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ABSTRACT

In recent years, mobile apps have become the infrastructure of many
popular Internet services. It is now fairly common that a mobile app
serves a large number of users across the globe. Different from web-
based services whose important program logic is mostly placed on
remote servers, many mobile apps require complicated client-side
code to perform tasks that are critical to the businesses. The code of
mobile apps can be easily accessed by any party after the software
is installed on a rooted or jailbroken device. By examining the code,
skilled reverse engineers can learn various knowledge about the
design and implementation of an app. Real-world cases have shown
that the disclosed critical information allows malicious parties to
abuse or exploit the app-provided services for unrightful profits,
leading to significant financial losses for app vendors.

One of the most viable mitigations against malicious reverse
engineering is to obfuscate the software before release. Despite
that security by obscurity is typically considered to be an unsound
protection methodology, software obfuscation can indeed increase
the cost of reverse engineering, thus delivering practical merits for
protecting mobile apps.

In this paper, we share our experience of applying obfuscation to
multiple commercial i0S apps, each of which has millions of users.
We discuss the necessity of adopting obfuscation for protecting
modern mobile business, the challenges of software obfuscation
on the iOS platform, and our efforts in overcoming these obstacles.
Our report can benefit many stakeholders in the iOS ecosystem,
including developers, security service providers, and Apple as the
administrator of the ecosystem.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Software and its engineering — Software reverse engineer-
ing;
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1 INTRODUCTION

During the last decade, mobile devices and apps have become the
foundations of many million-dollar businesses operated globally.
However, the prosperity has drawn many malevolent attempts to
make unjust profits by exploiting the security and privacy loopholes
in popular mobile software.

In recent years, we noticed that security breaches targeting mo-
bile apps are becoming more and more prevalent, with both of
their scale and severity trending up at a worrying rate. Among all
emerging threats, malicious and fraudulent campaigns, conducted
through programmatically manipulating a massive number of mo-
bile devices and faking a large volume of user activities [18], are
particularly harmful to many large-scale mobile businesses. To min-
imize the impacts of those campaigns, app developers typically
need to place certain hooks into the client code to detect suspicious
user activities (see Section 3 for details). Attackers, on the other
hand, try to sabotage or circumvent these defenses in order to com-
mence their malicious activities without being noticed. Since most
malicious activities targeting mobile apps rely on reverse engineer-
ing to tamper with the code, thwarting or weakening the reverse
engineering capabilities of the attackers is considered to be a fairly
cost-effective protection strategy.

By impeding reverse engineering, developers hold a chance to
prevent or delay incoming attacks, buying time for long-term secu-
rity enhancement and more permanent solutions to various security
issues. To this end, software obfuscation plays an important role.
The goal of obfuscation is to transform program code into a form
that makes reverse engineering ineffective or uneconomical.

To date, there exist various supposedly effective obfuscation tech-
niques that may fulfill the demand of the mobile software industry.
However, the techniques themselves do not automatically lead to ef-
fective and practical software protection, especially for mobile apps.
Oftentimes, the hardware and software environments of mobile
platforms impose harsh restrictions on the types and configurations
of obfuscations that can are applied to mobile apps. Additionally,
obfuscation must not affect the regular development, distribution,
and maintenance of mobile apps, which usually requires further
customization to be made for the adopted obfuscation techniques.



In this paper, we report our experience of obfuscating multiple
commercial iOS apps with millions of active users. Being one of the
dominant mobile operating systems, iOS possesses the common
characteristics of a mobile platform but also distinguishes itself
from other systems for many unique features. It is known that
software obfuscation has been quite prevalent in Android app de-
velopment, but much less is known or studied for iOS. Many mobile
developers now release their apps for both platforms. If the iOS
version of an app is not effectively protected, attackers will have
a good chance to exploit the app no matter how well the Android
version is obfuscated.

