Software Protection on the Go: A Large-Scale Empirical Study on
Mobile App Obfuscation

Pei Wang®
pxw172@ist.psu.edu
The Pennsylvania State
University

Qinkun Bao
qub14@ist.psu.edu
The Pennsylvania State
University

Zhaofeng Chen

chenzhaofeng@baidu.com
Baidu X-Lab

ABSTRACT

The prosperity of smartphone markets has raised new concerns
about software security on mobile platforms, leading to a grow-
ing demand for effective software obfuscation techniques. Due to
various differences between the mobile and desktop ecosystems, ob-
fuscation faces both technical and non-technical challenges when
applied to mobile software. Although there have been quite a few
software security solution providers launching their mobile app
obfuscation services, it is yet unclear how real-world mobile devel-
opers perform obfuscation as part of their software engineering
practices.

Our research takes a first step to systematically studying the
deployment of software obfuscation techniques in mobile software
development. With the help of an automated but coarse-grained
method, we computed the likelihood of an app being obfuscated
for over a million app samples crawled from Apple App Store. We
then inspected the top 6600 instances and managed to identify
601 obfuscated versions of 539 iOS apps. By analyzing this sample
set with extensive manual effort, we made various observations
that reveal the status quo of mobile obfuscation in the real world,
providing insights into understanding and improving the situation
of software protection on mobile platforms.

CCS CONCEPTS

- Software and its engineering — Software reverse engineer-
ing; « Security and privacy — Software security engineering;
Mobile and wireless security;

KEYWORDS

obfuscation, reverse engineering, mobile app, empirical study

“Part of the research was done during an internship at Baidu X-Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180169

Tao Wei
lenx@baidu.com
Baidu X-Lab

Li Wang
lzw158@ist.psu.edu
The Pennsylvania State
University

Shuai Wang
szw175@ist.psu.edu
The Pennsylvania State
University

Dinghao Wu
dwu@ist.psu.edu
The Pennsylvania State
University

ACM Reference Format:

Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei,
and Dinghao Wu. 2018. Software Protection on the Go: A Large-Scale Em-
pirical Study on Mobile App Obfuscation. In ICSE ’18: 40th International Con-
ference on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180169

1 INTRODUCTION

Concerns on security breaches targeting mobile apps have kept
rising in past years. It was reported the piracy rates of popular
mobile apps can approach to 60-95% [7]. Research by Gibler et al.
found that a surprisingly large portion of mobile applications are
“copies” of others [19]. Besides these traditional intellectual prop-
erty theft problems, the industry is also facing new security threats
as there are now many businesses heavily relying on mobile devices
to operate, among which the fraudulent and malicious campaigns
conducted through automatically manipulating a massive number
of mobile devices [14] are particularly harmful to the mobile ecosys-
tems. From a technical point of view, reverse engineering mobile
apps in general takes less effort than traditional desktop software,
due to the wide use of reflective programming languages like Java
and Objective-C and the regulated binary structures restricted by
the mobile hardware and software environments. The soaring of
unprecedented security challenges and the lack of natural defenses
call have driven mobile developers to seek additional protections.

One of the most important software protection technologies
is software obfuscation, which is a kind of semantics-preserving
program transformations that aim to make software code more
difficult for automated tools and humans to analyze. Although
obfuscation-related research topics have been intensively studied
for decades, most previous work focuses on in-lab technical analysis
of the effectiveness of new obfuscation techniques [22, 35, 40, 42, 43]
or countermeasures against obfuscation when it is misused by
malware writers [13, 45]. As far as we have learned, little emphasis is
put on investigating how benign software authors take obfuscation
as part of their development process in the real world, which is
critical for software obfuscation techniques to be practical. To push
this line of research forward, we aim to investigate the answers
to the following important research questions: RQ1: What are the
characteristics of obfuscated mobile apps?; RQ2: In what patterns
are mobile apps typically obfuscated?; RQ3: How does app review

affect the adoption of obfuscation?; and RQ4: How resilient are the
obfuscated apps to malicious reverse engineering?

To develop meaningful conclusions, it is most adequate to con-
duct an empirical study on a reasonably large set of recently de-
veloped and supposedly benign mobile apps obfuscated by their
vendors. Unfortunately, there is no such a data set available for pub-
lic access, so we decided to collect samples independently. There are
currently two major platforms in mobile software markets, i.e., iOS
and Android. Although they share many common characteristics,
there are also notable differences. Some previous research has indi-
rectly or implicitly touched the topic of mobile app obfuscation, but
the focus is mostly on Android. For example, the study by Zhou and
Jiang on Android malware revealed some obfuscated samples [47].
Linares-Vasquez et al. [26] and Glanz et al. [20] investigated An-
droid app repacking, with the potential disturbance of obfuscation
considered. On the other hand, the iOS platform received notably
less attention which mismatches its share in the market. With over
a billion iOS mobile devices sold, there are reportedly millions of
software programmers working on iOS app development. In this
study, we chose to work on i0S for a dual purpose of filling in the
blank of empirical studies on mobile app obfuscation and enriching
scientific research on this important mobile platform.

To obtain a representative sample set, we crawled 1, 145, 582
free i0S app instances from the official Apple App Store. We then
estimated the likelihood of each instance being obfuscated based
on a variant of a statistical language model previously proposed
for studying software source code [21, 27]. We picked the top 6600
most likely obfuscated samples and identified 539 that are truly
obfuscated with manual verification. For each sample, we further
conducted in-depth investigations to understand how obfuscation
was applied. In general, effectively analyzing a large amount of ob-
fuscated binary code can be extremely difficult, since most existing
program analysis techniques have either scalability or accuracy
issues regarding obfuscated code. Moreover, analyzing iOS apps
has its own unique challenges, one of which is caused by the wide
use of statically linked third-party libraries [16]. To overcome these
obstacles altogether, our study combined automated analysis with a
considerable amount of manual effort from knowledgeable software
reverse engineers with industry experience. After examining all the
samples, we formulated 8 findings regarding the proposed research
questions.

In summary, we made the following contributions in this re-
search:

e We are the first to conduct a comprehensive empirical study
targeting mobile software obfuscation. Our research focuses
on iOS, an influential mobile platform that did not receive
enough attention from the academia in contrast to Android.

e We developed a scalable detection algorithm to estimate the
likelihood of an iOS app being obfuscated and applied it to a
large quantity of apps crawled from App Store. After man-
ually analyzing the 6600 most likely obfuscated instances,
we identified 539 truly obfuscated iOS apps with a total of
601 different versions. As far as we know, this is the first
scientifically collected sample set of obfuscated iOS mobile
apps. We plan to share these samples with the community
in the future.

e To overcome the limitations of existing automated software
analysis on obfuscated binaries, we invested over 600 man-
hours in manually examining the obfuscated iOS apps, ex-
tracting detailed information about how these apps are pro-
tected by different obfuscation algorithms. The human effort
assured the accuracy of our analysis and therefore the credi-
bility of our findings.

e We made various observations about the characteristics of
obfuscated apps, the obfuscation patterns applied, and their
resilience to reverse engineering. Our findings can shed light
on future research on mobile software protection.

