


prehension model as a modular network, where different vi-

sual processing modules are triggered based on what infor-

mation is present in the referring expression.

Modular networks have been successfully applied to ad-

dress other tasks such as (visual) question answering [2, 3],

visual reasoning [8, 12], relationship modeling [10], and

multi-task reinforcement learning [1]. To the best our

knowledge, we present the first modular network for the

general referring expression comprehension task. More-

over, these previous work typically relies on an off-the-shelf

language parser [24] to parse the query sentence/question

into different components and dynamically assembles mod-

ules into a model addressing the task. However, the external

parser could raise parsing errors and propagate them into

model setup, adversely effecting performance.

Therefore, in this paper we propose a modular network

for referring expression comprehension - Modular Atten-

tion Network (MAttNet) - that takes a natural language ex-

pression as input and softly decomposes it into three phrase

embeddings. These embeddings are used to trigger three

separate visual modules (for subject, location, and relation-

ship comprehension, each with a different attention model)

to compute matching scores, which are finally combined

into an overall region score based on the module weights.

Our model is illustrated in Fig. 1. There are 3 main novel-

ties in MAttNet.

First, MAttNet is designed for general referring expres-

sions. It consists of 3 modules: subject, location and rela-

tionship. As in [13], a referring expression could be parsed

into 7 attributes: category name, color, size, absolute loca-

tion, relative location, relative object and generic attribute.

MAttNet covers all of them. The subject module handles

the category name, color and other attributes, the location

module handles both absolute and (some) relative location,

and the relationship module handles subject-object rela-

tions. Each module has a different structure and learns the

parameters within its own modular space, without affecting

the others.

Second, MAttNet learns to parse expressions automati-

cally through a soft attention based mechanism, instead of

relying on an external language parser [24, 13]. We show

that our learned “parser” attends to the relevant words for

each module and outperforms an off-the-shelf parser by a

large margin. Additionally, our model computes module

weights which are adaptive to the input expression, measur-

ing how much each module should contribute to the overall

score. Expressions like “red cat” will have larger subject

module weights and smaller location and relationship mod-

ule weights, while expressions like “woman on left” will

have larger subject and location module weights.

Third, we apply different visual attention techniques in

the subject and relationship modules to allow relevant atten-

tion on the described image portions. In the subject mod-

ule, soft attention attends to the parts of the object itself

mentioned by an expression like “man in red shirt” or “man

with yellow hat”. We call this “in-box” attention. In con-

trast, in the relationship module, hard attention is used to

attend to the relational objects mentioned by expressions

like “cat on chair” or “girl holding frisbee”. Here the atten-

tion focuses on “chair” and “frisbee” to pinpoint the target

object “cat” and “girl”. We call this “out-of-box” attention.

We demonstrate both attentions play important roles in im-

proving comprehension accuracy.

During training, the only supervision is object proposal,

referring expression pairs, (oi, ri), and all of the above are

automatically learned in an end-to-end unsupervised man-

ner, including the word attention, module weights, soft spa-

tial attention, and hard relative object attention.

We demonstrate MAttNet has significantly superior

comprehension performance over all state-of-the-art meth-

ods, achieving ∼10% improvements on bounding-box lo-

calization and almost doubling precision on pixel segmen-

tation.

2. Related Work

Referring Expression Comprehension: The task of refer-

ring expression comprehension is to localize a region de-

scribed by a given referring expression. To address this

problem, some recent work[19, 32, 20, 11, 18] uses CNN-

LSTM structure to model P (r|o) and looks for the object o

maximizing the probability. Other recent work uses joint

embedding model [22, 26, 16, 4] to compute P (o|r) di-

rectly. In a hybrid of both types of approaches, [33] pro-

posed a joint speaker-listener-reinforcer model that com-

bined CNN-LSTM (speaker) with embedding model (lis-

tener) to achieve state-of-the-art results.

Most of the above treat comprehension as bounding box

localization, but object segmentation from referring ex-

pression has also been studied in some recent work [9,

15]. These papers use FCN-style [17] approaches to per-

form expression-driven foreground/background classifica-

tion. We demonstrate that in addition to bounding box pre-

diction, we also outperform previous segmentation results.

