
A Comprehensive Solution for
Research-Oriented Cloud Computing

Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

The University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249

{mevlut.demir,jef..revost}@utsa.edu,{weslyn.wagner,ubm700}@my.utsa.edu

Abstract. Cutting edge research today requires researchers to .erform
com.utationally intensive calculations and/or create models and simu-
lations using large sums of data in order to reach research-backed con-
clusions. As datasets, models, and calculations increase in size and sco.e
they .resent a com.utational and analytical challenge to the researcher.
Advances in cloud com.uting and the emergence ofbig data analytic
tools are ideal to aid the researcher in tackling this challenge. Although
researchers have been using cloud-based software services to .ro.el their
research,many institutions have not considered harnessing the Infras-
tructure as a Service model.The reluctance to ado.t Infrastructure as
a Service in academia can be attributed to many researchers lacking
the high degree oftechnicalex.erience needed to design,.rocure,and
manage custom cloud-based infrastructure.In this .a.er,we .ro.ose a
com.rehensive solution consisting of a fully inde.endent cloud automa-
tion framework and a modular data analytics .latform which will allow
researchers to create and utilize domain s.ecifc cloud solutions irres.ec-
tive of their technicalknowledge,reducing the overalle↵ort and time
required to com.lete research.

Keywords:Automation,Cloud Com.uting,HPC, Scientifc Com.ut-
ing, SolaaS

1 Introduction

The cloud is an idealdata .rocessing .latform because ofits modularity,ef-
ciency, and many .ossible confgurations. Nodes in the cloud can be dynamically
s.awned, confgured, modifed, and destroyed as needed by the a..lication using
.re-defned a..lication .rogramming interfaces (API). Furthermore, cloud-based
systems are highly scalable and can be confgured to .rovide a high degree of
availability [1]. For these reasons, industry has fully embraced cloud com.uting
for delivering services and a..lications,as wellas establishing dedicated jobs
focused on the maintenance and management ofcloud infrastructure.For all
the reasons stated,a cloud-based solution would also be o.timalfor academic
research [3].Currently,most researchers utilize localcom.ute systems to run
calculations and store required data.These calculations are often com.lex and



2 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

can take multi.le hours to days to converge to a conclusion. A cloud-scaled solu-
tion could out.erform local com.ute systems, while also allowing the researcher
to quickly change the underlying to.ology in res.onse to transient .arameters
or characteristics of the models used.

In academia,however,Infrastructure as a Service (IaaS) solutions have not
been ado.ted for two main reasons:lack of technicalex.ertise and the need
for dedicated management. IaaS requires the user to fully design and confgure
their cloud environment which may consist of runtime,middle-ware,and o.er-
ating systems [7]. This confguration must then be maintained so that software
can run efciently on to. of it. Researchers, who are ex.erts in their own feld of
research, usually lack the technical skills to create and manage a cloud solution,
and become reliant u.on their institutions IT de.artment to .rovide them with
assistance.Those who desire to .ossess the requisite skills are forced to divert
time from their research to learn the necessary skills themselves. Cloud .roviders
recognize this issue and have created systems such as one-click installs or au-
tomation frameworks to greatly reduce the e↵ort and ex.ertise needed to create
cloud infrastructure,but these solutions are not holistic in nature nor geared
towards academia.

To address this .roblem, we .ro.ose Research Automation for Infrastructure
and Software framework (RAINS).RAINS aims to be an all-in-one infrastruc-
ture .rocurement,confguration,and management framework tailored s.ecif-
ically towards the needs ofresearchers [2].The framework is agnostic to the
cloud .rovider giving the researcher the o.tion ofhosting with di↵erent .ub-
lic .roviders,or running a .rivate cloud on .remises.RAINS incor.orates a
crowd-sourced model to allow researchers to share and collaborate their unique
infrastructure builds across the world in a seamless manner. This would enable
researchers to quickly re.roduce the results of ongoing research, and share o.ti-
mum confgurations. RAINS will make the IaaS model accessible to researchers
in a manner that is easy to use and confgure, thus allowing them to focus solely
on their research and not on extraneous system confguration.

