A Comprehensive Solution for
Research-Oriented Cloud Computing

Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John] Prevost

The University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249
{mevlut.demir,jeff.prevost} @utsa.edu,{weslyn.wagner,ubm700}@my.utsa.edu

Abstract. Cutting edge research today requires researchers to perform
computationally intensive calculations and/or create models and simu-
lations using large sums of data in order to reach research-backed con-
clusions. As datasets, models, and calculations increase in size and scope
they present a computational and analytical challenge to the researcher.
Advances in cloud computing and the emergenckigfdata analytic

tools are ideal to aid the researcher in tackling this challenge. Although
researchers have been using cloud-based software services to propel their
researchmany institutions have not considered harnessing the Infras-
tructure as a Service moddihe reluctance to adopt Infrastructure as

a Service in academia can be attributed to many researchers lacking

the high degree dechnicalexperience needed to desipnocure,and

manage custom cloud-based infrastructarehis paper,we propose a
comprehensive solution consisting of a fully independent cloud automa-
tion framework and a modular data analytics platform which will allow
researchers to create and utilize domain specific cloud solutions irrespec-
tive of their technicaknowledgereducing the overad<ort and time
required to complete research.

Keywords:Automation,Cloud Computing HPC, Scientific Comput-
ing, SolaaS

1 Introduction

The cloud is an ideadflata processing platform becausi&sofmodularityeffi-

ciency, and many possible configurations. Nodes in the cloud can be dynamically
spawned, configured, modified, and destroyed as needed by the application using
pre-defined application programming interfaces (API). Furthermore, cloud-based
systems are highly scalable and can be configured to provide a high degree of
availability [1]. For these reasons, industry has fully embraced cloud computing
for delivering services and applicati@asswellas establishing dedicated jobs
focused on the maintenance and managemaribwd infrastructurd.or all

the reasons stated,cloud-based solution would also be optforadcademic

research [3Currently most researchers utilize locampute systems to run
calculations and store required dateese calculations are often complex and

2 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

can take multiple hours to days to converge to a conclusion. A cloud-scaled solu-
tion could outperform local compute systems, while also allowing the researcher
to quickly change the underlying topology in response to transient parameters
or characteristics of the models used.

In academiahowevernfrastructure as a Service (laaS) solutions have not
been adopted for two main reasolek oftechnicakxpertise and the need
for dedicated management. laaS requires the user to fully design and configure
their cloud environment which may consist of runtiitéle-wareand oper-
ating systems [7]. This configuration must then be maintained so that software
can run efficiently on top of it. Researchers, who are experts in their own field of
research, usually lack the technical skills to create and manage a cloud solution,
and become reliant upon their institutions IT department to provide them with
assistancélhose who desire to possess the requisite skills are forced to divert
time from their research to learn the necessary skills themselves. Cloud providers
recognize this issue and have created systems such as one-click installs or au-
tomation frameworks to greatly reduce the e<ort and expertise needed to create
cloud infrastructurdut these solutions are not holistic in nature nor geared
towards academia.

To address this problem, we propose Research Automation for Infrastructure
and Software framework (RAINRAINS aims to be an all-in-one infrastruc-
ture procurementonfigurationand management framework tailored specif-
ically towards the needs ofsearchers [2ZThe framework is agnostic to the
cloud provider giving the researcher the optidrosfing with di< erent pub-
lic providerspr running a private cloud on premis@AINS incorporates a
crowd-sourced model to allow researchers to share and collaborate their unique
infrastructure builds across the world in a seamless manner. This would enable
researchers to quickly reproduce the results of ongoing research, and share opti-
mum configurations. RAINS will make the laaS model accessible to researchers
in @ manner that is easy to use and configure, thus allowing them to focus solely
on their research and not on extraneous system configuration.

Once a custom infrastructure and software environment has been created,
software deployments will need to be connected and synchronized before appli-
cations are fully operational the cloud.There are hundreds afctive,open
source tools for big data analytics - each one has a custom installation, working
environment, and communication method. For a typical researcher, learning all
of these tools and their selective APIs can be a massive hurdle. These big data
tools often work in a clustered topology consisting of a data ingestion layer, data
processing layer, data storage layer, and a data visualization layer. This further
adds complexity to utilizing laaS because it is not directly apparent which set
of tools would be correct for the researcher and what type of environment and
dependencies each one HWasesearcher would have to have advanced knowl-
edge of programming, data science, and system administration to connect these
individual tools into a cluster formation and run them successfully.