Modular Networks: Neural module networks [3] were in-

troduced for visual question answering. These networks

decompose the question into several components and dy-

namically assemble a network to compute an answer to

the given question. Since their introduction, modular net-

works have been applied to several other tasks: visual rea-

soning [8, 12], question answering [2], relationship model-

ing [10], multitask reinforcement learning [1], etc. While

the early work [3, 12, 2] requires an external language

parser to do the decomposition, recent methods [10, 8] pro-

pose to learn the decomposition end-to-end. We apply this

idea to referring expression comprehension, also taking an

end-to-end approach bypassing the use of an external parser.
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RefCOCO RefCOCO+ RefCOCOg

feature val testA testB val testA testB val* val test

1 Mao [19] vgg16 - 63.15 64.21 - 48.73 42.13 62.14 - -

2 Varun [20] vgg16 76.90 75.60 78.00 - - - - - 68.40

3 Luo [18] vgg16 - 74.04 73.43 - 60.26 55.03 65.36 - -

4 CMN [10] vgg16-frcn - - - - - - 69.30 - -

5 Speaker/visdif [32] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 59.40 - -

6 Listener [33] vgg16 77.48 76.58 78.94 60.50 61.39 58.11 71.12 69.93 69.03

7 Speaker+Listener+Reinforcer [33] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

8 Speaker+Listener+Reinforcer [33] vgg16 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72

9 MAttN:subj(+attr)+loc(+dif)+rel vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.79

10 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 83.54 82.66 84.17 68.34 69.93 65.90 - 76.63 75.92

11 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 85.65 85.26 84.57 71.01 75.13 66.17 - 78.10 78.12

Table 1: Comparison with state-of-the-art approaches on ground-truth MS COCO regions.

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 Matching:subj+loc 79.14 79.42 80.42 62.17 63.53 59.87 70.45 70.92

2 MAttN:subj+loc 79.68 80.20 81.49 62.71 64.20 60.65 72.12 72.62

3 MAttN:subj+loc(+dif) 82.06 81.28 83.20 64.84 65.77 64.55 75.33 74.46

4 MAttN:subj+loc(+dif)+rel 82.54 81.58 83.34 65.84 66.59 65.08 75.96 74.56

5 MAttN:subj(+attr)+loc(+dif)+rel 83.54 82.66 84.17 68.34 69.93 65.90 76.63 75.92

6 MAttN:subj(+attr+attn)+loc(+dif)+rel 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12

7 parser+MAttN:subj(+attr+attn)+loc(+dif)+rel 80.20 79.10 81.22 66.08 68.30 62.94 73.82 73.72

Table 2: Ablation study of MAttNet using different combination of modules. The feature used here is res101-frcn.

S(oi|r) for each proposal/object given the input expression

r, and pick the one with the highest score. For evalua-

tion, we compute the intersection-over-union (IoU) of the

selected region with the ground-truth bounding box, con-

sidering IoU > 0.5 a correct comprehension.

First, we compare our model with previous methods us-

ing COCO’s ground-truth object bounding boxes as propos-

als. Results are shown in Table. 1. As all of the previous

methods (Line 1-8) used a 16-layer VGGNet (vgg16) as the

feature extractor, we run our experiments using the same

feature for fair comparison. Note the flat fc7 is a single

4096-dimensional feature which prevents us from using the

phrase-guided attentional pooling in Fig. 3, so we use aver-

age pooling for subject matching. Despite this, our results

(Line 9) still outperform all previous state-of-the-art meth-

ods. After switching to the res101-based Faster R-CNN

(res101-frcn) representation, the comprehension accuracy

further improves another ∼3% (Line 10). Note our Faster

R-CNN is pre-trained on COCO’s training images, exclud-

ing those in RefCOCO, RefCOCO+, and RefCOCOg’s vali-

dation+testing. Thus no training images are seen during our

evaluation3. Our full model (Line 11) with phrase-guided

attentional pooling achieves the highest accuracy over all

others by a large margin.

Second, we study the benefits of each module of MAt-

tNet by running ablation experiments (Table. 2) with the

3Such constraint forbids us to evaluate on RefCOCOg’s val* using the

res101-frcn feature in Table 1.

same res101-frcn features. As a baseline, we use the con-

catenation of the regional visual feature and the location

feature as the visual representation and the last hidden out-

put of LSTM-encoded expression as the language represen-

tation, then feed them into the matching function to obtain

the similarity score (Line 1). Compared with this, a simple

two-module MAttNet using the same features (Line 2) al-

ready outperforms the baseline, showing the advantage of

modular learning. Line 3 shows the benefit of encoding

location (Sec. 3.2.2). After adding the relationship mod-

ule, the performance further improves (Line 4). Lines 5

and Line 6 show the benefits brought by the attribute sub-

branch and the phrase-guided attentional pooling in our sub-

ject module. We find the attentional pooling (Line 6) greatly

improves on the person category (testA of RefCOCO and

RefCOCO+), demonstrating the advantage of modular at-

tention on understanding localized details like “girl with red

hat”.