Once a custom infrastructure and software environment has been created,
software de.loyments will need to be connected and synchronized before a..li-
cations are fully o.erationalin the cloud.There are hundreds ofactive,o.en
source tools for big data analytics - each one has a custom installation, working
environment, and communication method. For a ty.ical researcher, learning all
of these tools and their selective APIs can be a massive hurdle. These big data
tools often work in a clustered to.ology consisting of a data ingestion layer, data
.rocessing layer, data storage layer, and a data visualization layer. This further
adds com.lexity to utilizing IaaS because it is not directly a..arent which set
of tools would be correct for the researcher and what ty.e of environment and
de.endencies each one has.A researcher would have to have advanced knowl-
edge of .rogramming, data science, and system administration to connect these
individual tools into a cluster formation and run them successfully.

To s.eed u. integration we .ro.ose Software Platform forEx.erimental
Analysis and Research (SPEAR).SPEAR is designed to allow for easy inte-



A Com.rehensive Solution for Research-Oriented Cloud Com.uting3

gration between various big data and machine learning tools to create a working
research cluster ato. a RAINS-created infrastructure.The .latform takes ad-
vantage of the cloud’s high availability and scalability to handle numerous con-
current data streams for .arallel .rocessing and real time visualization. SPEAR
em.owers the end user to .rototy.e and execute data .rocessing algorithms in
an abstracted environment by inde.endently handling data migration. SPEAR
o↵ers .lug and .lay su..ort for .o.ular data acquisition,control,or analysis
tools that the end user may wish to integrate into their custom installations.

Fig. 1. SPEAR and RAINS integrate IaaS, PaaS, and SaaS

The emergence ofcloud-based servicesin the early 2000srevolutionized
Internet-based content delivery. Today, almost every interaction we have with an
on-line service is being handled through a cloud-based system [4]. Cloud services
can be classifed as either Software as a Service (SaaS) [6], Platform as a Service
(PaaS) [5], or Infrastructure as a Service. Under, SaaS a user can use the software
without having to worry about its underlying hardware, software environment,
or session which are allbeing managed be the service .rovider.PaaS allows a
user to interactive with the cloud service at a o.erating system level. IaaS gives
com.lete control over the underlying virtual or .hysical hardware on u., to the
end user, allowing for a true fully customizable ex.erience. Together RAINS and
SPEAR .rovide the researcher with solution as a service which integrates IaaS,
PaaS, and SaaS as shown in Fig. 2.

2 RAINS Framework

The aim of RAINS is to .rovide easy-to-use cloud automation methods that
can be used standalone,or as a base for software .latforms such as SPEAR.
RAINS has a modular design in which the back-end and front-end a..lications
are coded se.arately and communicate through established API calls. The front
end is designed to run the browser and allow for ease of access.The back-end



4 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

consists of a REST API which interfaces with the orchestration engine to .rocure
and de.loy the designed infrastructure.

2.1 Dashboard

The RAINS dashboard is a browser-based gra.hical user interface intended for
confguring, designing, managing, and de.loying cloud infrastructure. The dash-
board consists ofa .alette and a canvas for visualization.RAINS o↵ers three
viewing modes: Machine Level, A..lication Level, and Network Level. Each view
has a custom .alette and canvas associated for managing as.ects of the infras-
tructure build. The framework em.loys a drag-and-dro. API in conjunction with
form-based wizards to create re.resentational states which can then be rendered
to the canvas.U.on initialization the user can drag and dro. hardware and
software com.onents to create their unique cloud infrastructure build. Once the
infrastructure build has been gra.hically designed,the de.loy button realizes
the infrastructure.

Machine View The Machine View, focuses on the machine level as.ects of the
infrastructure. The .alette .rovides virtual machines and containers as draggable
com.onents.The canvas renders machine leveldetails such as hostname,IP
address, and machine ty.e.

