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Abstract—In this paper, a novel machine learning (ML)
framework is proposed for enabling a predictive, efficient
deployment of unmanned aerial vehicles (UAVs), acting as aerial
base stations (BSs), to provide on-demand wireless service to
cellular users. In order to have a comprehensive analysis of
cellular traffic, an ML framework based on a Gaussian mixture
model (GMM) and a weighted expectation maximization (WEM)
algorithm is introduced to predict the potential network conges-
tion. Then, the optimal deployment of UAVs is studied with the
objective of minimizing the power needed for UAV transmission
and mobility, given the predicted traffic. To this end, first,
the optimal partition of service areas of each UAV is derived,
based on a fairness principle. Next, the optimal location of each
UAV that minimizes the total power consumption is derived.
Simulation results show that the proposed ML approach can
reduce the required downlink transmit power and mobility
power by over 20% and 80%, respectively, compared with an
optimal deployment of UAVs with no ML prediction.

I. INTRODUCTION

The demand for cellular data is experiencing an unprece-
dented increase. The next generation, 5G wireless cellular
network is estimated to support a 200 fold increase in wireless
data traffic by 2030 [1]. To cope with this exponential in-
crease in demand, there has been growing interest in network
densification for cellular systems as a means to improve
spectrum efficiency and cellular network capacity.

The need for additional base stations (BSs) is more pro-
nounced in cellular hotspot areas that exhibit a steep surge in
data demands during temporary events, such as concerts and
football games. To satisfy such temporary surges in traffic, the
use of an unmanned aerial vehicle (UAV) as an aerial BS can
be a more flexible and cost-effective approach, compared with
a traditional, ground BS [2]. A mobile UAV can intelligently
change its position, which is suitable to provide on-demand
wireless service to ground users, thus overcoming coverage
holes and alleviating congestions [3].

In order to deploy UAVs in a timely and flexible manner,
network operators must be able to predict potential hotspots
and congestion events a priori. To this end, there is a need to
apply machine learning (ML) techniques to analyze demand
patterns [4]. The ability of ML to exploit big data analytics
enables a comprehensive prediction of a network’s traffic
amount and data distribution. By using such predictions,
aerial UAV BSs can be optimally deployed to the target
area beforehand thus providing an on-demand, delay-free and
power-efficient wireless service to ground users.

The use of UAVs as cellular BSs has been addressed in [3],
[5]–[7]. Deploying UAVs to optimize downlink coverage is
studied in [5]. Meanwhile, in [3], the authors studied the use
of UAVs as flying BSs to provide energy-efficient service to
wireless users. Moreover, the work [6] focuses on using UAVs
as relays, and the work in [7] studies an energy-efficient tra-
jectory design. However, most of the existing works assume
a time-invariant wireless network, or a given distribution of
cellular users. To properly analyze an on-demand deployment
of UAVs, the temporal and spatial patterns of the cellular
traffic data must be predicted so as to optimally deploy UAVs
to satisfy a time-varying data demand.

There are existing woks, such as [6], [8], and [9], that
apply ML techniques to optimize UAV deployment. In [6], a
neural model is formulated to study the map of UAVs to
each hotspot areas. The authors in [8] studied the trajec-
tory optimization using neural networks, while a segmented
regression approach is proposed in [9] for UAV channel
modeling, based on the terrain topology. However, none of
these works demonstrates the benefit of applying ML to
deploy UAVs on-demand and improve power efficiency and
network performance. In order to analyze the data traffic of
cellular networks, the authors in [10] studied a BS sleeping
strategy for minimizing power consumption. However, the
authors focused only on a low-traffic cellular network, which
is not scalable for the more practical, congested scenarios.