To speed up integration we propose Software PlatformBrperimental
Analysis and Research (SPEAR)SPEAR is designed to allow for easy inte-

A Comprehensive Solution for Research-Oriented Cloud Computing3

gration between various big data and machine learning tools to create a working
research cluster atop a RAINS-created infrastrucfidre.platform takes ad-

vantage of the cloud’s high availability and scalability to handle numerous con-
current data streams for parallel processing and real time visualization. SPEAR
empowers the end user to prototype and execute data processing algorithms in
an abstracted environment by independently handling data migration. SPEAR
o< ers plug and play support for popular data acquisitéorirol,or analysis

tools that the end user may wish to integrate into their custom installations.

Fig. 1. SPEAR and RAINS integrate laaS, PaaS, and Saa$S

The emergence ofloud-based servicés the early 2000srevolutionized
Internet-based content delivery. Today, almost every interaction we have with an
on-line service is being handled through a cloud-based system [4]. Cloud services
can be classified as either Software as a Service (SaaS) [6], Platform as a Service
(PaaS) [5], or Infrastructure as a Service. Under, SaaS a user can use the software
without having to worry about its underlying hardware, software environment,
or session which are dleing managed be the service proviREaS allows a
user to interactive with the cloud service at a operating system level. laaS gives
complete control over the underlying virtual or physical hardware on up, to the
end user, allowing for a true fully customizable experience. Together RAINS and
SPEAR provide the researcher with solution as a service which integrates laas,
PaaS, and SaaSs as shown in Fig. 2.

2 RAINS Framework

The aim of RAINS is to provide easy-to-use cloud automation methods that

can be used standalona; as a base for software platforms such as SPEAR.
RAINS has a modular design in which the back-end and front-end applications
are coded separately and communicate through established API calls. The front
end is designed to run the browser and allow for ease of dtmback-end

4 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

consists of a REST API which interfaces with the orchestration engine to procure
and deploy the designed infrastructure.

2.1 Dashboard

The RAINS dashboard is a browser-based graphical user interface intended for
configuring, designing, managing, and deploying cloud infrastructure. The dash-
board consists o palette and a canvas for visualizatiRAINS o< ers three

viewing modes: Machine Level, Application Level, and Network Level. Each view
has a custom palette and canvas associated for managing aspects of the infras-
tructure build. The framework employs a drag-and-drop API in conjunction with
form-based wizards to create representational states which can then be rendered
to the canvasUpon initialization the user can drag and drop hardware and
software components to create their unique cloud infrastructure build. Once the
infrastructure build has been graphically desigheddeploy button realizes

the infrastructure.

Machine View The Machine View, focuses on the machine level aspects of the
infrastructure. The palette provides virtual machines and containers as draggable
componentsThe canvas renders machine ledekails such as hostnaméi®,

address, and machine type.

Application View The Application View, focuses on the application and soft-
ware aspects of the infrastructure. The palette o« ers a list of supported software
as draggable componentise canvas renders application lelathils such as

software name and current status.

Network View The Network View, highlights TCP/IP network configurations
for each machine nodes in detak wellspecific ports that applications are
attached too.

Dragged and dropped components on the canvas are referred to as droplets.
A droplet consists oé machine levalomponent and may also have software
and networking components attached. RAINS makes use of forms, models, and
templates to prompt the user for basic information needed to satisfy a particular
droplet’s requirements.case the user cannot provide basic informatien,
user is given the choice to use default options or pull a build from trusted repos-
itories. The combination of all the droplets on the canvas represent the complete
infrastructure build the user wishes to de@woyge an infrastructure build is
deployed the canvas continues to serve as a real-time representation of the active
build and can be used to dynamically or manually reconfigure the infrastructure.
Each droplet hoists key-value pairs which describe the infrastructurigsbuild,
own canvas stylingnd the droplet’'s current statustifs actively deployed.
The revolutionary novelty of RAINS is that infrastructure builds can be further
packed into droplet clusters with exposed endpoints, allowing for integration of

A Comprehensive Solution for Research-Oriented Cloud Computing5

two complex cloud systems comprised of many droplets. In this manner, systems
can increase in complexity while still remaining easy to understand through en-
capsulation and nesting.