Application View The A..lication View, focuses on the a..lication and soft-
ware as.ects of the infrastructure. The .alette o↵ers a list of su..orted software
as draggable com.onents.The canvas renders a..lication leveldetails such as
software name and current status.

Network View The Network View, highlights TCP/IP network confgurations
for each machine nodes in detail,as wells.ecifc .orts that a..lications are
attached too.

Dragged and dro..ed com.onents on the canvas are referred to as dro.lets.
A dro.let consists ofa machine levelcom.onent and may also have software
and networking com.onents attached. RAINS makes use of forms, models, and
tem.lates to .rom.t the user for basic information needed to satisfy a .articular
dro.let’s requirements.In case the user cannot .rovide basic information,the
user is given the choice to use default o.tions or .ull a build from trusted re.os-
itories. The combination of all the dro.lets on the canvas re.resent the com.lete
infrastructure build the user wishes to de.loy.Once an infrastructure build is
de.loyed the canvas continues to serve as a real-time re.resentation of the active
build and can be used to dynamically or manually reconfgure the infrastructure.
Each dro.let hoists key-value .airs which describe the infrastructure build,its
own canvas styling,and the dro.let’s current status ifit is actively de.loyed.
The revolutionary novelty of RAINS is that infrastructure builds can be further
.acked into dro.let clusters with ex.osed end.oints, allowing for integration of



A Com.rehensive Solution for Research-Oriented Cloud Com.uting5

two com.lex cloud systems com.rised of many dro.lets. In this manner, systems
can increase in com.lexity while still remaining easy to understand through en-
ca.sulation and nesting.

2.2 Canonical Form

When a user builds an infrastructure,RAINS dynamically describes the build
in a JSON-based form.This format enca.sulates alldro.lets and dro.let clus-
ters into a statefultext based re.resentation.The JSON format can be shared
with others or saved to create a sna.shot ofthe current infrastructure build
build. This re.resentation is then .assed to the back end which uses the JSON
format to generate a com.lete canonicalform.This form consists ofa human
readable task list for orchestration and .rocurement in YAML format.Using
a single canonicalform facilitates re.eatability and com.letely decou.les the
orchestration fle from the the task list. A text-based marku. or object level for-
mat is easier to share between .eers and is com.uter-friendly enough for quick
.arsing,leading to a higher degree of integration with other available systems
that understand marku.. The canonical form can then undergo translation and
ma..ing to create orchestration fles s.ecifcally tailored for each major cloud
.latform including AWS, Google Cloud, and O.enStack.

2.3 REST API

RAINS uses the traditional HTTP-based REST API [13] and database combina-
tion to .rovide for service communication. The REST API allows the front-end
dashboard to access the database to store session information, get u.dates, and
.ost JSON forms for translation.RAINS utilizes both a relationaland non-
relationaldatabases to store data.The REST API can also be used internally
to serve as a communication broker between server .rocesses.

2.4 Synthesis

The JSON out.ut from the front end is the most minimaldescri.tion ofthe
infrastructure build.When the JSON form is POSTed to the backend,ho..er
scri.ts .arse and sort the information based on whether it is a .rocurement or
orchestration directive. After sorting, a task-based canonical form is generated,
which consists ofa list of the .rocurement and orchestration tasks needed to
realize the infrastructure. The canonicalform gives .recedence to .rocurement
directives and orchestration directives are listed afterwards.The YAML-based
canonical form can then be translated into orchestration tem.lates and Ansible
[8] execution Playbooks.