The main contribution of this paper is a novel machine
learning framework that enables operators to predict conges-
tions and hotspot events, and subsequently, deploy tempo-
rary UAV BSs to provide aerial wireless service to mobile
users, while minimizing the UAV power needed for downlink
communications and mobility. We consider a heterogeneous
cellular network, in which ground BSs can offload the
wireless service to aerial UAVs when the predicted data
demand of mobile users exceeds the network capacity. To
guarantee a no-delay wireless service, a Gaussian mixture
model (GMM) is introduced based on a weighted expectation
maximization (WEM) algorithm [11] to predict the cellular
data traffic. Then, the optimal deployment of UAVs is studied
to minimize the power needed for UAV transmission and
mobility, given the predicted traffic. To this end, we first study
the division of service areas, based on a fairness principle.
Then, we derive the optimal UAV locations that can minimize
the total power consumption of the network. To the best of
our knowledge, this is the first work that leverages ML to



predictively deploy UAVs as aerial BSs. Simulation results
show that the proposed ML approach can reduce the required
downlink transmit power and mobility power by over 20%
and 80%, respectively, compared with an optimal deployment
of UAVs with no ML prediction.

The rest of this paper is organized as follows. Section II
presents the system model and problem formulation. Section
III outlines the proposed ML and UAV deployment frame-
work. Simulation results are presented in Section IV, while
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a time-variant heterogeneous cellular network
that serves a group of cellular users distributed in a geo-
graphical area A. The cellular network consists of a set I of
I UAVs and a set J of J BSs. Each user can receive data
from both ground BSs and UAVs. Initially, a traditional BS
will be chosen to serve the wireless users. However, if the
downlink of the ground cellular system is overloaded due to
heavy traffic, the ground BS will request the deployment of
UAV BSs to offload some of its users.

Ground BSs and UAVs employ different frequency bands
for downlink communications. Each UAV is equipped with
directional antennas that enable beamforming. Therefore,
interference among UAVs is negligible. Furthermore, each
UAV adopts a frequency division multiple access (FDMA)
technique and assigns a dedicated channel to one of its
downlink users. Hereinafter, we use the notion of an aerial
cell to indicate the service area of each UAV, and aerial
cellular users to indicate users that are served by UAV
cellular BSs.

Each UAV has a limited energy resource, that must be
efficiently used for joint communications and mobility. To
this end, the UAVs should intelligently change their positions
to meet the required users’ data rates, as well as to minimize
their transmission power. However, given the cellular network
is time-variant, the cellular traffic demand will change over
time, which complicates the efficient deployment. To guaran-
tee timely aerial service without having UAVs continuously
moving, the network operator can use ML techniques to
predict its network’s data demand, and then, request the
deployment of UAV BSs to the predicted hotspot areas, before
the congestion occurs.

A. Air-to-ground channel model

Given a typical ground receiver located at (x, y) ∈ A and
a UAV i ∈ I located at (xi, yi, hi), the path loss of the
downlink communication from UAV i to the receiver will be
[12]:

Li(x, y)[dB] = 20 log

(
4πfcdi(x, y)

c

)
+ ξi, (1)

where di(x, y) =
√

(x− xi)2 + (y − yi)2 + h2i is the dis-
tance between the ground receiver and UAV i, fc is the
carrier frequency, c is the speed of light, and ξi is the average
additional loss to the free space propagation loss which
depends on the environment. If the wireless link between

UAV i and a ground user is line-of-sight (LOS), ξLOS
i ∼

N(µLOS, σ
2
LOS); otherwise, the non-line-of-sight (NLOS) link

has an additional loss of ξNLOS
i ∼ N(µNLOS, σ

2
NLOS). The

NLOS link will experience a high path loss due to shadowing
and reflection. The probability of existence of LOS links
between UAV i and the ground user will then be [12]:

pLOS
i (x, y) =

1

1 + a exp
(
−b[ 180π θi(x, y)− a]

) , (2)

where a and b are constant values which depend on the envi-
ronment, and θi(x, y) = sin−1( hi

di(x,y)
) is the elevation angle

of UAV i with respect to the receiver. Then, the probability
of having a NLOS link is pNLOS

i (x, y) = 1− pLOS
i (x, y) [3].