2 BACKGROUND
2.1 Significance of the Problem

Obfuscation is one of the most important software protection tech-
niques that prevent software from being reverse engineered ma-
liciously. The status of its application and presence among pub-
lished software is closely related to the state of security in a soft-
ware ecosystem. Previous research on mobile software engineer-
ing revealed that obfuscation has been a common practice on An-
droid [24, 26, 47], yet the figure for iOS is mostly missing.

Since i0S is typically considered a more secure system than An-
droid for being more closed, it may be susceptible that obfuscation
on iOS could be as prevalent as on Android. However, some recent
security incidents have shown that with the help of production-
quality binary analysis tools like IDA Pro [2], iOS reverse engineer-
ing is not as difficult as it is generally recognized. For example, it
is found that i0S developers similarly suffer from severe software
piracy issues like Android developers [7]. It is also reported that
there have been popular iOS apps being repackaged with malicious
payload for stealing sensitive user data [17]. To help iOS develop-
ers counter these threats, some reputed software security solution
providers have launched their i0S app obfuscation services [9].

For more secure iOS software engineering, it is imperative to
obtain a thorough understanding about the current practice of ap-
plying obfuscation in iOS app development. The benefits of such an
understanding are two-fold: vendors of obfuscation tools can better
tune their development based on the status quo, while researchers
interested in analyzing iOS app repositories can grasp a sense about
when and how obfuscation may affect their analysis.

2.2 Technical Challenges of the Study

Despite both being mobile platforms, iOS and Android are dras-
tically different in many technical aspects. As a result, our study
faces unprecedented challenges that need not to be considered by
similar work targeting Android.

2.2.1 Obfuscation Detection and Analysis. Detecting and analyz-
ing obfuscated binaries has long been an open research problem and
is still being actively studied [12, 29, 36]. To date, the accuracy of
automated obfuscation detection is not satisfying enough to fit our
demand. Therefore, we decided to undertake manual analysis as the
major research methodology of the study, with some light-weight
automated methods as assistance. Unlike Android developers that
can use an app obfuscator embedded into the official development
toolchain [8], iOS developers do not get any receive official support,

thus having to rely on third-party tools or self-made obfuscators.
Considering the large number of obfuscation techniques potentially
available, it is impractical for an empirical study relying on manual
effort to cover all of them. This poses another challenge, requiring
us to identify a group of obfuscation techniques analyzable with
our limited labor yet representative enough.

2.2.2 Static Third-Party Libraries. Third-party libraries have
been an indispensable part of mobile apps. It is possible that an
app “accidentally” got obfuscated due to the inclusion of obfuscated
libraries without the awareness of app developers. Our analysis
needs to capture such situations to avoid drawing biased conclu-
sions. Unlike Android apps that are written in Java, iOS apps are
written in languages that are more static, e.g., C, C++, Objective-C,
and Swift. Due to Apple’s security policies, iOS apps cannot use
dynamic libraries from other vendors until iOS 8, meaning all third-
party libraries have to be statically linked into app executables. The
consequence is that there is no clear boundary between library
code and an app’s own code, making library detection in iOS apps
a unique challenge [16, 33]. This is completely different from the
library identification problem on Android, where application code
is naturally assorted through the Java package hierarchy.

3 METHODOLOGY

We adopted a three-step process to conduct the empirical study.
The first step is to select a representative collection of obfuscation
techniques to consider, for reasons explained in Section 2.2.1. The
second step is to search for a reasonably large set of iOS apps that
are obfuscated before release. To date, there is no such a publicly
available data set. Mining obfuscated samples from benign iOS apps
is one of the major contributions of our work. For the third step,
we inspect each obfuscated app in more depth and aggregate the
harvested information to deduce empirical findings.

3.1 Considered Obfuscations

After decades of development, there are now numerous obfuscation
techniques available. A comprehensive review by Schrittwieser et
al. [37] included 22 classes of obfuscation methods proposed by
previous research. For this study, we would like to focus on obfus-
cations popular among mobile developers and therefore worthy
of in-depth investigation. We used Google to search for commer-
cial and open source tools that can obfuscate iOS applications. By
studying the statements and technical white papers of the top 10
results, we identified four families of obfuscations that are most
widely supported, i.e., symbol renaming, exotic string encoding,
control flow flattening, and decompilation disruption. Compared
to all known obfuscation algorithms, this is a relatively small set,
with the major reason being that the unique hardware and software
environment on iOS devices imposes strict restrictions on the form
of executable code. For example, iOS does not allow normal user
applications to dynamically generate executable code, rendering
self-modifying obfuscation technically impossible to implement. A
graphical illustration of the four obfuscation algorithm families is
given by Figure 1 while the technical details are briefly introduced
as follows.

Symbol Renaming. It is recommended by common software en-
gineering practices that programmers should make sensible names

for functions and variables symbols. The preferred programming
languages for developing iOS apps, i.e., Objective-C and Swift, are
reflective or partially reflective. Therefore, names of many global
symbols have to be retained in the distributed binaries to support
by-name function dispatching at run time. Symbol renaming scram-
bles these names to prevent information leakage.

Exotic String Encoding. String literals sometimes disclose im-
portant information about the software. Some obfuscation algo-
rithms convert string literals into representations that are not un-
derstandable by humans. The converted strings are decoded before
use during run time.

Decompilation Disruption. It is common for obfuscations to
prevent the recovery of high-level program structures from binary
code. Typical methods of this kind include interleaving code and
data to disturb disassembly, inserting opaque predicates to forge
invalid control flows, and employing certain machine instruction
patterns in unconventional ways to confuse decompilers.

Control Flow Flattening. This technique “flattens” the orig-
inal control flow graph of a function by rewriting the procedure
into a huge switch-like structure [23]. This makes the logical links
between basic blocks obscure.

3.2 Mining Obfuscated iOS Apps

To obtain a reasonably large sample set without being biased, our
collection starts with the entire Apple App Store. However, it should
be noted that we do not aim to find all obfuscated apps in the store.

From February to October in 2016, we crawled 1, 145, 582 free
i0S app instances, including different versions of the same app. We
then try to identify apps that are obfuscated by at least one of the
four families of algorithms in Section 3.1. Ideally, we could run
automated detection over all the crawled apps for each obfuscation
technique subsumed by the four families. However, obfuscation
detection itself is a non-trivial task and is still being actively re-
searched [11, 29, 31, 34]. For many obfuscation algorithms consid-
ered by our study, it is prohibitively expensive, if possible at all, to
automatically detect their presence in over a million instances.

To tackle this problem, we identify a baseline obfuscation algo-
rithm which is supposed to be the most widely adopted in mobile
development. If developers indeed consider protecting their prod-
ucts, it is very likely that more than one obfuscation algorithm
will be employed. In such cases, detecting the baseline obfuscation
can help us identify the heavily obfuscated samples. Based on this
insight, we developed an automated method to identify scrambled
symbol names, since symbol renaming is considered by a large vol-
ume of previous research the most prevalent obfuscation method
on mobile platforms [13, 24, 26]. In practice, symbol name scram-
bling imposes little execution cost while being highly effective in
disturbing manual analysis.