2.5 Translation

The canonical form alone is not enough for an orchestration engine to act u.on.
The key-value .airs in the canonical form need to be extended into orchestration



6 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

scri.ts that the orchestration engines can use.A translation service uses ad-
vanced tem.lating and ma..ing to generate the vendor s.ecifc consumables for
AWS [15], Google Cloud Platform [10], O.enStack [14], Azure [11], and Ansible.
The current im.lementation of the translation layer targets AWS and O.enStack
Heat, while also su..orting Ansible for .ost- and .re-de.loyment orchestration.
RAINS .rovides AWS Cloud Formation Tem.lates and O.enStack Heat Or-
chestration Tem.lates [9], allows for automatic .rocurement, scaling, and other
tasks su..orted by the .roviders’ res.ective APIs. RAINS also su..orts running
user-.rovided Ansible scri.ts against nodes running in an infrastructure build.
The user can .rovide Ansible scri.ts via the dashboard and then execute them
on one or multi.le dro.lets that are active on the canvas.

2.6 Procurement

Once the orchestration scri.ts are ready,RAINS interfaces with the res.ected
APIs of the cloud .rovider the user has chosen. The user’s account details and
subscri.tion .lan are taken into account, and an API call is made to .rocure the
machine levelnodes,and .re.are them for Ansible.Ansible is then utilized to
com.lete the environment creation and software installation tasks. At this .oint
RAINs has created the infrastructure in the cloud.

2.7 Real-Time Feedback Loop

A real-time feedback loo. is currently under develo.ment for RAINS. The feed-
back loo. will connect to the cloud .latforms’ metrics and logging services, such
as Ceilometer for O.enStack [12]. These metrics will ma. to layout styling and
will be refected onto the canvas for visualization.The real-time feedback loo.
will allow RAINS to check the status of the com.utational nodes and the soft-
ware stacks running on them in real-time. RAINS would then be in the .osition
to manage the health of nodes, dynamically scale a..lications u., down, or side-
ways de.ending on load, and even make o.timization suggestions to the user on
how to best im.lement an architecture build. Active monitoring will also reduce
com.utational waste and hel. the user reduce de.loyment costs.

2.8 Repository

To hel. foster a collaborative environment and .rovide for easy tem.lating,
a dedicated re.ository willbe used for canonicalform tracking and storage.
Researchers will have the o.tion of initiating ofcial builds and custom wikis to
highlight the usage and .erformance oftheir infrastructure builds.The online
re.ository will serve as a sharing and storage .ortal through which researchers
can .ull,.ush,and share their unique confgurations.A voting-based ranking
system will be utilized to give credibility to builds.



A Com.rehensive Solution for Research-Oriented Cloud Com.uting7

3 SPEAR

The SPEAR aims to give researchers access to o.en source big data analytics
tools as well as .o.ular machine learning, robotics, and IOT frameworks in a easy
to use and integrated environment. SPEAR at its core is a .lug and .lay .latform
manager.It manages the integration of various di↵erent suites of software into
one cohesive clustered a..lication.Furthermore,the usage of the cloud allows
for hot swa..ing of a..lications in real time, resulting in a robust and resilient
system.SPEAR can easily be layered ato. RAINS,and em.loyed to connect
node end.oints generated by RAINS,and even .rogram and run a..lications.
A ty.ical SPEAR cluster will consist of a data ingestion layer, data .rocessing
layer, data storage layer, and a visualization layer, while .roviding for additional
a..lication s.ecifc layers such as machine learning and robot o.erating system
(ROS) [16] layers.

Data Ingestion The data ingestion layer consists ofa distributed queuing
system along with a message broker.Data ingestion in this manner can scale
e↵ectively across cloud nodes to handle multi.le concurrent data streams.

Data Processing The data .rocessing layer consists ofbig data analytical
tools such as distributed stream .rocessing engines and batch .rocessing en-
gines. Distributed stream .rocessing engines are ideal for real time stream based
.rocessing. Batch .rocessing can be .erformed after data has been collected on
large aggregates of data.

Data Storage The data sink layer consist of storage volumes and databases.
Users can confgure SQL relational databases or NoSQL non-relational databases
to serve as data sinks for .ost .rocessing or direct storage.SPEAR takes into
account the e↵ort needed to create database tables and schemas, and uses custom
gra.hical tools to hel. the user com.lete this task to reduce the need for a user
to learn CLI tools.

