction than those of LACA and AECA. Interestingly,
human, LAFCA and LECA THRYX, all grouped together in a
common cluster, share similar kinetic rates of disulfide bond
reduction. We also note E. coli, having the lowest reduction
rate of all other THRXSs, is clustered in a separate group
(figure 6a).

While the above argument clearly explains subclasses, the
clustering also raises a question about merging different sub-
groups to bigger groups. For example, how do we rationalize
that the LACA-AECA dyad is grouped in the same class
(red) with the triad LGPCA, LPBCA-LBCA in spite of the
two subclasses having widely different catalytic rates? Interest-
ingly, we note LACA, AECA, LGPCA, LPBCA and LBCA are
all highly stable compared with the triad LAFCA, human
and LECA. Thus, DFI-based classification can be best under-
stood by both catalytic rates (keat M ts™Y) [3] and free
energy of folding [56]. It is interesting to note that although
DFI solely uses the native state ensemble, it can successfully
sculpt the landscape in these two coordinates (figure 6b).
Based on stability and catalytic activity, THRXs can be grouped
into three broad categories: (i) highly stable agents (AECA and
LACA with high activity; LBCA, LPBCA and LGPCA with low
activity), (i) moderately stable agents (human, LAFCA and
LECA) with moderate catalytic activity and (iii) marginally
stable, low catalytic activity (E. coli) (figure 6a,b).

In summary, clustering solely based on DFI profiles suc-
cessfully captures the clustering based on catalytic rates and
stability. This suggests that evolution shaped the native state
ensemble of THRXs to adapt and function at cooler tempera-
tures and lower acidic ambient conditions. It is also in
agreement with our previous analysis on protein evolution
[12,50], highlighting that evolution exploits native state
conformational dynamics to alter function.

3. Conclusion

Despite the significant structural similarities between ancestral
and extant THRXSs, they evolved towards lower stability and
kinetic turnover rates. To gain insights into the underlying mol-
ecular mechanism, we explored how changes in the native state
ensemble might have impacted the evolution of THRX pro-
teins. To do this, we compared the difference in their DFI
profiles. The enhanced flexibility of the a3 helix in the extant
proteins, compared with their ancestral counterparts, is com-
pensated by the decrease in flexibility of the a4 helix and may
be responsible for lowering their stability to adapt to cooler
ambient temperatures, while keeping the fold conserved. We
further noted that the dynamic coupling of important positions
with the catalytic site has changed during evolution. Particu-
larly, the decrease in allosteric dynamic coupling of the a3
helical region—critical in substrate binding—with the catalytic
site in extant THRXs may be associated with the decrease in cat-
alytic activity at lower acidic conditions.

Compearison of the distribution of the flexibility of residues
between ancestral and extant proteins revealed that the popu-
lation density of high- and low-flexibility sites increases as they
evolve. These common features observed in evolution suggest
a ‘fine-tuning’ of their native ensemble to adjust to ambient con-
ditions in accordance with the evolution in their function. The
high correlation between the variance of flexibility distribution
of proteins and their melting temperature quantitatively
supports this hypothesis.

In addition, clustering these proteins based on their flexi-
bility profiles closely matches grouping using their kinetic
rates of disulfide bond reduction and thermal stability. These
observations, in agreement with our previous results, highlight
that nature uses native state conformational dynamics to adapt
and evolve.

4. Material and methods

(a) Molecular dynamics simulation protocol

All starting structures were taken from the Protein Data Bank using
the respective accession numbers for the proteins LBCA (4BA7?),
AECA (3ZIV), LAFCA (2YPM), LECA (2YOI), LACA (2YNX),
LGPCA (2YN1), LPBCA (2Y]7), E. coli (2TRX) and human
(1ERU) THRX [57-59]. Next the H++ web server was used to pre-
dict the protonation state of the histidine side chains [60—62]. The
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refined structure was then loaded into TLEAP using the ff14SB
force field [63]. The disulfide bond was kept in the oxidized
state. Protein hydrogens were then added and a 9.0 A cubic box
of TIP3P surrounding water atoms was added, followed by neutra-
lizing ions [64,65]. Systems were then energy-minimized using the
SANDER module of AMBER 14 [66—68]. The first cycle of mini-
mization reduced the energy and steric clashes of the solvent
with the protein restricted using harmonic restraints. The second
cycle of minimization was then performed without the harmonic
restraints, so the entire solution could adjust to the local minimum.