Consequently, the average path loss from UAV i to the
ground reciever at (x, y) in the linear scale can be given as

L̄i(x, y) = pLOS
i (x, y)LLOS

i (x, y) + pNLOS
i (x, y)LNLOS

i (x, y).
(3)

Therefore, the downlink capacity that UAV i can provide to
a mobile user located at (x, y) will be:

Ri(x, y) = Wi log2

(
1 +

Pi(x, y)Gi(x, y)/L̄i(x, y)

Win0

)
, (4)

where Wi is the transmission bandwidth of UAV i, Pi(x, y)
is the transmission power, Gi(x, y) is the antenna gain of
UAV i, and no is the average noise power spectral density.
For tractability, we assume a perfect beam alignment between
the UAV and the mobile receiver, and each UAV has the same
antenna gain. Therefore, Gi(x, y) = G, which is a constant
for all i ∈ I and (x, y) ∈ A. Assume that the total available
bandwidth of UAV i is Bi and the number of mobile users
associated with UAV i is Ni, then the downlink bandwidth
of each channel will be Wi = Bi/Ni.

The number Ni of aerial users that are served by UAV i
within its aerial cell is given by:

Ni = N

∫ ∫
Ai

f(x, y) dxdy, (5)

where N =
∑
i∈I Ni is the total number of aerial users, Ai

is the service area of UAV i, and f(x, y) is the distribution
of aerial users. In order to provide a universal wireless
service, the aerial cells of all UAVs should fully cover the
geographical area A without overlap. That is, ∪i∈IAi = A,
and for i 6= j and i, j ∈ I, Ai ∩Aj = ∅. However, note that,
the value of N and the user distribution f(x, y) will change,
according to the offloading requests from ground BSs.

B. Cellular traffic analysis

To provide an on-demand service, network operators need
to change the UAVs’ locations frequently, according to the
offload requests from ground BSs, to satisfy the instant traffic
demand. However, such continuous movement will consume
excessive power. To efficiently deploy UAVs while guaran-
teeing a no-delay wireless service, a dataset of the cellular
traffic history can be exploited by the network operator for



traffic prediction. This dataset, represented by a matrix Q,
records discrete data during each time period T for M days:

Q = [N(x, y, t), D(x, y, t)|∀t ∈ T , (x, y) ∈ A], (6)

where T = {T, 2T, · · · , 24M} is a discrete set of time, and
the unit of T is hour. The first item N(x, y, t) represents the
number of aerial users that are offloaded from a BS at (x, y)
to a UAV during a time interval from t to t + T , and the
second item D(x, y, t) denotes the amount of cellular traffic
that a UAV needs to provide for the aerial users from a BS
at (x, y) during the period from t to t+ T .

Let N be the total number of aerial users, D be the total
amount of aerial cellular traffic, f(x, y) be the spatial distri-
butions of aerial users, and g(x, y) be the spatial distribution
of aerial data traffic in A. Without a comprehensive analysis
of Q, the values of N , D, f(x, y) and g(x, y) will change
over time, based on the offloading requests of ground BSs,
which causes a frequent movement of UAVs to meet the
instant traffic demand, and excessive power consumed on
mobility.

Therefore, our goal is to develop a centralized ML ap-
proach to predict N and f(x, y) based on N(x, y, t), and D
and g(x, y) based on D(x, y, t), such that at the beginning
of each period T , network operators can optimally deploy
UAVs to minimize the power consumptions, while during
each interval the locations of UAVs remain fixed.

C. Data rate requirement
Given the predicted information on the total amount of

aerial cellular traffic D, and the distribution of aerial cellular
traffic g(x, y), the average data rate requirement within a
service area Ai of UAV i can be given by

αi =
1

T

∫ ∫
Ai

D · g(x, y) dxdy. (7)

Since the communication capacity of UAV i should be greater
than or equal to the rate demand of all users in its aerial cell
Ai, we formulate the data rate requirement as follows,∫ ∫

Ai

Ri(x, y) dxdy ≥ αi, (8)

i.e.,

Ri(x, y) ≥ Dg(x, y)

T
. (9)

We define β(x, y) = Dg(x,y)
T as the average minimum data

rate requirement for the aerial user at (x, y). Based on (4) and
(9), the minimum transmit power that UAV i should provide
to communicate with the user at (x, y) will be:

Pmin
i (x, y) =

Bin0L̄i(x, y)

GNi

(
2β(x,y)Ni/Bi − 1

)
. (10)

Note that, the values of Ni and β(x, y) in (10) will depend
on the output of the cellular traffic analysis.