To help mobile developers form a deeper understanding of soft-
ware obfuscation and avoid common pitfalls that may appear when
obfuscating iOS apps, we discuss our learned lessons on the follow-
ing topics:

e Why iOS apps are in urgent need of the protection of soft-
ware obfuscation, from an industrial point of view,

e What restrictions are imposed by the iOS platform on obfus-
cation techniques,

e How the centralized app distribution process can impact
practice of obfuscation, and

e How to balance obfuscation and app maintenance.

It should be emphasized that the major focus of this paper is not
to propose new obfuscation techniques or evaluate their potency;
instead, the point is to introduce how to operationalize obfuscation
in real-world mobile app development.

The rest of the paper is organized as follows. We first introduce
the background knowledge about software obfuscation in Section 2.
We then explain why we are motivated to protect production iOS
apps with obfuscation in Section 3. Our experiences and lessons are
presented in Section 4, followed by the evaluation of our obfuscation
techniques in Section 5. Section 6 discusses our prospect of i0OS
obfuscation and other protection methods, Section 7 reviews related
work on obfuscation, and Section 8 concludes the paper.

2 SOFTWARE OBFUSCATION

2.1 Theoretical Foundation

According to the formalization by Barak et al. [15], an effective
obfuscation technique is a program transformation algorithm O,
where given any program P, O(P) computes the same function
f € F as P does; meanwhile, for any non-trivial function property
¢ : F — S and any program analyzer Ay that tries to efficiently
compute ¢, if ¢(f) is intractably hard given only black box access
to P as an oracle, the result of A4 (O(P)) is no better than randomly
guessing ¢(f).

To better understand the definition above, take symmetric en-
cryption as an example. Suppose there is a cipher E that takes a key
k and consumes plaintext p to compute the ciphertext E(k, p). If k
is hard-coded into E, E(k, -) can be considered as a function taking
plaintext as the sole argument, denoted by Ej. Let ¢ be the prop-
erty function that decides the hard-coded key of a cipher, namely
¢(Ex) = k. Assuming E is resilient to chosen-plaintext attacks,
computing ¢ will be prohibitively expensive if attackers can only
access E as a black box oracle. However, it is possible to recover
k in a reasonable amount of time by directly looking at P which
is the code of an implementation of Ej. In that case, if a perfect

obfuscator O exists and the implementation of Ey. is released as
O(P), any attempt to efficiently learn k by analyzing O(P) will fail.

It has been proven that a perfect obfuscator does not exist, even
if the properties to hide are limited to {0, 1}-valued functions [15].
That is, analyzing the code of a program can always reveal at least
1 bit information about what the program computes without spend-
ing too much time, no matter how complicated the program code
is rendered. Therefore, some theorists relaxed the security require-
ment for obfuscation instead of trying to develop a technique that
is universally effective [27].

2.2 Obfuscation in Practice

Since a theoretically perfect solution to the generalize problem of
software obfuscation is unfeasible, practitioners usually set limits
to problem characteristics so that the problems can be addressed
within a reasonable scope. In industry, the goal of obfuscation is not
to make reverse engineering impossible but to increase the cost of
it such that attacks can be delayed or diverted to relatively poorly
protected targets.

A recent literature review classified obfuscation algorithms into
three categories according to how they are implemented [40]. The
first kind is data obfuscation that alters the structures in which
data are stored in binaries. One typical data obfuscation technique
is to statically encrypt the string literals and decode them at run
time. The second kind is static code rewriting that transforms the
executable code into a semantically equivalent but syntactically ob-
scuring form. For example, a static code rewriting technique called
movfuscator [26] can transform an x86 binary into a form that only
contains mov instructions, making it difficult for reverse engineer-
ing tools to reconstruct the original control flow. The third kind is
dynamic code rewriting, also known as self-modifying obfuscation.
For programs protected by self-modifying obfuscation, the statically
observable code is different from what is actually executed at run
time. One of the most widely used dynamic rewriting obfuscation
techniques is the packing method. A packer encodes the original
code of the obfuscated program into data and dynamically decodes
the data back into code during execution.

3 MOTIVATION

Before sharing our experience with iOS obfuscation, we would like
to discuss the reasons that drove us to consider employing obfusca-
tion in the first place. The rationale is twofold. We first explain the
important role played by reverse engineering in malicious activities
targeting mobile software. We then introduce why these threats are
particularly realistic on iOS due to the lack of technical challenges
in analyzing unprotected iOS apps.