Heating, density equilibration and production were all then
run using the GPU-accelerated PMEMD module of AMBER 14
[68]. These simulations were performed with periodic boundary
conditions and the bond lengths of all covalent hydrogen bonds
were constrained using SHAKE [67]. Direct-sum, non-bonded
interactions were cut off at 9.0 A, and long-range electrostatics
was calculated using the particle mesh Ewald method [69-71].
The heating phase ran over 100 ps from 0 to 300 K. The density
of the system was then allowed to equilibrate over 5 ns at constant
temperature and pressure. All production simulations were run
using the Langevin thermostat and Berendsen barostat to keep
temperature and pressure, respectively, constant. A timestep of
2 fs was used and structural conformations were saved every
10 ps. All simulations were allowed to progress to 1 ps of total
simulation time, deemed the minimal required simulation time
for convergence based on our earlier study [72].

(b) Dynamic flexibility index

DFI measures the amount of resilience a residue experiences
in response to perturbations in the rest of the protein. The dynamic
response profile of the protein is explored using the perturba-
tion response scanning (PRS) technique [73,74]. The original
approach is based on the elastic network model (ENM) in which
the nodes represent Ca atoms [54,75] and the pairwise potential
between each atom is given by the potential of a harmonic
spring. A small perturbation in the form of random Brownian
kick is applied sequentially to each Co atom in the elastic network.
As a first-order approximation, this perturbation mimics the forces
exerted by an approaching protein or a ligand in a crowded cellular
environment. The perturbations on a single residue result in a
cascade of perturbations to all other atoms in the network, indu-
cing a global response. The fluctuation response profile of the
positions upon perturbation of a single residue is obtained using
linear response theory and given by the equation

ARsn1 = Hap,an Fans, (5.1)

where H is the Hessian matrix, a 3N x 3N matrix composed of the
second-order derivatives of the harmonic potential with respect to
the components of the position vectors for the chain of length N,
giving the position covariance of the residue pairs in equilibrium,
F is the external unit force vector applied at N residues in the
protein and AR is the response of the force. The force is applied
in all the directions at each residue and the magnitude of the
response profile is averaged to give an isotropic measure of
response.

However, a disadvantage of the ENM-based PRS model is
that the coarse-grained network makes it insensitive to changes
arising from the biochemical properties of amino acids. There-
fore, in order to compare the family of THRXs, having similar
back-bone structures, we replace the inverse of the Hessian
with the covariance matrix obtained from molecular dynamic
simulations (discussed in the previous section).

ARsnx1 = GanxanFanxi- (5.2)

Here, G is the covariance matrix containing the dynamic properties
of the system. The covariance matrix contains the data for long-range
interactions, solvation effects and biochemical specificities of all
types of interactions. The DFI is calculated by computing the

fluctuation response of all the residues in a protein (ie.
AR/, i = 1,..N) by applying a unit force (isotropic) as perturbation
at a specific position (i.e. site j) using equation (4.2). We repeat this
single-residue perturbation for all residues (i.e. 1 <j < N) in the
protein. Consequently, the perturbation matrix, A is constructed,

|AR'|, |ARM],
ANxN = : - : , (5.3)
|AR'[y |ARN]

where |AR/ ;i = \/ ((AR)Y* is the magnitude of fluctuation response
at site ‘i’ due to the perturbations at site ‘j’. A sum of a given row
of perturbation matrix gives the net average displacement of the
residue from its equilibrium position when all the residues are
perturbed by an isotropic unit force one at a time. The DFI score of
a position ‘i’ is defined as the net response of that position normal-
ized with the net displacement of the whole protein when all the
residues are perturbed, i.e.

YL AR
Yy Y AR,

Thus, a higher DFI score of a residue position ‘i’ implies a more flex-
ible site and a low score implies a rigid site with lower response to
perturbations in the protein.