Details of the detection algorithm are presented in Section 4.
After running the algorithm for all crawled app instances, we ob-
tained the likelihood of each app being obfuscated by symbol name
scrambling. Based on the available man-labor, we examined the top
6600 most likely obfuscated samples, of which 601 are conformed
to be true positives by manual verification. These samples, which
can be further grouped into 539 applications identified by a unique
ID assigned by App Store, are taken as the data set for subsequent

Qinterface Person: NSObject const char xstrl = "A_plain_string";
@property NSString *name; <7 :ﬂ:ﬁ
@property int age; i
@property NSString waddr; // string xor masked by Oxab | &
Qend const char *strl = l

v "\xea\x8b\xdb\xc7\xca\xc2\xc5\x8b" |

"\xd8\xdf\xd9\xc2\xc5\xcc\x85";
Qinterface A1Ji09: NSObject wvoid decode (const char xs, char xd)
@property NSString xKJihad; {

@property int z9%kmV; while (*s) =*d++ = xs++ ~ Oxab; LaTaze
@property NSString +Nm23d; «*d = 0;
Qend }

(a) Symbol renaming (b) Exotic string encoding

"'

MOV W10, #0x10000
STR W10, [X9,#dword 1
Warning * x|

Decompilation failure:
100147ECB: positive sp value has been found

Please refer to the manual to find appropriate actions

Don't display this message again (for this session only)

/

ok | |

L= switch |
e T s A/]T‘\‘
O = 0y
(c) Decompilation disruption (d) Control flow flattening

Figure 1: Illustration of obfuscation techniques considered in the study

Crawl Apps from App Store Manual Verification

1,145,582 instances 601 versions of 539 apps

Automated Baseline Obfuscation Detection

pick top 6600 positives’

The 6600 cut off is based on the maximum labor available for manual verification

Figure 2: Workflow for sampling obfuscated iOS apps

study. This sampling process is illustrated by Figure 2. We again
emphasize that these 601 samples should not be regarded as all the
obfuscated apps among the 1,145, 582 crawled instances. We set the
cut off at 6600 to bound the manual work within a manageable
amount.

3.3 Per-App Inspection

In addition to symbol scrambling, we need to further confirm what
other obfuscation techniques were applied to the apps. This step
needs to be conducted manually to achieve the highest possible
accuracy. To assure the consistency across the results from different
inspectors, we developed a set of elaborate protocols to standardize
the inspection process.

3.3.1 Detecting Obfuscation. To detect the presence of anti-
decompilation obfuscation techniques, we use IDA Pro [2], a com-
mercial integrated reverse engineering environment that has been
widely regarded as the de facto industry standard for analyzing
binary code. IDA Pro can automatically dissect a binary executable
into functions and translate the assembly code of each function to
a high-level representation similar to C. We consider that a binary
is protected by anti-decompilation techniques if IDA Pro reports
too many failures. All results were manually validated.

To identify flattened control flows, we developed a binary analy-
sis framework to disassemble app binaries and construct the control
flow graph (CFG) of each function in a binary. If a CFG is flattened,
most of its basic blocks will be included by a single loop, which can
be captured by a standard loop detection algorithm [30]. Also, the

“diameter” of the loop, which is defined as maximum length of the
shortest path from the loop header to other basic blocks, should be
of the logarithmic order of the total number of all basic blocks in
the loop. Based on these two characteristics, we can find functions
with flattened control flows.

For exotic string encoding, it is hard to develop automatic de-
tection methods since there is no standard implementation of such
techniques. In i0S executable binaries, string literals are stored in
dedicated regions. We scan these regions for character sequences
that cannot be decoded, or those that can be normally decoded but
do not seem to possess reasonable meanings. We then manually
investigate how these sequences are utilized in the code and see if
they are transformed by an ad hoc decoding procedure at certain
program points.

3.3.2 Identifying Obfuscated Third-Party Libraries. Asintroduced
in Section 2.2.2, we need additional manual effort to identify third-
party libraries in the examined iOS apps if the library code contains
any obfuscation by themselves. We decide if an obfuscated code
region belongs to some third-party library by observing whether
there are similar code patterns appearing in multiple samples de-
veloped by different vendors. Typical signatures of code patterns
include control flow graphs, special algorithms, and uncommon
data structures. Once a library is detected, we try to identify its
origin through public information searching, with clues such as
names of library APIs and special string literals, e.g., strings used
for logging and generating crash reports. Some libraries do not
provide even the most subtle information that can help reveal their
identities. In such cases, we extracted the semantic signatures of ob-
fuscated code, e.g., control flow patterns and unique data structures,
and check if they appear in different apps.

3.4 Cross-Validation

To ensure the accuracy and consistency of manual analysis, the
two authors performing per-app inspections were first asked to
independently examine the same 50 app instances in the sample set
and compare their results. Divergences among results from different
authors were discussed until an agreement was reached. The two
authors then independently analyzed another 25 apps, based on
the regulations made in the previous discussions. For the second
round, the inspection results were consistent for all 25 apps. In this

way, we established a highly accurate and cross-validated protocols
for the manual analysis on obfuscated iOS apps.

4 DETECTING SYMBOL OBFUSCATION

In practice, obfuscation tends to replace human-made symbols with
randomly generated gibberish which can be detected by natural
language processing (NLP) techniques. Previous research discov-
ered that human-written source code is “natural” in the sense that
it can be described by statistical language models [21]. Based on
this insight, “unnatural” symbol names are possibly obfuscated.

4.1 An NLP-Based Detection Model

In NLP, the perplexity measure is used to quantify how “surprising”
it is for a sequence of words to appear within a statistical language
model. Oftentimes, the log-transformed version of perplexity, called
cross-entropy, is more preferable in the literature. Given a word
sequence s = xj - - - x} of length k and a language model M, the
cross-entropy of s within M is defined as

k
Hpa(s) =~ " logy Plxiber, -+ xi-1) <1)

i=1
We use cross-entropy to capture the naturalness of an identifier.
Intuitively, lower Ha4(s) means s is more natural within M. In
particular, we adopt the n-gram language model that assumes the
word sequences suit an (n—1)-order Markov process. Historically, n-
gram has been utilized in various software engineering applications,
including automated code completion [21] and bug detection [41].
Within an n-gram model, the definition of cross-entropy can be

further formulated as

k
Hugram(®) =~ 3 logy Pxil i oy - oxict) (@)
k i=1

A notable difference between our method and previous work is
that our statistical language model is applied to individual identi-
fiers rather than sequences of terms. As a consequence, we need to
first segment an identifier into several parts before fitting it to an
n-gram model. Naturally, we adopt the segmentation that makes
most sense within the n-gram model by enumerating all possibili-
ties. Therefore, the likelihood of an identifier I being “surprising”,

or obfuscated, can be defined by the following formula

L) = Sn'élsl} Hn—gram(s) 3)

where Sy is the set of all possible word sequences obtained by seg-
menting I in different ways. Given an empirically decided threshold
H, we deem I as an obfuscated symbol name if L(I) > H.