2.2 Canonical Form

When a user builds an infrastructuR&INS dynamically describes the build

in a JSON-based formThis format encapsulates dtbplets and droplet clus-

ters into a statefuibxt based representatidhe JSON format can be shared

with others or saved to create a snapshotlé current infrastructure build

build. This representation is then passed to the back end which uses the JSON
format to generate a complete canoriorah. This form consists af human
readable task list for orchestration and procurement in YAML forbshg

a single canonicdbrm facilitates repeatability and completely decouples the
orchestration file from the the task list. A text-based markup or object level for-
mat is easier to share between peers and is computer-friendly enough for quick
parsingjeading to a higher degree of integration with other available systems
that understand markup. The canonical form can then undergo translation and
mapping to create orchestration files specifically tailored for each major cloud
platform including AWS, Google Cloud, and OpenStack.

2.3 REST API

RAINS uses the traditional HTTP-based REST API [13] and database combina-
tion to provide for service communication. The REST API allows the front-end
dashboard to access the database to store session information, get updates, and
post JSON forms for translationRAINS utilizes both a relationabnd non-
relationadatabases to store dafithe REST API can also be used internally

to serve as a communication broker between server processes.

2.4 Synthesis

The JSON output from the front end is the most minindgscription othe
infrastructure buildVhen the JSON form is POSTed to the backerdpper

scripts parse and sort the information based on whether it is a procurement or
orchestration directive. After sorting, a task-based canonical form is generated,
which consists of list of the procurement and orchestration tasks needed to
realize the infrastructure. The canorfimah gives precedence to procurement
directives and orchestration directives are listed afteriead®AML-based
canonical form can then be translated into orchestration templates and Ansible
[8] execution Playbooks.

2.5 Translation

The canonical form alone is not enough for an orchestration engine to act upon.
The key-value pairs in the canonical form need to be extended into orchestration

6 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

scripts that the orchestration engines can Aseanslation service uses ad-

vanced templating and mapping to generate the vendor specific consumables for
AWS [15], Google Cloud Platform [10], OpenStack [14], Azure [11], and Ansible.
The current implementation of the translation layer targets AWS and OpenStack
Heat, while also supporting Ansible for post- and pre-deployment orchestration.
RAINS provides AWS Cloud Formation Templates and OpenStack Heat Or-
chestration Templates [9], allows for automatic procurement, scaling, and other
tasks supported by the providers’ respective APIs. RAINS also supports running
user-provided Ansible scripts against nodes running in an infrastructure build.
The user can provide Ansible scripts via the dashboard and then execute them
on one or multiple droplets that are active on the canvas.

2.6 Procurement

Once the orchestration scripts are reB&yINS interfaces with the respected

APIs of the cloud provider the user has chosen. The user’s account details and
subscription plan are taken into account, and an API call is made to procure the
machine levelodesand prepare them for Ansiblmsible is then utilized to
complete the environment creation and software installation tasks. At this point
RAINs has created the infrastructure in the cloud.

2.7 Real-Time Feedback Loop

A real-time feedback loop is currently under development for RAINS. The feed-
back loop will connect to the cloud platforms’ metrics and logging services, such
as Ceilometer for OpenStack [12]. These metrics will map to layout styling and
will be reflected onto the canvas for visualizakfenreal-time feedback loop

will allow RAINS to check the status of the computational nodes and the soft-
ware stacks running on them in real-time. RAINS would then be in the position

to manage the health of nodes, dynamically scale applications up, down, or side-
ways depending on load, and even make optimization suggestions to the user on
how to best implement an architecture build. Active monitoring will also reduce
computational waste and help the user reduce deployment costs.

2.8 Repository

To help foster a collaborative environment and provide for easy templating,

a dedicated repository witle used for canonicdbrm tracking and storage.
Researchers will have the option of initiating official builds and custom wikis to
highlight the usage and performanddeir infrastructure buildBhe online
repository will serve as a sharing and storage portal through which researchers
can pull,push,and share their unique configuratiénsoting-based ranking
system will be utilized to give credibility to builds.

A Comprehensive Solution for Research-Oriented Cloud Computing?

