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Abstract

As two of the five traditional human senses (sight, hear-

ing, taste, smell, and touch), vision and sound are basic

sources through which humans understand the world. Often

correlated during natural events, these two modalities com-

bine to jointly affect human perception. In this paper, we

pose the task of generating sound given visual input. Such

capabilities could help enable applications in virtual reality

(generating sound for virtual scenes automatically) or pro-

vide additional accessibility to images or videos for people

with visual impairments. As a first step in this direction, we

apply learning-based methods to generate raw waveform

samples given input video frames. We evaluate our mod-

els on a dataset of videos containing a variety of sounds

(such as ambient sounds and sounds from people/animals).

Our experiments show that the generated sounds are fairly

realistic and have good temporal synchronization with the

visual inputs.

1. Introduction

The visual and auditory senses are arguably the most

important channels through which humans perceive their

surrounding environments, and they are often entertwined.

From life-long observations of the natural world, people

are able to learn the association between vision and sound.

For instance, when seeing a flash of lightning in the sky,

one might cover their ears subconsciously, knowing that

the crack of thunder is coming next. Alternatively, hear-

ing leaves rustling in the wind might conjure up a picture of

a peaceful forest scene.

In this paper, we explore whether computational mod-

els can learn the relationship between visuals and sound.

Models of this relationship could be fundamental for many

applications such as combining videos with automatically

generated ambient sound to enhance the experience of im-

mersion in virtual reality; adding sound effects to videos au-

tomatically to reduce tedious manual sound editing work;

Or enabling equal accessibility by associating sound with

visual information for people with visual impairments (al-

lowing them to “see” the world through sound). While all

of these tasks require powerful high-level inference and rea-

soning ability, in this work we take a first step toward this

goal, narrowing down the task to generating audio for video

based on the viewable content.

Specifically, we train models to directly predict raw au-

dio signals (waveform samples) from input videos. The

models are expected to learn associations between gener-

ated sound and visual inputs for various scenes and object

interactions. Existing works [15, 4] handle sound genera-

tion given input of videos/images under experimental set-

tings (e.g., to generate a hitting sound or where the input

videos are recorded indoor with fixed background). In our

work, we deal with generating natural sound from videos

collected in the wild.

To enable learning, we introduce a dataset that is de-

rived from AudioSet [7]. AudioSet is a dataset collected

for audio event recognition but not ideal for our task be-

cause many of videos and audios are loosely related; the

target sound might be covered by other sounds (like music);

and the dataset contains some mis-classified videos. All of

these sources of noise tend to deter the models from learn-

ing the correct mapping from video to audio. To alleviate

these issues, we clean a subset of the data, including sounds

of humans/animals and other natural sounds, by verifying

the presence of the target objects for both videos and audios

respectively (at 2 second intervals) to make them suitable

for the generation task (Sec. 3).

Our model learns a mapping from video frames to au-

dio using a video encoder plus sound generator structure.

For sound generation, we use a hierarchical recurrent neu-

ral network proposed by [14]. We present 3 variants to en-

code the visual information, which can be combined with

the sound generation network to form a complete frame-

work (Sec. 4). To evaluate the proposed models and the

generated results, we conduct both numerical evaluations

and human experiments (Sec. 5). Please see our supple-

mentary video to see and hear sound generation results.

The innovations introduced by our paper are: 1) We pro-

pose a new problem of generating sounds from videos in

the wild; 2) We release a dataset containing 28109 cleaned

videos (55 hours in total) spanning 10 object categories; 3)

We explore model variants for the generation architectures;

4) Numerical and human evaluations are provided as well

as an analysis of generated results.
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2. Related work

Video and sound self-supervision: The observation that

audio and video may provide supervision for each other has

drawn attention recently. [2, 16, 3, 9] make use of the con-

current property of video and sound as the supervision to

train a network using unlabeled data. [2] presents a two-

stream neural network which takes video frames and an

audio as inputs to determine whether there is a correspon-

dence (from one video) or not. The network is able to learn

both visual and sound semantics through unlabeled videos

in a unsupervised manner. Similarly, [9] predicts similarity

scores for input images and spoken audio spectrum to un-

derstand captions based on visual supervision. [3] trains a

network to embed visual and audio to learn a deep repre-

sentation of natural sound without ground truth labels. And

[16] predicts sound based on associated video frames, in-

stead of generating sound, the goal is to learn visual feature

with the guidance of sound clustering.