4.2 Implementation

Considering that identifiers are usually not too lengthy, we can
efficiently compute L(I) in equation (3) using the Viterbi algorithm
with the complexity of O(nl?), where n is length of the identifier
and [is the length of the longest possible word in the language [38].
In fact, the worst cases can often be avoided, since most normal
symbol names are already naturally segmented by programmers
with underscores or the camel case scheme. We first compute the
cross-entropy of an identifier by assuming the symbol is naturally

segmented. If the entropy computed this way is already low enough,
we can skip the relatively expensive Viterbi segmentation.

Our n-gram corpus contains two parts, i.e., the natural language
corpus and the software source code corpus. Most identifiers in the
crawled apps are named in English, but there are also many written
in Chinese pinyin or even a mixture of English and Chinese. For
English, we use a portion of the Google web trillion word corpus
introduced by Franz and Brants [18] and derived by Norvig [32].
For Chinese, we employ the Lancaster Corpus of Mandarin Chinese
(LCMC) [6]. As for the source code part, we crawled all identifiers
appearing in iOS official APIs, which are all naturally segmented.
Each identifier is then turned into a word sequence, thus forming a
n-gram corpus.

The probability of occurrence for an n-gram is defined as the
average of its probabilities in three corpora. If an n-gram does not
appear in any corpus, we assign it a low probability penalized by its
length. This is a necessary heuristic since there are a large number
of unlisted words in program identifiers. Formally, the occurrence
probability of an n-gram s is defined as

PEN(S) + peN(s) + Peode(s)

PEN(S) + PCN(S) + Pcode(s) >0
PEN(S) + PCN(S) + pcode(s) =0

O]
where [s| is the number of characters in the n-gram and H is the
threshold defined earlier in this section.

When deciding the value of n, we observed that patterns of word
sequences in different applications are quite unique and rarely
occur in the corpus. The consequence is that any n greater than
one leads to too many false positives. Therefore, the best option for
the problem is to set n to 1, namely to adopt the unigram model.

In this study, the threshold H is set to 32.5. With this config-
uration, a total of 6600 positives were reported. Potentially, we
could find more positives by employing a larger H, but the results
then will exceed the maximum number of samples we can afford
to verify. After manually examining symbols in the 6600 initial
positives, we confirmed that 601 of them are truly obfuscated. The
false positives are mostly caused by uses of non-English language
and out-of-vocabulary abbreviations.

pls) = 3
20~ (sI-1) . o—(H+1)

5 FINDINGS

In this section we present 8 findings of our empirical study, grouped
by their relevance to research questions raised in Section 1.

5.1 (RQ1) Characteristics of Obfuscated Apps

We first discuss what factors might lead to the adoption of obfusca-
tion in mobile app development.

FINDING A.1. A considerable portion of apps containing obfus-
cation are “passively” obfuscated due to the inclusion of obfuscated
third-party libraries.

As previously mentioned, we paid special attention to third-party
libraries when inspecting the obfuscated apps. The examination
shows that these libraries indeed make a major source of obfus-
cation. In total, we captured 35 third-party libraries. The major
functionality of each library, inferred by analyzing their code and
retrieving publicly available information on the Web, is presented
in Table 1.

Table 1: Obfuscated Libraries Grouped by Functionality

Functionality Count Including Apps
Advertising & Promotion 9 259
Security & Authentication 7 17
Digital Right Management 6 53
Payment & Banking 5 101
Location 2 11
Visualization 2 11
Analytics 1 19
Fraud Detection 1 17
Peripheral Control 1 3
Speech-to-Text 1 8

60
(11.1%)

App Only
Third-Party Libs Only
App and Third-Party Libs

OE@

Figure 3: Origins of obfuscation in 539 obfuscated apps

° Advel"tising Security D$M Payment Others
g T 1 : 1 N ' 1
210
j=2)
c
£
2
o
£
5 10"
=
o
o
£
=3
z
10° .
L R R R R R A A T
KK 2 oS S, 85 S, G By 0 8, T G X NS BINRNNEAE XA
R S T A
7 oy, A K3

(a) Number of apps including each third-party library

23

Number of included libraries

o
a
(=]

100 150 200 250 300 350
Number of applications

(b) Distribution of apps regarding the number of obfuscated libraries included

Figure 4: Popularity of obfuscated third-party libraries

Figure 3 shows the breakdown of the origins of obfuscated code
in the samples. Among the 539 apps employing obfuscation, 404
(75%) of them include at least one obfuscated third-party library.
In particular, for 344 (63.8%) apps, the obfuscation is solely intro-
duced by libraries. The popularity of these libraries can be further
demonstrated in two aspects. Figure 4a shows for each library the
number of including apps and Figure 4b shows the distribution
of apps including obfuscated third-party libraries regarding the
number of libraries.

Games 5 gy, = 25.04%
Business 18 % e P o.88%
Education 35t 8.47%
Lifestyle 2550 8.36%
Entertainment 0.28% i o S 6.12%
Utilities 1385% T g 3% M M .88%
4.10%
Travel - aa% M M 3.93%
Book 2% 3.04%
i 3.08%
Health & Fitness 1.67% Ml 2.98%
i 0.00%
Food & Drink 0370 p 2.86%
Vi 3.59%
Productivity >.23% [l 2.61%
i 6.15%
Music 2.27% B 2 55%
i 20.00%
Finance 15.77% M M 2:23%
Photo & Video 25595 222%
0.51%
Reference o260, (I 2.22%
Sports Lok 2.19%
Social Networking oo, i 2.11%
2.05%
News Lags Ll 1.99% o
Medical 513% oo il 1.88% ctively Obfuscate
B - - Actively and Passively
Shopping 2o 1.29% Obfuscated
Others 2.05% 3159 |MEE App Store

3.53%

Data for App Store from Statista [1]

Figure 5: Distributions of apps regarding their categories

Figure 3 indicates that the occurrences of obfuscation are mainly
caused by the practice of depending on third-party libraries rather
than app developers actively considering software protection. Based
on the observation, we believe that it is important to consider the
impact of third-party libraries for empirical software engineering
research whenever app obfuscation is involved. To distinguish dif-
ferent sources of obfuscation, we henceforth call an app is actively
obfuscated if its obfuscation is not entirely contributed by third-
party libraries; otherwise it is called passively obfuscated.

The most notable kind of third-party libraries is for advertising
purposes with both metrics being the highest in Table 1. Our prelim-
inary analysis on some of these libraries shows that the obfuscated
parts are used for communicating with the back-end ad servers.
It is known that mobile advertising has been bothered by reverse
engineering, through which a malicious party instruments advertis-
ing libraries to forge fake advertisement display or user clicks and
tricks ad providers into paying in vain [25]. For ad providers, ob-
fuscating their libraries is a reasonable response to such malicious
attempts.

FINDING A.2. The likelihood of apps and libraries being obfuscated
is strongly correlated to their categories of functionality.