3 SPEAR

The SPEAR aims to give researchers access to open source big data analytics
tools as well as popular machine learning, robotics, and IOT frameworks in a easy
to use and integrated environment. SPEAR at its core is a plug and play platform
managert manages the integration of various di< erent suites of software into
one cohesive clustered applicatfanthermorethe usage of the cloud allows

for hot swapping of applications in real time, resulting in a robust and resilient
systemSPEAR can easily be layered atop RAINSnd employed to connect

node endpoints generated by RAIM&d even program and run applications.

A typical SPEAR cluster will consist of a data ingestion layer, data processing
layer, data storage layer, and a visualization layer, while providing for additional
application specific layers such as machine learning and robot operating system
(ROS) [16] layers.

Data Ingestion The data ingestion layer consistsaoflistributed queuing
system along with a message brokata ingestion in this manner can scale
e ectively across cloud nodes to handle multiple concurrent data streams.

Data Processing The data processing layer consistbigfdata analytical

tools such as distributed stream processing engines and batch processing en-
gines. Distributed stream processing engines are ideal for real time stream based
processing. Batch processing can be performed after data has been collected on
large aggregates of data.

Data Storage The data sink layer consist of storage volumes and databases.

Users can configure SQL relational databases or NoSQL non-relational databases

to serve as data sinks for post processing or direct st6REAR takes into

account the e« ort needed to create database tables and schemas, and uses custom
graphical tools to help the user complete this task to reduce the need for a user

to learn CLI tools.

Visualization The visualization layer can consistarfious di< erent output
forms. HTML5 and Javascript based visualization techniques are very popular,
but data can be fed into graphing and mapping programs as well.

3.1 Graphical User Interface

SPEARSs graphical user interface employs graphical wires to define cluster topolo-
gies. Users can click and drag wire connections from and to component endpoints
to set TCP/IP communication across a cluster. An emphasis on block program-
ming is given to abstract away the necessity for configuring and using each
component of the big data architecture. Graphical Programming Interfaces can
be utilized to abstract way the need to learn specific tools and coding techniques.
Instead the end user can click and drag functionality or use grapharals

to modify, customize, and utilize the underlying software applications.

8 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

3.2 Topology Creation

RAINS can create infrastructure and software environmmarttg, is not de-

signed as a software management platform. SPEAR takes on this responsibility
by connecting the individual nodes into the formation of a cluster. SPEAR does
this by utilizing various communication tools such as TCP/IP port mappings,
communication scripts, and pub/sub message protocols.

3.3 Data Flow

To facilitate the flow of data between ingestion, processing nodes, and visualiza-
tion SPEAR currently supports Kafka [17], RabbitMQ [18], and Apache Pulsar
[19]. Internally publish/subscribe models are utilized for inter-cluster communi-
cation.In a typicalpub/sub configuration data packets trévalugh queues.

Each queue consists of a bidirectional channel which supports quality of service
level 1. As the load on the system changes, the queues can easily be scaled and
parallelized to sustain a high throughput.

3.4 Processing

SPEAR supports popular distributed stream processing engines as well as batch
processing engines to satisfy processing needs. Distributed stream processing en-
gines can interface directly with most messaging queues to ingest data and per-
form permutations and computations. Popular DSPEs such as Apache Storm [20]
and Apache Heron [21] utilize controller and worker nodes to create a highly scal-
able, fault tolerant processing solution. Apache Spark [22] and Hadoop [23] are
popular batch processing platforms that can easily be integrated into a SPEAR
Cluster.

3.5 Data Sink

Data must be persisted in some form for later analysis and ref&RiEgR.

supports relational databases like MySQL [24], and non relational databases such
as MongoDB [25]Some applications such as Hadoop require custom NoSQL
implementations like HBase [26]. SPEAR’s graphical interfacing tools will allow
users to perform create, update, read, and delete data from the database.

3.6 Visualization

SPEAR supports browser based visualization and allows for easy integration with
JavaScript visualization frameworks such as D3 [Ja¥&Script and HTML5

have become popular for visualization because of universal access via browsers,
and low maintenance costs. SPEAR o« ers visualization templates using D3, that
a user can use to pulbta from databases or from data processing engines for
realtime or aggregate visualizati@ithout having to create the visualization
mechanisms themselves. An example framework can be seen in Fig.2.