Recently, we have extended this method to identify dynamic
coupling between any given residue and functionally important
residues by introducing a new metric called the DCI. The DCI
metric can identify sites that are distal to functional sites but
impact active-site dynamics through dynamic allosteric coupling
[49,50,76]. This type of allosteric coupling is important; sites
with strong dynamic allosteric coupling to functionally critical
residues (dynamic allosteric residue coupling (DARC) spots),
regardless of separation distance, also contribute to the function.
Thus, a mutation at such a site can disrupt the allosteric dynamic
coupling or regulation, leading to functional degradation. As
defined, the DCT is the ratio of the sum of the mean square fluctu-
ation response of the residue ‘i’ upon functional site perturbations
(i.e. catalytic residues) to the response of residue ‘i’ upon pertur-
bations on all residues. DCI enables us to identify DARC spot
residues, which are more sensitive to perturbations exerted on resi-
dues critical for function. This index can be used to identify the
residues involved in allosteric regulation. It is expressed as

Z]I_\lfundimal | AR |;/Niunctional
S |AR/N

DFI; = (5.4)

DCI; = , (5.5)

where |AR/|;is the response fluctuation profile of residue ‘i’ upon per-
turbation of residue ‘j’. The numerator is the average mean square
fluctuation response obtained over the perturbation of the function-
ally critical residues Nfunctional, and the denominator is the average
mean square fluctuation response over all residues. Similar to DFI,
the DCI profiles can also be computed using the covariance matrix
obtained from molecular dynamics simulations or the inverse
Hessian of the ENM. In this study, we used the covariance matrices.

(c) Clustering the DFI profiles of thioredoxin proteins

We clustered the DFI profiles of different extant and ancestral
THRXs by comparing their percentile rankings. To compare the
flexibility profiles, the proteins are aligned according to their mul-
tiple sequence alignment and are concatenated into a data matrix
X. Singular value decomposition (SVD) is a statistical procedure
to factorize the data into the orthonormal basis, which represents
the vector space containing data. It is similar to principal com-
ponent analysis which could be used to understand the structure
of data or to increase the signal-to-noise ratio in data by eliminating
the redundant dimensions and mapping it on a lower-dimensional
space. Clustering by SVD acts as an effective noise filter by isolat-
ing the highest variances among data points in the top principal
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vectors. Consequently, the remaining insignificant singular vectors
can be omitted from the reconstruction.

The DFI profiles of all proteins are merged into a matrix X, of
dimensions (m x n). Here m is the number of datasets (proteins) we
are clustering together, each having # number of attributes (number
of residues). On performing SVD, X is decomposed as follows:

[X]mxn = [U]mxm[z]mxn[v]nxn (56)

Here, Uand Vare unitary matrices with orthonormal columns and are
called left singular vectors and right singular vectors, respectively, and
3 is a diagonal matrix with diagonal elements known as the singular
values of X.

The singular values of X, by convention, are arranged in a
decreasing order of their magnitude; o= {03} represent the var-
iances in the corresponding left and right singular vectors. The
set of highest singular values representing the largest variance in
the orthonormal singular vectors can be interpreted to show the
characteristics in the data X and the right singular vectors create
the orthonormal basis which spans the vector space representing
the data. The left singular vectors contain weights indicating the
significance of each attribute in the dataset as w; = 3 _; oy |ul.
Using these features of the decomposed singular vectors, we can
create another matrix, X* using only the highest ‘v’ singular
values which can mimic the basic characteristics of the original
dataset. Thus, X* can be represented as

[X*]mXT = [V*]inXT[E*ITXT' (5'7)

Here, 3" contains only largest r singular values and V* contains the
corresponding right singular vectors. The data are now clustered
hierarchically based on the pairwise distance between different
proteins in the reconstructed DFI data with reduced dimensions.

For a pair of datasets (or between flexibility profiles of any
two proteins) j; and j, the distance between them in the original
set of data was given by

o= | S (X - XY, (5.8)

i=1
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which in reduced dimensions can be calculated as

o =[S0 - X)) (5.9)
i=1

These pairwise distances are used as the parameters for
clustering the flexibility profiles of THRX. We calculated the mul-
tiple sequence alignment of ancestral and modern THRXs. The
DFI profiles are aligned with respect to LBCA, taking into con-
sideration the gaps in sequences of other THRX proteins, and
the data are clubbed into a dataset matrix X. The three largest
singular values are used for reconstruction of data and cluster-
ing. The pairwise distance between each protein using the
equation above is used for clustering them hierarchically.

A bottom-up approach is used for the hierarchical clustering,
where initially each protein is assigned its own cluster and then,
in successive iteration, closest clusters are merged together into a
common cluster. In this approach, the distance between clusters
is defined by the average pairwise distance between their
components (average linkage clustering [77]). In the end, the
clusters are represented hierarchically using a dendrogram,
where the vertical axis denotes the Euclidean distance between
various clusters and among their sub-clusters.
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