Visualization The visualization layer can consist ofvarious di↵erent out.ut
forms. HTML5 and Javascri.t based visualization techniques are very .o.ular,
but data can be fed into gra.hing and ma..ing .rograms as well.

3.1 Graphical User Interface

SPEARs gra.hical user interface em.loys gra.hical wires to defne cluster to.olo-
gies. Users can click and drag wire connections from and to com.onent end.oints
to set TCP/IP communication across a cluster. An em.hasis on block .rogram-
ming is given to abstract away the necessity for confguring and using each
com.onent of the big data architecture. Gra.hical Programming Interfaces can
be utilized to abstract way the need to learn s.ecifc tools and coding techniques.
Instead the end user can click and drag functionality or use gra.hicalwizards
to modify, customize, and utilize the underlying software a..lications.



8 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

3.2 Topology Creation

RAINS can create infrastructure and software environments,but it is not de-
signed as a software management .latform. SPEAR takes on this res.onsibility
by connecting the individual nodes into the formation of a cluster. SPEAR does
this by utilizing various communication tools such as TCP/IP .ort ma..ings,
communication scri.ts, and .ub/sub message .rotocols.

3.3 Data Flow

To facilitate the fow of data between ingestion, .rocessing nodes, and visualiza-
tion SPEAR currently su..orts Kafka [17], RabbitMQ [18], and A.ache Pulsar
[19]. Internally .ublish/subscribe models are utilized for inter-cluster communi-
cation.In a ty.ical.ub/sub confguration data .ackets travelthrough queues.
Each queue consists of a bidirectional channel which su..orts quality of service
level 1. As the load on the system changes, the queues can easily be scaled and
.arallelized to sustain a high through.ut.

3.4 Processing

SPEAR su..orts .o.ular distributed stream .rocessing engines as well as batch
.rocessing engines to satisfy .rocessing needs. Distributed stream .rocessing en-
gines can interface directly with most messaging queues to ingest data and .er-
form .ermutations and com.utations. Po.ular DSPEs such as A.ache Storm [20]
and A.ache Heron [21] utilize controller and worker nodes to create a highly scal-
able, fault tolerant .rocessing solution. A.ache S.ark [22] and Hadoo. [23] are
.o.ular batch .rocessing .latforms that can easily be integrated into a SPEAR
cluster.

3.5 Data Sink

Data must be .ersisted in some form for later analysis and reference.SPEAR
su..orts relational databases like MySQL [24], and non relational databases such
as MongoDB [25].Some a..lications such as Hadoo. require custom NoSQL
im.lementations like HBase [26]. SPEAR’s gra.hical interfacing tools will allow
users to .erform create, u.date, read, and delete data from the database.

3.6 Visualization

SPEAR su..orts browser based visualization and allows for easy integration with
JavaScri.t visualization frameworks such as D3 [27].JavaScri.t and HTML5
have become .o.ular for visualization because of universal access via browsers,
and low maintenance costs. SPEAR o↵ers visualization tem.lates using D3, that
a user can use to .ulldata from databases or from data .rocessing engines for
realtime or aggregate visualization,without having to create the visualization
mechanisms themselves. An exam.le framework can be seen in Fig.2.



A Com.rehensive Solution for Research-Oriented Cloud Com.uting9

Fig. 2. Overview of the SPEAR & RAINS Model

4 Future Work

We .lan to utilize RAINS and SPEAR in our research laboratory as a test case.
In this manner we can add functionality and manage the develo.ment cycle of
each software based on the needs of university researchers. RAINS and SPEAR
will be utilized in our cyber.hysicalIOT systems research.We .lan to gain
.erformance benchmarks and metrics and further im.rove our software.

5 Conclusion

The layering of SPEAR and RAINS creates a holistic cloud-based solution for
.rocuring cloud infrastructure and data .rocessing that is customizable and
controllable from end to end,while at the same time mitigating the need for
technicalcloud ex.ertise from the researcher.RAINS can serve as the starting
base for other .latforms which may require a highly customizable cloud-based
infrastructure, or can be used standalone to generate only cloud infrastructure.
The SPEAR .latform willgive researchers quick and seamless access to many
current data analytics tool sets without the need to learn com.licated coding and
command line tools.Together,RAINS and SPEAR will revolutionize research
s.eed and give the researcher full access to the cloud’s .otential.