We found that in contrast to the distribution of all apps in App
Store regarding their categories, the distribution of obfuscated apps
has a vastly different pattern. This pattern varies further when the
impact of third-party libraries is considered. Figure 5 shows the
differences between these distributions, leading to the following
key observations:

e The proportions of obfuscated apps in certain categories are
exceptionally high compared to the shares of all apps in these
categories across App Store, no matter whether passive ob-
fuscation is taken into account. These categories are Finance
(20.00%/15.77% vs. 2.23%), Utilities (13.85%/8.35% vs. 4.88%),
Music (6.15%/4.27% vs. 2.55%), and Medical (5.13%/2.60% vs.
1.88%). According to our investigation, most of the obfus-
cated Music apps provide streaming services for copyrighted

musical contents. The inspected Utilities apps are mainly
toolkit software providing assistance to daily activities, the
majority of which regularly record user data that may be
closely tied to personal privacy or enterprise secrets.

o For some other categories, the situation is flipped, namely
the proportions of apps carrying obfuscated code are signifi-
cantly lower than the store-wide ratios. Categories of such in-
clude Education (1.54%/3.53% vs. 8.47%), Book (1.03%/2.04%
vs. 3.04%), Food & Drink (0.00%/0.37% vs. 2.86%), and Refer-
ence (0.51%/0.56% vs. 2.22%).

o The distributions of obfuscated apps in the Games, Finance,
and Utilities categories are heavily influenced by obfuscated
third-party libraries. Apps in the Games category are easily
passively tainted by libraries. The Finance and Utilities apps,
on the other hand, have a relatively higher rate for being
actively obfuscated.

The first two points suggest that mobile apps related to health,
finance, privacy, and intellectual property safety are more likely
to get obfuscated, both actively or passively. Despite being a fairly
expected phenomenon, it informs us that software obfuscation at
this point is still not a general interest to mobile development. We
may infer that although developers working on security-sensitive
business sectors do view malicious reverse engineering as a non-
neglectable threat, the obfuscation applied to their works is mostly
for protecting the information encapsulated in the apps rather than
the design and implementation of the software.

Regarding the third point, it turns out that among the 112 Games
apps with obfuscation, 87 are passively obfuscated and 82 of them
are solely tainted by obfuscated advertising libraries. The statistics
fit the general perceptions of the mobile game business model in
which publishing third-party advertisements is the major monetiza-
tion method for free game apps. For Finance and Utilities apps, the
fractions of passively obfuscated ones are comparatively lower (46
out of 85 and 18 out of 45, respectively), suggesting that software
protection is more seriously considered in these sectors.

5.2 (RQ2) Obfuscation Patterns

Before presenting our findings regarding RQ2, we first present an
overview on the obfuscation patterns extracted from the samples.
We studied the pattern of obfuscation in three aspects:

e How many and what kinds of obfuscation techniques are
found in the code;

o In what scopes the obfuscation algorithms are applied to the
code, i.e., at the function level, class level, or module! level;

e Whether multiple obfuscation methods are applied to the
same code region to achieve a synergy effect, which we call
synergistic obfuscation.

We performed this pattern analysis on actively obfuscated apps and
obfuscated third-party libraries separately. The results are presented
in Table 2 and Table 3, respectively.

Due to limited space, we only list categories with significant rele-
vance to the discussions in Finding A.2. It may cause confusion that
a small number of apps or libraries do not employ symbol renaming

! A module is defined as functionality-related classes coupled through method calls.

even though it is the baseline obfuscation method in sample collec-
tion. The reason is that we detect symbol scrambling in obfuscated
app instances as a whole. In some cases we “accidentally” detect
obfuscated apps or libraries without scrambled symbols because
they are “mingled” with obfuscated parts developed by others that
indeed contain such symbols. Nevertheless, such cases are rarely
seen among actively obfuscated apps (9 out of 195).

Interestingly, all five third-party libraries that did not scramble
their symbols are developed by Internet giants like Google, Amazon,
Yahoo, Tencent, and Alibaba, suggesting that large-scale enterprises
and smaller mobile development teams may favor quite different
obfuscation patterns, which is worth further investigation.

FINDING B.1. Mobile apps are mostly obfuscated at a large scale,
suggesting a wide adoption of automated obfuscation tools.

In theory, obfuscation can be manually conducted without the
aid from automated tools [3]. Nevertheless, we believe this is not
the case in mobile development. For actively obfuscated apps, the
proportion of those employing module-level obfuscation is 55.90%
(109 out of 195). For third-party libraries, the rate is even higher,
reaching 71.43% (25 out of 35). Compared to function-level and class-
level obfuscation, the workload of protecting one or more modules
is significantly heavier, implying that most mobile developers rely
on automated tools for obfuscation.

On the other hand, it is extremely rare that an entire app or
library is obfuscated. Throughout the inspection, we only identi-
fied two actively protected apps that are fully covered by symbol
scrambling obfuscation. For all other apps and libraries, the obfus-
cation covers only a small portion of the code. This phenomenon
shows that applying obfuscation to mobile software comes with
non-negligible cost even if the process can be automated. Presum-
ably, the cost of obfuscation can include but not limited to,

e Increased configuration effort, increased compilation time,
and run-time performance penalty,

o Additional cost of software crash forensics due to scrambled
symbol names and obscure control flows, and

o Risks of apps being rejected by software publisher for bloated
or unanalyzable code (see Finding C.1 for more discussions).

Although it is hard to confirm these items without contacting the
developers, we can still get some hints by analyzing other aspects of
the obfuscation patterns, as demonstrated by the following finding.

FINDING B.2. The popularity of obfuscation method families de-
creases as the implementation and performance cost grows.

It is made clear by Table 2 and 3 that the popularity of the four
obfuscation families vastly differs. The number of apps and libraries
containing decompilation disruption and control flow flattening is
remarkably smaller than the number of apps and libraries protected
with scrambled symbol names and exotic string encoding. Due
to our sampling methodology, symbol scrambling is naturally the
most popular obfuscation technique across the data set. However,
even without symbol scrambling considered, it is still true for the
other three families of techniques that, the more costly it is to
implement and deploy an obfuscation algorithm, the less widely
it is adopted. To elaborate on this trend, we roughly discuss the
difficulty of automating obfuscation each method and their impacts
on run-time performance, in an increasing order.

Table 2: Numbers of Actively Obfuscated Apps Employing Different Obfuscation Patterns

Applied Obfuscation Families # of Families Scope of Obfuscation Synergic
Category Total Obfuscation
Symbol String Anti-Decomp. Flattening 1 2 3 4 Function Class Module
Finance 39 39 17 12 0 19 11 9 0 4 10 25 18
Utilities 27 27 10 2 3 15 10 1 1 2 21 4
Games 25 22 7 6 0 15 10 0 0 2 3 20 3
Music 12 11 4 1 0 9 2 1 0 1 11 3
Medical 10 9 2 0 0 9 0 0 2 7 1 0
Others 82 78 18 6 2 66 11 4 1 16 35 31 9
All 195 186 58 27 5 133 45 15 2 27 59 109 37
Table 3: Numbers of Third-Party Libraries Employing Different Obfuscation Patterns
Applied Obfuscation Families # of Families Scope of Obfuscation Synergic
Category Total Obfuscation
Symbol String Anti-Decomp. Flattening 1 2 3 4 Function Class Module
Advertising 9 7 3 2 0 6 3 0 0 1 1 7 2
Security 7 6 5 1 2 2 3 2 0 0 0 7 3
DRM 6 6 2 1 1 4 1 0 1 1 2 3 1
Payment 5 4 3 1 0 2 3 0 0 1 1 3 1
Others 8 7 3 0 0 6 2 0 0 2 1 5 1
All 35 30 16 5 3 20 12 2 1 5 5 25 8

Automatically scrambling symbol names is relatively easy and
can be implemented through various options like preprocessor
macros, compiler instrumentation, and even binary rewriting. Re-
naming symbols can be implemented in a way that it causes almost
no performance degradation during program execution.