Speech synthesis: The task of speech synthesis is to gen-

erate human speech based on input text. Text to speech

(TTS) has been studied for a long time from traditional ap-

proaches [25, 11, 27, 24, 26] to deep learning based ap-

proaches [23, 14, 20], among which, WaveNet [23] has at-

tracted much attention due to the improved generation qual-

ity. WaveNet presents a convolutional neural networks with

dilation structure to predict new audio digits based on pre-

viously generated digits. SampleRNN [14] also achieves

appealing results in TTS, proposing a hierarchical recurrent

neural network (RNN) to recursively generate raw wave-

form samples temporally. Its hierarchical RNN structure

shows the potential to handle long sequence generation. A

follow-up work [20] demonstrates a novel Reader-Vocoder

model and uses SampleRNN [14] as the vocoder to generate

raw speech signals.

Mapping visual to sound: Instead of learning a repre-

sentation by taking advantage of the natural synchroniza-

tion property between visual and sound, the goal of [15, 4]

is to directly generate audio conditioned on input video

frames. Specifically, [15] predicts hitting sound based

on different materials of objects and physical interactions.

A dataset, Greatest Hits (human hit/scratch diverse ob-

jects using a drum stick), has been collected for this pur-

pose. [4] proposes two generation tasks Sound-to-Image

and Image-to-Sound networks using generative adversar-

ial network [8]. The data used to train the models shows

subjects playing various musical instruments indoor with

a fixed background. Recent work [28] presents a synthe-

sized audio-visual dataset built by physics/graphics/audio

engines. Fine-grained attributes have been controlled for

synthesis. Our work has a similar goal, but differs in that

instead of mapping visual to sound under constrained set-

tings, we train neural networks to directly synthesize wave-

form and handle more diverse and challenging real-world

scenarios.

3. Visually Engaged and Grounded AudioSet

(VEGAS)

The goal of this work is to generate realistic sound based

on video content and simple object activities. As mentioned

in Sec. 1, we do not explicitly handle high-level visual rea-

soning during sound prediction. For the training videos, we

expect visual and sound are directly related (predicting dog

sound when seeing a dog) most of the time.

Most existing video datasets [1, 12] include both video

and audio channels. However, they are typically intended

for visual understanding tasks, thus organized based on vi-

sual entities/events. A better choice for us is AudioSet [7],

a large-scale object-centric video dataset organized based

on audio events. Its ontology includes events such as fowl,

baby crying, engine sounds. Audioset consists of 10-second

video clips (with audios) from Youtube. The presence of

sounds has been manually verified. But as a dataset de-

signed for audio event detection, AudioSet still cannot per-

fectly fit our needs because of the following three reasons.

First, visual and sound are not necessarily directly related.

For instance, sometimes the source of a sound may be out

of frame. Second, the target sound might have been largely

covered by other noise like background music. Third, mis-

classification exists.

We ran several baseline models using the original data

and found that the generated sounds are not clean and often

accompanied with other noise like chaotic human chatting.

To make the data useful for our generation task, we select a

subset of videos from AudioSet and further clean them.

3.1. Data collection

We select 10 categories from AudioSet (each includ-

ing more than 1500 videos) for further cleaning. The se-

lected data includes human/animal sound as well as ambi-

ent sounds (specifically they are: Baby crying, Human snor-

ing, Dog, Water flowing, Fireworks, Rail transport, Printers,

Drum, Helicopter and Chainsaw). For the categories con-

taining more data than needed, we randomly select 3000

videos for each.

We use Amazon Mechanical Turk (AMT) for data clean-

ing, asking turkers to verify the presences of an object/event

of interest for the video clip in both the visual and audio

modalities. If both modalities are verified we consider it a

clean video. For most of the videos, noise does not dom-

inate for the entire videos. Therefore, to retain as much

data as possible, we segment each video into 2-second short

clips for separate labeling. For each short clip, we divide the

video and audio for independent annotation.

To clean the audio modality, we ask turkers to annotate

the presence of a sound from a target object (e.g. flowing
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different variations of encoding visual information and the

concrete systems in Sec. 4.2, Sec. 4.3 and Sec. 4.4.

4.1. Sound generator

Our goal is to directly synthesize waveform samples with

a generative model. As mentioned before, in order to ob-

tain audios of reasonable quality (i.e., sounds natural), we

adopt a high sampling rate at 16kHz. This requirement re-

sults in extremely long sequences, which poses challenges

to a sound generator. For this purpose, we choose the re-

cently proposed SampleRNN [14] as our sound generator.

SampleRNN is a hierarchically structured recurrent neural

network. Its coarse-to-fine structure enables the model to

generate extremely long sequences and the recurrent struc-

ture of each layer captures the dependency between distant

samples. SampleRNN has been applied to speech synthe-

sis and music generation tasks previously. Here we apply it

to generate natural sound for videos in the wild, which typi-

cally contain much larger variations, less structural patterns,

and more noise than speech or music data.