Consequently, the total transmit power of all UAVs needed
to satisfy the data demand of all aerial users in A will be:

Pc =
∑
i∈I

∫ ∫
Ai

Pmin
i (x, y) dxdy. (11)

Without loss of generality, we assume that the maximum
transmission power of UAVs is sufficient to meet the data
demand of aerial users. Meanwhile, the total power for each
UAV i ∈ I to move from its current location (xoi , y

o
i , h

o
i ) to

the new location (xi, yi, hi) will be:

Pt = γ
∑
i∈I

[
(xoi − xi)2 + (yoi − yi)2 + (hoi − hi)2

] 1
2 , (12)

where γ is the rate of energy consumption a UAV needs to
move by one meter.

Then, the second objective is to jointly find the optimal
location and the partition of the service area Ai for each
UAV i ∈ I, such that the total power used for downlink
transmissions and mobility can be minimized, i.e.,

min
Ai,xi,yi,hi

Pc + Pt, (13a)

s. t.

∫ ∫
Ai
Pmin
i (x, y) dxdy

P a
i

= κ,∀i ∈ I, (13b)

∪i∈I Ai = A, (13c)
Ai ∩ Aj = ∅,∀i 6= j ∈ I, (13d)

where P a
i is the available power of UAV i, and κ is a

constant for all i ∈ I. The first constraint represents a fairness
principle, whereby the ratio of the data traffic offloaded to
each UAV equals to the ratio of the available power of each
UAV. The second and third constraints guarantee that the
service areas of all UAVs fully cover A without overlap.

Note that, without an ML analysis, the function Pmin
i , as

well as Pc, will change, based on the offloading requests of
ground BSs. Thus, the network operator needs to reorganize
the aerial cellular system to meet the instant traffic demand
frequently. However, with the predicted information of cel-
lular traffic, the optimal problem (13) is fixed within each
period T . Therefore, at the beginning of each interval, UAVs
are deployed according to the solution of (13), and within
the period, the location and aerial cell of each UAV remain
unchanged.

III. PROPOSED PREDICTION AND UAV DEPLOYMENT
FRAMEWORK

Next, we propose a novel approach to address the afore-
mentioned problems. First, a centralized ML approach will be
proposed to predict the values of N , D, f(x, y) and g(x, y)
for each time interval T . With the prediction information,
the power minimization problem in (13) will be solved to
optimally deploy each UAV.

A. Cellular traffic prediction

In order to have a robust and practical analysis, we use the
real dataset 1 of City Cellular Traffic Map [13], which records
the time, the location of each BS, the number of mobile users,
and the total amount of data that each BS serves during each
hour, from Aug. 19 to Aug. 26, 2012, in a median-size city
in China. We assume that the maximum number of mobile
users that each BS can serve within one hour is a fixed

1Our approach can accommodate other datasets without loss of generality.



number of Nm, and the maximum amount of cellular data
is a constant Dm for all BSs. Thus, a new dataset is gen-
erated to capture the traffic of the aerial cellular network as
Q

′
= [N(x, y, t)−Nm, D(x, y, t)−Dm|∀t ∈ T , (x, y) ∈ A],

in which N(x, y, t)−Nm is the number of aerial users from
hour t to t+ 1, and D(x, y, t)−Dm is the amount of aerial
cellular traffic. For notation simplicity, hereinafter, we use
Q to denote the aerial traffic dataset, instead of Q

′
. Since

N(x, y, t) and D(x, y, t) have an analogous data structure,
a similar approach will be applied to analyze N(x, y, t) and
D(x, y, t). For simplicity, we keep the following discussion
only on D(x, y, t). Therefore, the objective is to use ML to
formulate the temporal and spatial pattern of D(x, y, t).