Re-encoding string literals in an automated manner requires
more effort since it changes program semantics. However, the obfus-
cation only needs to operate on strings and therefore light-weight
program transformations are sufficient. At run time, the obfuscated
strings need to be decoded before use, but it is one-time cost and
only manifests when programs launch.

Compared with the first two families of obfuscation, decompi-
lation disruption is significantly more difficult to implement, for
obfuscator writers need reverse engineering experience to under-
stand how to disrupt a decompiler. It is hard to analyze the run-time
cost of this obfuscation since techniques in this family can vary a
lot. Nevertheless, the performance penalty is not constant and will
keep accumulating as programs run.

Implementing control flow flattening requires deep customiza-
tion of the compiler which falls out of the skill sets of most common
mobile developers. Same as decompilation disruption, each execu-
tion of flattened control flows takes an additional amount of time.
It is also worth noting that control flow flattening can increase the
size of obfuscated binaries significantly.

Currently, we are unable to confirm whether the difference of
popularity results from exact one of the two factors, i.e., implemen-
tation cost and performance penalty, or both of them. Theoretically,
if the obfuscation is conducted with third-party tools, the techni-
cal challenges in implementing each obfuscation method should
not be a problem, leaving performance to be the primary concern.
Otherwise, if the intention of apply software protection is really
blocked by technical issues, there will be many opportunities for
obfuscation toolkit providers to improve their products and attract

more mobile developers to embed advanced obfuscation techniques
into their apps and libraries. It would be interesting future work to
investigate which is the case.

FINDING B.3. Apps and libraries of certain categories tend to adopt
more complicated obfuscation patterns than others.

Finding A.2 shows that apps serving life-, money-, and privacy-
critical purposes are more likely to be obfuscated. It is further
suggested by Table 2 and Table 3 that the security strength of ob-
fuscation applied to apps and libraries of these kinds is also notably
stronger. In general, the Finance, Utilities, Games, and Music apps, if
obfuscated, are more willing to employ expensive obfuscation tech-
niques, i.e., decompilation disruption and control flow flattening.
These apps also tend to employ more different families of obfusca-
tion techniques. For example, over half (20 out of 39) of the actively
obfuscated Finance apps contain plural kinds of obfuscation. More-
over, in many cases (18 out of 20), these different methods were
applied to the same part of the code, achieving synergistic obfus-
cation. Also, the scope of obfuscation in these apps is often larger,
mostly reaching module-level protection.

The observation above applies to obfuscated third-party libraries
as well. Overall, the obfuscation patterns found in libraries are very
similar to those in actively obfuscated apps in most aspects. There-
fore, it can be difficult to distinguish actively and passively obfuscated
mobile apps by simply analyzing their obfuscation patterns.

FINDING B.4. An increasing number of mobile apps start to inte-
grate obfuscation into the development process.

As aforementioned, our sample crawling was continuous and
lasted for nine months. For apps getting version updates during the
crawling period, we were able to analyze the temporal evolution
of their obfuscation patterns. With these historical versions and
some additional examinations, we confirmed that 27 of the 195

actively obfuscated apps were unobfuscated at the beginning of
the crawling period. It is very likely that developers of these apps
were newly attracted by the benefits of software protection and
started to employ it as part of their software engineering routines.
Note that 27 is a possibly untight lower bound because the recorded
version histories may be incomplete because of the limited workload
capacity of our crawler.

Unfortunately, the same analysis does not apply to passively ob-
fuscated apps, since they may include different third-party libraries
in different versions. The change of obfuscation status in these apps
may not reflect the intention of their developers. The analysis is
also not applicable to third-party libraries, because we were unable
to obtain the development dates of each version of the same library.

5.3 (RQ3) Impact of Distributor Code Review

Centralized software distribution usually features a vetting process
in which an app must be reviewed by the distributor before allowed
for publication. Through this vetting process, software publishers
aim to filter out malicious or misbehaving applications that can hurt
user experience or security, thus affecting the healthiness of the
ecosystem. Both iOS and Android employ this centralized model.

Hypothetically, this mandatory app review process can affect
developer incentive to obfuscate their products in two opposite
ways. Firstly, although software obfuscation is a legit approach
to protecting apps from undesired reverse engineering, it hinders
distributor reviews as well. If the reviewer acts conservatively and
considers unanalyzable code malicious, the obfuscated apps may be
constantly rejected, making developers reluctant to adopt heavy-
weight obfuscation algorithms. On the other hand, some developers
may be stimulated to obfuscate their code so that they are able to
circumvent certain checks, allowing their apps to possess features
forbidden by publisher policies. We have encountered two cases
supporting both possibilities, respectively. Although not qualified
as solid evidence to validate our hypotheses, these case studies can
indeed provide valuable insight on the problem.

FINDING C.1. Code reviews enforced by mobile software publishers
may influence the adoption of obfuscation in different directions.

The first case is a heavily obfuscated app developed by a reputed
commercial 10S security service provider, which only published
that single app in App Store. Judged from the simplicity of its func-
tionality, this app is merely a minimal working example of iOS
development, whereas it is protected by all four kinds of obfus-
cation techniques considered by our study. Only two among the
195 actively obfuscated apps are obfuscated in this pattern. We
speculate that the security solution provider submitted this app to
address the concerns that their obfuscation algorithms may cause
distributor review alarms, to the detriment of the sales of their
services. It is known that App Store have various constraints on
submitted apps, some of which may not be clearly documented.
For example, each slice of an executable file in iOS apps must not
exceed 60 MB [5] if the app is to be compatible with older versions
of i0S, limiting the use of code transformations that bloat binary
size too much. These constraints intrigue obfuscator writers to
test the boundaries of acceptable obfuscation techniques. This case
suggests that developing new mobile obfuscation algorithms has to
take the app vetting process into account to be practical.

In the second case, we found that a third-party advertising li-
brary contains code for calling private iOS APIs, which is strictly
forbidden by Apple App Store security policies. To circumvent store
reviews, the library writer uses the dlopen system call to avoid
direct linkage to internal iOS frameworks providing private APIs.
The library then uses exotic string encoding to obfuscate the string
literals provided to dlopen as parameters. In this way, Apple’s
vetting analysis failed to detect this violation. By searching related
information on the Internet, we learned that this library was once
caught using private i0S APIs in 2015 [4], long before we started
crawling samples from App Store. Shortly after the incident was re-
ported, Apple announced that it had removed all apps contaminated
by this library from App Store. Yet our findings show that either
authors of the library managed to bypass the app review process
for another time or Apple failed to detect all apps including this
library. Whichever is the case, this finding serves as empirical evi-
dence that obfuscation is not only employed to repel malicious reverse
engineering but also for infiltrating publisher inspection, even though
this practice is previously regarded as a signature of malware.