A Comprehensive Solution for Research-Oriented Cloud Computing9

Framework Design
Machines s Application Overview

@ oOverview g : & ?

el

e -l
0 openstack kubernetes

MAAS @)uju |

Fig. 2. Overview of the SPEAR & RAINS Model

4 Future Work

We plan to utilize RAINS and SPEAR in our research laboratory as a test case.
In this manner we can add functionality and manage the development cycle of
each software based on the needs of university researchers. RAINS and SPEAR
will be utilized in our cyberphysic8DT systems researciVe plan to gain
performance benchmarks and metrics and further improve our software.

5 Conclusion

The layering of SPEAR and RAINS creates a holistic cloud-based solution for
procuring cloud infrastructure and data processing that is customizable and
controllable from end to endhile at the same time mitigating the need for
technicatloud expertise from the researdd&iNS can serve as the starting

base for other platforms which may require a highly customizable cloud-based
infrastructure, or can be used standalone to generate only cloud infrastructure.
The SPEAR platform willgive researchers quick and seamless access to many
current data analytics tool sets without the need to learn complicated coding and
command line tool¥ogetherRAINS and SPEAR will revolutionize research

speed and give the researcher full access to the cloud’s potential.

10 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost
References
1. D. Kondo, et al. "Cost-benefit analysis of cloud computing versus desktop grids.”

(S0

10.

11.
12.

13.

14.

15.
16.
17.
18.
. Apache Pulsar.(2018) [Online]. Available at:https://pulsar.incubator.apache.org/
20.
21.
22.
23.
24.
25.
26.
27.

19

Parallel and Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on. IEEE, 2009.

. Wagner, Weslyn S. Research Automation for Infrastructure and Software: A Frame-

work for Domain Specific Research with Cloud Computbigs. The University
of Texas at San Antonio, 2017.

. Benson,James O., John J. Prevost,and Paul Rad. "Survey ofautomated soft-

ware deployment for computational and engineering research.” Systems Conference
(SysCon), 2016 Annual IEEE. IEEE, 2016.

. L. Qian, et al. "Cloud computing: An overview.” Cloud computing (2009): 626-631.
. D. Malfara. Platform as a Service. working paper ACC 626, University of Waterloo,

Waterloo, Canada, 3 July, 2013.

. N. Gupta, and). Varshapriya!’Software as a Service.” Internatiopatirnal of

Innovative Research in Advanced Engineering (IJIRAE)-2014 (2014).

. S. Manvi and G. Shyam.”Resource management for Infrastructure as a Service

(laaS) in cloud computind@ survey.” Journalof Network and Computer Appli-
cations 41 (2014): 424-440.

. Ansible. (2018). How Ansible Works. [Online]. Available at:

https://www.ansible.com/how-ansible-works

. OpenStack. (2018). Heat-Translator. [online] Available at:

https://wiki.openstack.org/wiki/Heat-Translator

Google Cloud Platform. (2018).About the Google Cloud Platform Services.
[Online]. Available at: https://cloud.google.com/docs/overview/cloud-platform-
services

Microsoft Azure.(2018).Azure regionsmore than any cloud providdOnline].
Available at: https://azure.microsoft.com/en-us/

OpenStack. (2018). OpenStack Docs: Welcome to Ceilometers documentation. [On-
line]. Available at: https://docs.openstack.org/ceilometer/latest/

Fielding,Roy T., and Richard N.Taylor. Architecturalstyles and the design of
network-based software architectuves. 7. Doctoraldissertationtniversity of
California, Irvine, 2000.

OpenStack(2018).0OpenStack DocsSystem architecturgOnline] Available at:
https://docs.openstack.org/

AWS.(2018) [Online]. Available at: https://aws.amazon.com/

ROS.(2018) [Online]. Available at: http://www.ros.org/

Kafka.(2018) [Online]. Available at: https://kafka.apache.org/
RabbitMQ.(2018) [Online]. Available at: https://www.rabbitmqg.com/

Apache Storm.(2018) [Online]. Available at: http://storm.apache.org/
Apache Heron.(2018) [Online]. Available at: https://twitter.github.io/heron/
Apache Spark.(2018) [Online]. Available at: https://spark.apache.org/
Hadoop.(2018) [Online]. Available at: http://hadoop.apache.org/
MySQL.(2018) [Online]. Available at: https://www.mysql.com/
MangoDB.(2018) [Online]. Available at: https://www.mongodb.com/
HBase.(2018) [Online]. Available at: https://hbase.apache.org/

D3.(2018) [Online]. Available at: https://d3js.org/