There are three key assumptions in the following ML
analysis. First, due to the periodicity of human activity, the
cellular traffic presents a repetitive daily pattern [14]. Based
on this observation, we assume that the total cellular traffic
during a specific hour of different days follows the same
distribution. Therefore, we divide the dataset into 24 subsets,
by merging the data of the same hour from different days.
Second, we assume that the traffic amount between each
hour of one day is independent. Therefore, given the 24 sub-
datasets, 24 independent models will be built to study the
pattern of each objective value of each hour. Furthermore, we
assume that the temporal feature of D(x, y, t) is independent
from the spatial distribution. As a result, two separate models
will be studied to identify the temporal feature D(t) and the
spatial feature g(x, y) of D(x, y, t) for each hour.

The model to capture the temporal and spatial charac-
teristics of D(x, y, t) relies on a GMM, which assumes
that the data distribution can be modeled by the sum of
multiple Gaussians with different weights as [15] p(x) =∑K
k=1 πkN (x|µk,Σk), where x is a general data point, p(x)

is the probability distributed at x, K is the number of
individual Gaussian models in GMM, and

∑K
k=1 πk = 1,

πk ∈ [0, 1] is the mixing coefficient for each Gaussian.
1) Spatial distribution model: First, we study the modeling

approach of the spatial feature g(x, y) of D(x, y, t). Given a
time t ∈ {1, 2, · · · , 24}, the data distribution of the cellular
traffic from t to t+ 1 can be calculated by

gt(x, y) =
D(x, y, t)∫ ∫

AD(x, y, t) dxdy
. (14)

Then, a dataset Gt is formed by all the distribution gt(x, y)
of M days for the specific hour t, and we seek to build a
GMM to capture a pattern of data distribution for time t as

gt(x) =
Kt∑
k=1

πtkN (x|µtk,Σt
k), (15)

where x = (x, y) is the location vector. To find the parame-
ters of Kt, πtk, µtk, and Σt

k, for a given t ∈ {1, 2, · · · , 24},
and k ∈ {1, · · · ,Kt}, first, a classification approach based
on a weighted K-means method is used to group the data x
into K clusters, and the weight D(x, y, t) is the data amount
at x = (x, y). Then, the WEM algorithm with a polynomial
time complexity will be used to find the optimal parameters

Algorithm 1 Proposed algorithm to find parameters of the
spatial distribution model gt(x, y)

Input: Gt for a given t
Output: {πk}, {µk} and {Σk}, for each k ∈ {1, · · · ,K}

Part I: Weighted K-means for parameter initialization
Input: Gt

Output: K, {µk}k∈{1,2,··· ,K}
A. For K = Kmin : Kmax

1. Randomly choose K initial values of {µk}k∈{1,··· ,K},
2. Loop:

a. Calculate the weighted distance of each data point to each µk by
D(x, y, t)|x− µk|,

b. Assign each data point x to cluster k∗, such that
k∗ = argminkD(x, y, t)|x− µk|,

c. Recalculate µk by averaging the values of data points belonging
to cluster k as µk =

∑
Ck D(x, y, t)x/

∑
Ck D(x, y, t),

d. Check convergence: if {µk}k∈{1,2,··· ,K} changes.
B. Choose the value of K that minimizes the ratio of intra-cluster to inter-

cluster distance [15].

Part II: Weighted EM iteration
Input: Gt, K, {µk}k∈{1,2,··· ,K}
Output: {πk}, {µk} and {Σk}, for each k ∈ {1, · · · ,K}
1. Initialize Σk to be an identical matrix, and πk = 1/K.
2. E step: Calculate the posterior probability for each data point xn

belonging to each cluster k by
rnk = πkN (xn|µk,Σk)/

∑K
i=1 πiN (xn|µi,Σi),

3. M step: Recalculate the parameters using the posterior probability rnk

a. µk =
∑N

n=1D(x, y, t)rnkxn/Nk

b. Σk =
∑N

n=1D(x, y, t)rnk(xn − µk)(xn − µk)
T /Nk

c. πk = Nk/K
where Nk =

∑N
n=1D(x, y, t)rnk .