Third, we tried training our model using 3 hard-coded

phrases from a template language parser [13], shown in

Line 7 of Table. 2, which is ∼5% lower than our end-to-

end model (Line 6). The main reason for this drop is errors

made by the external parser which is not tuned for referring

expressions.

Fourth, we show results using automatically detected ob-

jects from Faster R-CNN, providing an analysis of fully au-

tomatic comprehension performance. Table. 3 shows the

ablation study of fully-automatic MAttNet. While perfor-
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RefCOCO RefCOCO+ RefCOCOg

detector val testA testB val testA testB val test

1 Speaker+Listener+Reinforcer [33] res101-frcn 69.48 73.71 64.96 55.71 60.74 48.80 60.21 59.63

2 Speaker+Listener+Reinforcer [33] res101-frcn 68.95 73.10 64.85 54.89 60.04 49.56 59.33 59.21

3 Matching:subj+loc res101-frcn 72.28 75.43 67.87 58.42 61.46 52.73 64.15 63.25

4 MAttN:subj+loc res101-frcn 72.72 76.17 68.18 58.70 61.65 53.41 64.40 63.74

5 MAttN:subj+loc(+dif) res101-frcn 72.96 76.61 68.20 58.91 63.06 55.19 64.66 63.88

6 MAttN:subj+loc(+dif)+rel res101-frcn 73.25 76.77 68.44 59.45 63.31 55.68 64.87 64.01

7 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 74.51 77.81 68.39 62.13 66.33 55.75 65.33 65.19

8 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01

9 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-mrcn 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27

Table 3: Ablation study of MAttNet on fully-automatic comprehension task using different combination of modules. The

features used here are res101-frcn, except the last row using res101-mrcn.

RefCOCO

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [15] res101-DeepLab val 42.99 33.24 22.75 12.11 2.23 45.18

MAttNet res101-mrcn val 75.16 72.55 67.83 54.79 16.81 56.51

D+RMI+DCRF [15] res101-DeepLab testA 42.99 33.59 23.69 12.94 2.44 45.69

MAttNet res101-mrcn testA 79.55 77.60 72.53 59.01 13.79 62.37

D+RMI+DCRF [15] res101-DeepLab testB 44.99 32.21 22.69 11.84 2.65 45.57

MAttNet res101-mrcn testB 68.87 65.06 60.02 48.91 21.37 51.70

RefCOCO+

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [15] res101-DeepLab val 20.52 14.02 8.46 3.77 0.62 29.86

MAttNet res101-mrcn val 64.11 61.87 58.06 47.42 14.16 46.67

D+RMI+DCRF [15] res101-DeepLab testA 21.22 14.43 8.99 3.91 0.49 30.48

MAttNet res101-mrcn testA 70.12 68.48 63.97 52.13 12.28 52.39

D+RMI+DCRF [15] res101-DeepLab testB 20.78 14.56 8.80 4.58 0.80 29.50

MAttNet res101-mrcn testB 54.82 51.73 47.27 38.58 17.00 40.08

RefCOCOg

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

MAttNet res101-mrcn val 64.48 61.52 56.50 43.97 14.67 47.64

MAttNet res101-mrcn test 65.60 62.92 57.31 44.44 12.55 48.61

Table 4: Comparison of segmentation performance on RefCOCO, RefCOCO+, and our results on RefCOCOg.

mance drops due to detection errors, the overall improve-

ments brought by each module are consistent with Table. 2,

showing the robustness of MAttNet. Our results also out-

perform the state-of-the-art [33] (Line 1,2) with a big mar-

gin. Besides, we show the performance when using the de-

tector branch of Mask R-CNN [6] (res101-mrcn) in Line 9,

whose results are even better than using Faster R-CNN.

Finally, we show some example visualizations of com-

prehension using our full model in Fig. 6 as well as visu-

alizations of the attention predictions. We observe that our

language model is able to attend to the right words for each

module even though it is learned in a weakly-supervised

manner. We also observe the expressions in RefCOCO and

RefCOCO+ describe the location or details of the target ob-

ject more frequently while RefCOCOg mentions the rela-

tionship between target object and its surrounding object

more frequently, which accords with the dataset property.