Specifically, Fig. 3(a) (upper-left corner brown box)

shows the simplified overview of the SampleRNN model.

Note, this simplified illustration shows 2 tiers, but more

tiers are possible (we use 3). This model consists of multi-

ple tiers, the fine tier (bottom layer) is a multilayer percep-

tron (MLP) which takes the output from the next coarser

tier (upper layer) and the previous k samples to generate a

new sample. During training, the waveform samples (real

numbers from -1 to 1) have been linearly quantized to inte-

gers ranging from 0 to 255, and the MLP of the finest tier

can be considered a 256-way classification to predict one

sample at each timestep (then mapped back to real values

for the final waveform). The coarser (upper) tiers are recur-

rent neural networks which can be a GRU [5], LSTM [10],

or any other RNN variants, and the nodes contain multi-

ple waveform samples (2 in this illustration), meaning that

this layer predicts multiple samples jointly at each time step

based on previous time steps and predictions from coarser

tiers. The green arrow represents the hidden state. Note that

we tried using the model from WaveNet [23] on the natural

sound generation task, but it sometimes failed to generate

meaningful sounds for categories like dog, and was out-

performed by SampleRNN consistently for all object cat-

egories. Therefore, we did not pursue it further. Due to

space limit, we omit the technical details of SampleRNN.

For more information regarding SampleRNN, please refer

to [14].

4.2. Frame­to­frame method

For the video encoder component, we first propose a

straight-forward frame-to-frame encoding method. We rep-

resent the video frames as xi = V (fi), where fi is the

ith frame and xi is the corresponding representation. Here,

V (.) is the operation to extract the fc6 feature of VGG19

network [18] which has been pre-trained on ImageNet [6]

and xi is a 4096-dimensional vector.

In this model, we encode the visual information by

uniformly concatenating the frame representation with the

nodes (samples) of the coarsest tier RNN of the sound

generator as shown in Fig. 3(b) (content in dotted green

box). Due to the difference of sampling rates between

the two modalities, to maintain the alignment between

them, for each xi, we duplicate it s times, so that vi-

sual and sound sequences have the same length. Here

s = ceiling[sraudio/srvideo], where sraudio is the sam-

pling rate of audio, srvideo is that of video. Note that we

only feed the visual features into the coarsest tier of Sam-

pleRNN because of the importance of this layer as it guides

the generation of all finer tiers as well as for computational

efficiency.

4.3. Sequence­to­sequence method

Our second model design has a sequence to sequence

type of architecture [22]. In this sequence-to-sequence

model, the video encoder and sound generator are clearly

separated, and connected via a bottleneck representation,

which feeds encoded visual information to the sound gen-

erator. As Fig. 3(c) (content in the middle red dotted box)

shows, we build a recurrent neural network to encode video

features. Here the same deep feature (fc6 layer of VGG19)

is used to represent video frames as in Sec. 4.2. After vi-

sual encoding (i.e., deep feature extraction and recurrent

processing), we use the last hidden state from the video en-

coder to initialize the hidden state of the coarsest tier RNN

of the sound generator, then sound generation starts. There-

fore the sound generation task becomes:

p(y1, ..., yn|x1, ..., xm) =
n∏

i=1

p(yi|H, y1, ..., yi−1) (2)

where H represents the last hidden state of the video en-

coding RNN or equivalently the initial hidden state of the

coarsest tier RNN of the sound generator.

Unlike the frame based model mention above, where we

explicitly enforce the alignment between video frames and

waveform samples. In this sequence-to-sequence model, we

expect the model to learn such alignment between the two

modalities through encoding and decoding.

4.4. Flow­based method

Our third model further improves the visual representa-

tion to better capture the content and motion in input videos.

As motivation for this variant, we argue that motion signals

in the visual domain, even though sometimes subtle, are

critical to synthesize realistic and well synchronized sound.

For instance, the barking sound should be generated at the
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Frame Seq Flow Real

Dog 57.29% 58.85% 63.02% 75.00%

Chainsaw 56.25% 57.03% 58.07% 70.31%

Water flowing 49.22% 52.34% 52.86% 59.90%

Rail transport 53.39% 56.51% 55.47% 66.14%

Fireworks 61.98% 67.97% 68.75% 79.17%

Printer 46.09% 50.52% 47.14% 60.16%

Helicopter 51.82% 54.95% 54.17% 58.33%

Snoring 51.82% 53.65% 54.95% 63.02%

Drum 55.21% 59.38% 62.24% 73.44%

Baby crying 52.60% 57.55% 56.77% 70.57%

Average 53.56% 56.88% 57.34% 67.60%

Table 4. Human evaluation results: visual relevance. Rows show

the selection accuracy for each category and their average. ‘Real’

stands for using original audios.