4. Check the convergence by (16). If not converged, return to E step.

of GMM. The convergence of the WEM iterative approach
can be evaluated by the log likelihood function as [14]

lnL(Σ,µ, π) =
∑
n

ln
∑
k

πkD(xn)gt(xn|Σk,µk), (16)

whose value will increase as the iteration time increases. Our
detailed approach is summarized in Algorithm 1.

2) Temporal distribution model: Given a time t, the total
aerial traffic amount in the system from t to t + 1 can be
calculated by Dt =

∑
(x,y)∈AD(x, y, t). By gathering the

data Dt of M days, we have a dataset Dt = {Dt
1, · · · , Dt

M}.
The GMM that captures the temporal pattern of Dt is
p(Dt) =

∑V t

v=1 π
t
vN (Dt|µtv,Σtv). The approach to model

the temporal distribution Dt for D(x, y, t), is similar to
the algorithm in Algorithm 1. However, both the K-means
and EM algorithm do not add weight to each data point.
As a result, by ignoring all D(x, y, t) used in Table 1 and
substituting its value by one, Algorithm 1 can be applied
to find the temporal pattern Dt. The mixture Gaussian
model p(Dt) is a probability density function (pdf) over the
cellular data amount, from which we can get the cumulative
distribution function (CDF) as Ct(d) =

∫ d
−∞ p(Dt) dDt.

The predicted data amount can be estimated by the CDF
with a threshold. For example, with a threshold of 60%, the
predicted traffic amount over the aerial networks can be given
by Dt = C−1t (0.6). The ML analysis of the temporal feature
N(t) and the spatial feature f(x, y) of N(x, y, t) can follow
the approach of Algorithm 1.



B. On-demand, optimal UAV deployment

In order to optimally deploy UAVs to minimize the total
power, problem (13) is formulated, which jointly considers
the aerial cell partition and the UAVs’ locations. With the
prediction information, network operators only need to move
UAVs at the beginning of each time interval, according to the
solution of (13). However, solving (13) is challenging due to
the mutual dependence between (xi, yi, hi) and Ai with Ni
and β(x, y). For tractability, we solve (13) in two sequential
steps. First, given the current location of each UAV i ∈ I,
we seek to find the optimal partition of the service area Ai
for each UAV, that minimizes the power for transmissions.
Then, for each UAV i, given its fixed service area Ai, the
optimal location is derived to minimize the required power
for downlink communications and mobility.

1) Optimal partition of service areas: Given the current
location of each UAV i ∈ I, we aim to find the best
partition of service areas {Ai}i∈I , such that the total power
for downlink communications of all UAVs is minimized. The
optimal partition problem can be formulated as follows,

min
Ai

Pc, (17a)

s. t.
∫ ∫

Ai

Pmin
i (x, y) dxdy = κP a

i ,∀i ∈ I, (17b)

∪i∈I Ai = A, (17c)
Ai ∩ Aj = ∅,∀i 6= j ∈ I. (17d)

To solve this problem, we use our previously developed
gradient-based method in [16, Theorem 1, Algorithm 1].

2) Optimal locations: Given the optimal partition of the
service area {Ai}i∈I , the power minimization problem can
be reduced into I subproblems for each UAV i ∈ I as

min
xi,yi,hi

P ci + P ti . (18)

Based on [3, Theorem 1], we focus on two scenarios in
the following discussions. One is a high-altitude UAV, where
h2i � (x−xi)2 + (y− yi)2, and the other is the low-altitude
UAV, where h2i � (x−xi)2 + (y−yi)2. In scenario one, the
value of θi in (2) is approximately 90◦, thus, pLOS

i (x, y) ≈ 1
and L̄i(x, y) ≈ LLOS

i (x, y). Then, Pi can be rewritten as

P ci ≈ Oi
∫ ∫

Ai

Zi(x, y)
(
d2i (x, y) + 100.1ξ

LOS
i

)
dxdy,

(19)

where Oi =
(

4πfc
c

)2
Bin0

GNi
is a coefficient that does not

depend on (x, y), and Zi(x, y) = 2β(x,y)Ni/Bi − 1. It is
obvious that Pi is a convex function with respect to xi and yi.
By setting the first partial derivatives to be zero, we have the
optimal locations for UAV i that minimize the transmission
power P ci as

x∗i =

∫ ∫
Ai
x Zi(x, y) dxdy∫ ∫
Ai
Zi(x, y) dxdy

, (20a)

y∗i =

∫ ∫
Ai
y Zi(x, y) dxdy∫ ∫
Ai
Zi(x, y) dxdy

. (20b)

Fig. 1: Total and average required power for data transmission.