By nature, ad providers are impelled to collect as much client
data as possible for developing more effective ad distributing strate-
gies, potentially placing themselves on the verge of infringing user
privacy. Considering the large quantity of obfuscated third-party
advertising libraries and their wide spread in the sample set, we
are concerned by the possibility that abusing obfuscation to bypass
publisher security policy enforcement is becoming a common prac-
tice for aggressive adware on the mobile. Mobile apps falling within
a “gray area” that are controversially benign or malicious, aka.
“grayware,” has drawn attention from the security community [10].

54 (RQ4) Effectiveness of Obfuscation

We now present our findings regarding the effectiveness of real-
world obfuscation for mobile apps. It should be emphasized that
our goal is not to access the security strength of obfuscation tech-
niques themselves like previous literature review did [37] but to
investigate whether iOS developers are able to appropriately utilize
these techniques and optimize the protection effects.

With limited labor, we cannot afford to conduct comprehensive
penetration tests for all apps in our sample set. Even though, we
found that a modest amount of reverse engineering effort is enough
to reveal some information that possibly leads to security breaches.
We inspected the actively obfuscated apps in two aspects. Firstly,
we scanned all symbol names, searching for common key phrases
related to security, such as “private key” and “secret”. Secondly,
during the detection of exotic string encoding, we payed attention
to string literals that are not obfuscated and seem to leak sensitive
information.

FINDING D.1. A considerable portion of obfuscated apps remain
vulnerable to low-effort reverse engineering, which could have been
avoided if the obfuscation was performed more appropriately.

With preliminary reverse engineering effort, we found that
among the 195 actively obfuscated apps, there are 33 that may
leave certain sensitive information unprotected due to lack of cer-
tain obfuscation techniques or insufficient coverage by the right
techniques. There are mainly three kinds of such information:

e Tokens assigned to apps for accessing third-party services.
Some enterprise entities provide APIs for mobile apps to re-
trieve proprietary information or upload app usage data for
analytics, usually at a price. Requests for accessing these ser-
vices has to be sent with tokens issued by service providers
to prove the identities of requesting clients. We found that
some apps store these tokens as plaintext in variables whose
names are not scrambled.

e In-app secrets. Apps may encrypt their private data such
as execution logs and intermediate results before storing
them on mobile devices. Some poorly obfuscated apps store
encryption keys in plaintext as string literals.

o Information about back-end servers connected with the apps
and the corresponding communication protocols. In partic-
ular, we found 4 apps, which are the mobile clients of some
financial institutions, leaking the URLs or IP addresses of their
back-end testing infrastructures. Surprisingly, accessing these
infrastructures does not require any authentication. The
communication protocols and even internal documentations
are exposed to anyone knowing the URLs or IPs.

It is true that information leaked above does not necessarily lead to
exploitable security vulnerabilities. Per common software security
principles, however, such information should not be exposed to
unauthorized parties in the first place. Although leakages discov-
ered by our study were caused by series of inappropriate software
engineering practices, the problem will be less severe if the apps
are more properly obfuscated. In our opinion, the current status of
software protection on mobile platforms is far from satisfactory.

6 IMPLICATIONS OF THE RESULTS

Through this empirical study, we learned that third-party libraries
play a significant role in iOS app obfuscation, which is consistent
with the situation on Android [24]. Being a major source of ob-
fuscated code, third-party libraries affect software attributes in
various aspects without app developers being aware. We urge that
future studies on iOS app repositories to take obfuscated third-
party libraries into consideration and develop dedicated analysis
techniques to handle them.

We have found a posteriori evidence indicating the correlation
between the likelihood of mobile apps being obfuscated and their
functionality. Particularly, apps related to finance, privacy, intellec-
tual properties, and monetization are more likely to be obfuscated.
It may be worthwhile for obfuscation service providers to take an
in-depth study on the characteristics of these apps and specialize
their products to better fit the demands of their vendors.

Our study suggests that the adoption of obfuscation on mobile
platforms may be affected by mandatory code reviews from app dis-
tributors. Since obfuscation is inherently unfriendly to code reviews
and may causes disapproval from the reviewer, app developers will
likely face the dilemma between improved security and shorter
time to market of their products. This factor needs to be considered
when developing or advocating new obfuscation techniques for
mobile platforms, particularly iOS whose vetting process is much
more strict that Android.

We noticed an increasing trend in the number of mobile apps
getting obfuscated. For a notable portion of these apps, however,

the obfuscation was not appropriately conducted, leaving them still
vulnerable to certain low-effort reverse engineering techniques. As
such, we believe that future efforts on software protection should
not only focus on developing new obfuscation techniques but also
proposing accessible policies and strategies that can guide mobile
developers to maximize the efficacy of existing techniques.

7 RELATED WORK

To the best of our knowledge, most historical work on mobile
app analysis targets the Android platform. The Android Malware
Genome project is among the earliest research efforts that perform
large-scale analysis on mobile app repositories [47]. By working
on over 1200 samples, the authors managed to present a systematic
characterization on existing Android malware. According to this
research, mobile malware authors by then had already started to
apply obfuscation to bypass anti-virus analysis. Besides malware
that harms users, mobile app repackaging that harms the interest of
developers has also drawn attention. Various tools and systems have
been developed to detect and analyze cloned mobile applications
with both accuracy and scalability [15, 19, 39, 46]. Researchers have
also worked on examining third-party libraries used by mobile
developers. Tools like LibRadar [28] and LibD [24] were developed
to detect third-party libraries in Android apps and classify them.
Research by Chen at al. [16] detects libraries potentially harmful to
user security and privacy for both Android and iOS.

Despite the progress in mobile app analysis, most studies of this
kind either ignored or spent very limited effort in handling the pres-
ence and influence of software obfuscation. One of the few studies
that systematically investigated the impact of obfuscation on mobile
development is from Linares-Vasquez et al., who researched how
obfuscation can affect the detection of Android code cloning [26].
Similar to our work, Linares-Vasquez et al. spent extensive manual
work in identifying obfuscated code, but their analysis only covered
120 apps and did not consider obfuscation methods other than iden-
tifier scrambling. CodeMatch is a similar project that focuses on
obfuscation-resilient Android library detection [20]. Xue et al. [44]
proposed adaptive unpacking of Android apps to recover dex code,
which can potentially enable obfuscation-resilient clone or library
detection.

8 CONCLUSION

In this work, we empirically investigated the status of software ob-
fuscation in the mobile software industry. We collected a large set
of obfuscated i0S applications in the real world and performed in-
depth analysis on these samples. With the information gathered in
the study, we revealed factors potentially affecting the deployment
of obfuscation techniques in mobile apps and typical obfuscation
patterns adopted by mobile developers. We believe that findings de-
veloped in this research will shed light on future research that aims
to understand and improve the state of art of software protection.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foun-
dation (NSF) under grant CNS-1652790, and the Office of Naval
Research (ONR) under grants N00014-16-1-2912, N00014-16-1-2265,
and N00014-17-1-2894.

REFERENCES

[12

[13]

[14]

(15

[16]

[17

[18]

[19

[20

[21]

[22

[23

™
&

[25]

[26]

Apple: most popular app store categories 2017 | Statistic. https://www.statista.
com/statistics/270291/popular-categories-in-the-app-store/.