Frame Seq Flow Base Real

Dog 61.46% 64.32% 62.24% 54.69% 89.06%

Chainsaw 71.09% 73.96% 76.56% 68.23% 93.75%

Water flowing 70.83% 77.60% 81.25% 77.86% 87.50%

Rail transport 79.69% 83.33% 80.47% 74.74% 90.36%

Fireworks 76.04% 76.82% 78.39% 75.78% 94.01%

Printer 73.96% 73.44% 71.35% 75.00% 89.32%

Helicopter 71.61% 74.48% 78.13% 78.39% 91.67%

Snoring 67.71% 73.44% 73.18% 77.08% 90.63%

Drum 62.24% 64.58% 70.83% 59.64% 93.23%

Baby crying 57.29% 64.32% 61.20% 69.27% 94.79%

Average 68.69% 72.63% 73.36% 71.07% 91.43%

Table 5. Human evaluation results: real or fake task where people

judge whether a video-audio pair is real or generated. Percentages

indicate the frequency of a pair being judged as real.

achieve reasonable accuracy in some categories like Dog

and Fireworks (outperforming 50% chance by a large mar-

gin). For more ambient sound categories, the discrimination

task is challenging for both generated and real audio.

Real or fake determination: In this task, we would like to

see whether the generated audios can fool people into think-

ing that they are real. We provide instructions to the turkers

that the audio of the current video might be either real (orig-

inally belonging to this video) or fake (synthesis by comput-

ers). The criteria of being fake can be bad synchronization

or poor quality such as containing unpleasing noise. In ad-

dition to the generated results from our proposed methods,

we also include videos with the original audio as a control.

As an additional baseline, we also combine the video with

a random real audio from the same category. This baseline

is rather challenging as it uses real audios. Each evaluation

is performed by 3 turkers and we aggregate the votes.

The percentages for the audios being rated as real are

shown in Table. 5 for all methods including the baseline

(Base) and the real audio. Seq and Flow methods out-

perform the Frame method except for the printer category.

Unsurprisingly, Base achieves decent results on categories

that are insensitive to synchronization like Printer and Snor-

ing, but much worse than our methods on categories sensi-

tive to synchronization such as Dog and Drum. One of the

reasons that turkers consider some of the real cases as fake

is that a few original audios might include light background

music or other noise which appears not fitting with the vi-

sual content.

5.5. Additional experiments

Multi-category results: We test our multi-category model

on the VEGAS dataset by conducting the real/fake experi-

ment in Sec 5.4 and find on average 46.29% of the generated

sound can fool human (versus 73.63% of the best single-

category model). Note a random baseline is virtually 0%

as humans are very sensitive to sound. Another solution of

multi-category results can be achieved by utilizing the state-

of-the-art visual classification algorithms to get the category

label before applying the per-category models.

Comparison with [15]: [15] presents a CNN stacked with

RNN structure to predict sound features (cochleagrams) at

each time step, and audio samples are reconstructed by

example-based retrieval. We implement an upper bound

version by assuming the cochleagrams of ground truth

sound are given for test videos. And we retrieve the sound

from training data with the stride of 2s. This provides

a baseline stronger than the method in [15]. We do not

observe noticeable artifacts on the boundary of retrieved

sound segments, but the synthesized audio does not syn-

chronized very well with the visual content. We also con-

duct the same real/fake evaluation on the Dog and Drum cat-

egories, and the generated sound with this upper bound can

fool 40.16% and 43.75% of human subjects respectively,

which are largely outperformed by our results (64.32% and

70.83%).

On the other hand, we also test our model on the Great-

est Hits dataset from [15]. Note that our model has been

trained to generate much longer audios (10s) than those in

[15] (0.5s). We evaluate the model via a similar psychology

study as described in Sec 6.2 of [15]. 41.50% of our gener-

ated sounds are favored by humans over real sound, which is

competitive with the method in [15] that achieves 40.01%.

The experiments show the generalization capability of our

model.

6. Conclusion

In this work, we introduced the task of generating realis-

tic sound from videos in the wild. We created a dataset for

this purpose, sampled from the AudioSet collection, based

on which we trained three different visual-to-sound deep

network variants. We also provided qualitative, quantitative

and subjective experiments to evaluate the models and the

generated audio results. Evaluations show that over 70% of

the generated sound from our models can fool humans into

thinking that they are real. Future directions include explic-

itly recognizing and reasoning about objects in the video

during sound generation, and reasoning beyond the pixels

and temporal duration of the input frames for more contex-

tual generation.
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