Although the objective function P ci + P ti is convex with
respect to xi and yi, deriving a closed-form solution of (18),
which minimizes both the transmit and mobility power for
each UAV, is challenging. However, it is easy to find the
optimal solution of (18) based on a gradient-based algorithm.
Using a similar approach, we can find the optimal location
for scenario two.

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a UAV cellular network
operating in a 5 GHz frequency band for downlink commu-
nications. The total available bandwidth for each UAV is 10
MHz. The noise power spectral is set to −174 dBm/Hz. For
each UAV, the antenna gain is 10 dB, and the rate of energy
consumption for moving per meter is γ = 0.1 Joules per
meter. For ML, we use 7

8 of the dataset to train the model,
and the remaining 1

8 data is used to evaluate the performance.
Fig. 1 shows the total and average communication power

per UAV required to satisfy the users’ data demands for
two scenarios: the proposed approach and a solution with
no ML predictions. In each case, the proposed optimal
partition of service areas and the optimal location deployment
are employed. Fig. 1 shows that, as the number of UAVs
increases, both the total required power and the average
communication power will decrease. When more UAVs are
available, each aerial BS can serve a smaller coverage area,
yielding a lower average path loss. Therefore, the needed total
transmit power decreases, given a fixed amount of the total
cellular traffic. As the total required transmit power decreases,
the average power reduces accordingly. Fig. 1 further shows
that compared with the solution without ML predictions, the
proposed approach yields a significant improvement of power
consumptions. The power reduction varies from 20.68% to
24.40%, as the number of UAVs increases from 9 to 36.

Fig. 2 shows the total and average mobility power of UAV
BSs. As the number of UAVs increases, the total mobility
power without ML predictions will increase significantly. By
deploying more UAVs, network operator is more likely to
send a UAV to meet an instant communication in a relatively
far hotspot area, which causes more power consumed for



Fig. 2: Total and average required power for UAV mobility.

Fig. 3: Required transmit power as a function of the total bandwidth.

mobility. However, with ML prediction, UAV BSs do not
need to travel constantly to satisfy the communication re-
quest. Therefore, the total mobility power of the proposed
ML approach remains on a similar level. Also, as shown
in Fig. 2, the average mobility power of each UAV will
decrease, when the number of UAVs increases. This power
decrease is caused by a smaller service area of each UAV.
Fig. 2 further shows that compared with the solution without
ML prediction, the proposed approach significantly reduces
the required mobility power from 63.72% to 89.30%, as the
number of UAVs increase from 9 to 36.

Fig. 3 shows the required transmit power as a function of
the total bandwidth, assuming nine UAVs. As the available
bandwidth increases, the transmit power will decrease. How-
ever, a wider bandwidth results in a higher noise power, which
prevents the reduction of transmit power, especially when the
bandwidth is greater than 5 MHz. For such noise-sensitive
system, a lower spectrum efficiency cannot save additional
power.

V. CONCLUSION

In this paper, we have proposed a novel approach for
predictive deployment of UAV aerial BSs to provide an
on-demand wireless service to the cellular users. We have
formulated a power minimization problem to optimize the
partition of the service area of each UAV, while minimizing

the UAV power needed for downlink communications and
mobility. In order to predict hotspots, a novel ML framework
based on GMM and WEM has been developed. The results
have shown that the proposed ML approach can reduce the
required downlink transmit power and mobility power by
over 20% and 80%, respectively, compared with an optimal
deployment of UAVs with no ML prediction.
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