IDA: About. https://www.hex-rays.com/products/ida/.

The International Obfuscated C Code Contest. http://www.ioccc.org.

i0S Apps Caught Using Private APIs. http://sourcedna.com/blog/20151018/
ios-apps-using-private-apis.html.

iTunes Connect Developer Guide. https://developer.apple.com/library/
content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/
Chapters/About.html.

The Lancaster Corpus of Mandarin Chinese. http://www.lancaster.ac.uk/fass/
projects/corpus/LCMC/.

Monument Valley apparently has a 95% piracy rate on Android, 60% on iOS.
https://goo.gl/TkfCIK.

Shrink Your Code and Resources | Android Studio - Android Developers. https:
//developer.android.com/studio/build/shrink-code.html.

Smart Obfuscation for iOS Apps | PreEmptive Protection.
preemptive.com/products/ppios.

Benjamin Andow, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie.
2016. A Study of Grayware on Google Play. In Proceedings of the 2016 IEEE
Workshop on Mobile Security Technologies (MoST °16).

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket.. In Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS °14).

Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded
DSE: Targeting Infeasibility Questions on Obfuscated Codes. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (SP ’17). 633-651.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016.
Statistical Deobfuscation of Android Applications. In Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’16).
343-355.

Hao Chen, Daojing He, Sencun Zhu, and Jingshun Yang. 2017. Toward Detecting
Collusive Ranking Manipulation Attackers in Mobile App Markets. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security
(AsiaCCS ’17). 58-70.

Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets. In Proceed-
ings of the 36th ACM/IEEE International Conference on Software Engineering (ICSE
’14). 175-186.

Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following Devil’s
Footprints: Cross-Platform Analysis of Potentially Harmful Libraries on Android
and i0S. In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P
’16). 357-376.

Zhaofeng Chen. iOS Masque Attack Weaponized: A Real World Look. https:
//www fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html.
Alex Franz and Thorsten Brants. All Our N-gram are Belong to You. https:
//research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html.
Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook
Choi. AdRob: Examining the Landscape and Impact of Android Application
Plagiarism. In Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’13). 431-444.

Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann,
Johannes Lerch, and Mira Mezini. 2017. CodeMatch: Obfuscation Won’t Conceal
Your Repackaged App. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE ’17). 638-648.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th ACM/IEEE
International Conference on Software Engineering (ICSE °12). 837-847.

Pengwei Lan, Pei Wang, Shuai Wang, and Dinghao Wu. 2017. Lambda Obfus-
cation. In Proceedings of the 13th EAI International Conference on Security and
Privacy in Communication Networks (SecureComm ’17).

Timea Laszl6 and Akos Kiss. 2009. Obfuscating C++ Programs via Control Flow
Flattening. Annales Universitatis Scientarum Budapestinensis de Rolando Eotvis
Nominatae, Sectio Computatorica 30 (2009), 3—-19.

Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: Scalable and Precise Third-party Library Detection in
Android Markets. In Proceedings of the 39th ACM/IEEE International Conference
on Software Engineering (ICSE ’17).

Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. 2015. AdAttester: Secure
Online Mobile Advertisement Attestation Using TrustZone. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’15). 75-88.

Mario Linares-Vasquez, Andrew Holtzhauer, Carlos Bernal-Cardenas, and Denys
Poshyvanyk. 2014. Revisiting Android Reuse Studies in the Context of Code
Obfuscation and Library Usages. In Proceedings of the 11th Working Conference

https://www.

[27

[28

[29]

@
=

[31

(32

[33

&
=)

[35

[36

[37

[40

[41

[42

'S
&

[44

[45

[46

on Mining Software Repositories (MSR ’14).

Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Jiaguang Sun.
2017. Stochastic Optimization of Program Obfuscation. In Proceedings of the 39th
International Conference on Software Engineering (ICSE ’17). 221-231.

Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and
Accurate Detection of Third-party Libraries in Android Apps. In Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE '16
Companion). 653-656.

Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS °15). 757-768.

Steven S. Muchnick. 1997. Advanced Compiler Design Implementation. Morgan
Kaufmann.

Minh Ngoc Ngo and Hee Beng Kuan Tan. 2007. Detecting Large Number of
Infeasible Paths Through Recognizing Their Patterns. In Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE "07).
215-224.

Peter Norvig. Natural Language Corpus Data: Beautiful Data. http://norvig.com/
ngrams/.

Damilola Orikogbo, Matthias Biichler, and Manuel Egele. 2016. CRiOS: Toward
Large-Scale iOS Application Analysis. In Proceedings of the 6th Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM ’16). 33-42.
Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. A Fistful of Red-Pills: How to Automatically Generate Procedures to
Detect CPU Emulators. In Proceedings of the 3rd USENIX Workshop on Offensive
Technologies (WOOT °09).

Andre Pawlowski, Moritz Contag, and Thorsten Holz. 2016. Probfuscation: An
Obfuscation Approach using Probabilistic Control Flows. In Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 165-185.

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Har-
vesting Runtime Values in Android Applications That Feature Anti-Analysis
Techniques.. In Proceedings of 23rd Network and Distributed System Security Sym-
posium (NDSS ’16).

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can
It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1 (2016),
4:1-4:37.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful data: the stories behind
elegant data solutions. "O’Reilly Media, Inc.".

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. WuKong: A
Scalable and Accurate Two-phase Approach to Android App Clone Detection. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis
(ISSTA ’15). 71-82.

Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. 2016. Translin-
gual Obfuscation. In Proceedings of the 1st IEEE European Symposium on Security
and Privacy (EuroS&P ’16).

Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
Bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE °16). 708-719.
Yan Wang, Shuai Wang, Pei Wang, and Dinghao Wu. 2017. Turing Obfuscation.
In Proceedings of the 13th EAI International Conference on Security and Privacy in
Communication Networks (SecureComm ’17).

Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2016. Generalized Dynamic Opaque
Predicates: A New Control Flow Obfuscation Method. In Proceedings of the 19th
Information Security Conference (ISC °16). 323-342.

Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
Unpacking of Android Apps. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17). 358-369.

Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya Debray.
2015. A Generic Approach to Automatic Deobfuscation of Executable Code. In
Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P ’15).
Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: Towards Obfuscation-resilient Mobile Application Repackaging De-
tection. In Proceedings of the 2014 ACM Conference on Security and Privacy in
Wireless & Mobile Networks (WiSec ’14). 25-36.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-
tion and Evolution. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (S&P ’12). 95-109.

	Abstract
	1 Introduction
	2 Background
	2.1 Significance of the Problem
	2.2 Technical Challenges of the Study

	3 Methodology
	3.1 Considered Obfuscations
	3.2 Mining Obfuscated iOS Apps
	3.3 Per-App Inspection
	3.4 Cross-Validation

	4 Detecting Symbol Obfuscation
	4.1 An NLP-Based Detection Model
	4.2 Implementation

	5 Findings
	5.1 (RQ1) Characteristics of Obfuscated Apps
	5.2 (RQ2) Obfuscation Patterns
	5.3 (RQ3) Impact of Distributor Code Review
	5.4 (RQ4) Effectiveness of Obfuscation

	6 Implications of the Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