Note that for some complex expressions like “woman in

plaid jacket and blue pants on skis” which contains sev-

eral relationships (last row in Fig. 6), our language model

is able to attend to the portion that should be used by the

“in-box” subject module and the portion that should be used

by the “out-of-box” relationship module. Additionally our

subject module also displays reasonable spatial “in-box” at-

tention, which qualitatively explains why attentional pool-

ing (Table. 2 Line 6) outperforms average pooling (Table. 2

Line 5). For comparison, some incorrect comprehension

are shown in Fig. 7. Most errors are due to sparsity in the

training data, ambiguous expressions, or detection error.

4.3. Segmentation from Referring Expression

Our model can also be used to address referential ob-

ject segmentation [9, 15]. Instead of using Faster R-
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RefCOCO

Model Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [15] val 42.99 33.24 22.75 12.11 2.23 45.18

MAttNet+GrabCut val 51.25 41.89 29.77 17.13 5.38 42.86

D+RMI+DCRF [15] testA 42.99 33.59 23.69 12.94 2.44 45.69

MAttNet+GrabCut testA 52.94 42.60 27.68 13.29 2.92 44.37

D+RMI+DCRF [15] testB 44.99 32.21 22.69 11.84 2.65 45.57

MAttNet+GrabCut testB 47.18 38.27 29.97 20.35 7.85 40.71

RefCOCO+

Model Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [15] val 20.52 14.02 8.46 3.77 0.62 29.86

MAttNet+GrabCut val 45.24 37.09 26.51 14.95 4.34 37.18

D+RMI+DCRF [15] testA 21.22 14.43 8.99 3.91 0.49 30.48

MAttNet+GrabCut testA 47.10 37.86 24.66 11.67 2.27 38.32

D+RMI+DCRF [15] testB 20.78 14.56 8.80 4.58 0.80 29.50

MAttNet+GrabCut testB 38.52 31.13 24.44 16.71 6.20 33.30

Table 6: Comparison of referential segmentation performance between D+RMI+DCRF [15] and MatNet+GrabCut.

per [6], with several differences: 1) We sample R = 256
regions from N = 1 image during each forward-backward

propagation due to the constraint of single GPU, while [6]

samples R = 128 regions from N = 16 images using 8

GPUs. 2) During training, the shorter edge of our resized

image is 600 pixels instead of 800 pixels, for saving mem-

ory. 3) Our model is trained on a union of COCO’s 80k train

and 35k subset of val (trainval35k) images excluding the

val/test (valtest4k) images in RefCOCO, RefCOCO+ and

RefCOCOg.

We firstly show the comparison between Faster R-CNN

and Mask R-CNN on object detection in Table. 7. Both

models are based on ResNet101 and were trained using

same setting. In the main paper, we denote them as res101-

frcn and res101-mrcn respectively. It shows that Mask R-

CNN has higher AP than Faster R-CNN due to the multi-

task training (with additional mask supervision).

net AP bb AP bb
50

AP bb
75

res101-frcn 34.1 53.7 36.8

res101-mrcn 35.8 55.3 38.6

Table 7: Object detection results.

net AP AP50 AP75

res101-mrcn (ours) 30.7 52.3 32.4

res101-mrcn [6] 32.7 54.2 34.0

Table 8: Instance segmentation results.

We then compare our Mask R-CNN implementation

with the original one [6] in Table 8. Note this is not a strictly

fair comparison as our model was trained with fewer im-

ages. Overall, the AP of our implementation is ∼2 points

lower. The main reason may due to the shorter 600-pixel

edge setting and smaller training batch size. Even though,

our pixel-wise comprehension results already outperform

the state-of-the-art ones with a huge margin (see Table. 4,

and we believe there exists space for further improvements.

A.6. More Examples

We show more examples of comprehension using our

full model in Fig. 10 (RefCOCO), Fig. 11 (RefCOCO+) and

Fig. 12 (RefCOCOg). For each example, we show the in-

put image (1st column), the input expression with our pre-

dicted module weights and word attention (2nd column),

the subject attention (3rd column) and top-5 attributes (4th

column), box-level comprehension (5th column), and pixel-

wise segmentation (6th column). As comparison, we also

show some incorrect comprehension in Fig. 13.
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