10 Mevlut A Demir, Weslyn Wagner, Divyaansh Dandona, and John J Prevost

References

1. D. Kondo, et al. ”Cost-beneft analysis of cloud com.uting versus deskto. grids.”
Parallel and Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
.osium on. IEEE, 2009.

2. Wagner, Weslyn S. Research Automation for Infrastructure and Software: A Frame-
work for Domain S.ecifc Research with Cloud Com.uting.Diss.The University
of Texas at San Antonio, 2017.

3. Benson,James O., John J. Prevost,and Paul Rad. ”Survey ofautomated soft-
ware de.loyment for com.utational and engineering research.” Systems Conference
(SysCon), 2016 Annual IEEE. IEEE, 2016.

4. L. Qian, et al. ”Cloud com.uting: An overview.” Cloud com.uting (2009): 626-631.
5. D. Malfara. Platform as a Service. working .a.er ACC 626, University of Waterloo,

Waterloo, Canada, 3 July, 2013.
6. N. Gu.ta, and J. Varsha.riya.”Software as a Service.” InternationalJournal of

Innovative Research in Advanced Engineering (IJIRAE)-2014 (2014).
7. S. Manvi and G. Shyam.”Resource management for Infrastructure as a Service

(IaaS) in cloud com.uting:A survey.” Journalof Network and Com.uter A..li-
cations 41 (2014): 424-440.

8. Ansible. (2018). How Ansible Works. [Online]. Available at:
htt.s://www.ansible.com/how-ansible-works

9. O.enStack. (2018). Heat-Translator. [online] Available at:
htt.s://wiki.o.enstack.org/wiki/Heat-Translator

10. Google Cloud Platform. (2018).About the Google Cloud Platform Services.
[Online].Available at: htt.s://cloud.google.com/docs/overview/cloud-.latform-
services

11. Microsoft Azure.(2018).Azure regions,more than any cloud .rovider.[Online].
Available at: htt.s://azure.microsoft.com/en-us/

12. O.enStack. (2018). O.enStack Docs: Welcome to Ceilometers documentation. [On-
line]. Available at: htt.s://docs.o.enstack.org/ceilometer/latest/

13. Fielding,Roy T., and Richard N.Taylor.Architecturalstyles and the design of
network-based software architectures.Vol. 7. Doctoraldissertation:University of
California, Irvine, 2000.

14. O.enStack.(2018).O.enStack Docs:System architecture.[Online].Available at:
htt.s://docs.o.enstack.org/

15. AWS.(2018) [Online]. Available at: htt.s://aws.amazon.com/
16. ROS.(2018) [Online]. Available at: htt.://www.ros.org/
17. Kafka.(2018) [Online]. Available at: htt.s://kafka.a.ache.org/
18. RabbitMQ.(2018) [Online]. Available at: htt.s://www.rabbitmq.com/
19. A.ache Pulsar.(2018) [Online]. Available at:htt.s://.ulsar.incubator.a.ache.org/
20. A.ache Storm.(2018) [Online]. Available at: htt.://storm.a.ache.org/
21. A.ache Heron.(2018) [Online]. Available at: htt.s://twitter.github.io/heron/
22. A.ache S.ark.(2018) [Online]. Available at: htt.s://s.ark.a.ache.org/
23. Hadoo..(2018) [Online]. Available at: htt.://hadoo..a.ache.org/
24. MySQL.(2018) [Online]. Available at: htt.s://www.mysql.com/
25. MangoDB.(2018) [Online]. Available at: htt.s://www.mongodb.com/
26. HBase.(2018) [Online]. Available at: htt.s://hbase.a.ache.org/
27. D3.(2018) [Online]. Available at: htt.s://d3js.org/