3.1 Threats of Reverse Engineering

Many malevolent attempts to exploit mobile apps for illegal benefits
heavily depend on reverse engineering. App-specific vulnerabilities
can certainly be devastating if their presences are learned by at-
tackers. For example, a previous version of Uber’s mobile app was
found vulnerable and therefore can be exploited to get unlimited
free rides [1]. On the other hand, besides those specialized threats,
there also exist attacks that are generally applicable to many apps.
We describe four common kinds of them.



Intellectual property theft. This is a longstanding problem bother-
ing commercial software developers. The piracy of desktop software
causes millions of dollars of yearly economic loss [13]. On mobile
platforms, the problem may be even more severe, since the digital
right management of mobile apps is usually delegated to central-
ized app publishers and significantly relies on the security of the
underlying mobile operating systems. If these systems are cracked
(known as “root” for Android and “jailbreak” for iOS), attackers can
easily pirate a large number of mobile apps in a short period.

Man-in-the-middle attacks. By tricking users into connecting
mobile devices to untrusted wireless networks or installing SSL
certificates from unknown sources, attackers can intercept and
counterfeit the communication between apps and servers [31]. Af-
ter analyzing how apps process the data exchanged with servers,
attackers can potentially control app behavior by forging certain
server responses.

Repackaging. It has been reported that some cybercrime groups
are able to reverse engineer popular social networking apps and
weaponize them for stealing sensitive user information [20]. By
developing information-stealing modules and repackaging them
into genuine apps, attackers managed to create malicious mobile
software with seemingly benign appearances and functionality.
Contacts, chat logs, web browsing histories, and voice recordings
are common targets of theft.

Fraud, spam, and malicious campaigns. Nowadays, many apps
employ anomaly detection to identify suspicious client activities
and prevent incidents like fraud, spam, and malicious campaigns.
This is usually achieved through collecting necessary information
about users and their devices and fitting the collected data into
anomaly detection models. Since the data are harvested on device,
attackers can reverse engineer the mobile apps and find out what
kinds of data are being collected. In this way, they may be able to
mimic normal user behavior by fabricating false data of the same
kinds on rooted and jailbroken devices.

During the past few years, we have encountered many incidents
described above, among which the most concerning threat is the
prevalence of large-scale malicious campaigns, as mentioned in
Section 1. According to a report on the status of malicious cam-
paigns in China [2], the business of “click farming” has formed a
billion-dollar underground economy, in which hundreds of well
organized collusive groups have participated. The technological
means of these campaigns are also evolving quickly. Campaign
runners can now programmatically control hundreds of mobile
devices without the need of human labor, while each device can
host over 50 instances of the same mobile app. Figurel shows an
example of such technology.

Since the third quarter of 2016, we have captured a large-volume
of suspicious activities being conducted around the resources and
services offered to mobile app users. Through information cross-
validation, we detected that there are millions of suspicious iOS
devices, many of which are virtually faked, constantly trying to log
into the account system of the apps, committing massive promotion
operations like clicking links to a certain product, posting comments
to a certain page, and exhaustively collecting bonuses provided to

Figure 1: Programmatically controlling massive iOS devices
as a service (http://shemeitong.com/index.php/anli/show/46.
html).

daily active users. Many of these activities have violated end user
terms and affected the quality of the services.

To detect the malicious campaigns and nullify their impacts, app
developers need to precisely identify those bot-like users through
extensive data analysis. Since data collection must strictly respect
user privacy, only certain types of data can be collected for this
purpose, which attackers can easily guess out. For the sake of data
genuineness, we have to ensure that malicious groups cannot tam-
per with the on-device data collection process through reverse
engineering the corresponding program logic, which requires ef-
fective software protection techniques to be deployed.

3.2 Reverse Engineering on iOS

From the research point of view, there exist various challenges in au-
tomated reverse engineering that cannot be easily addressed, which
may lead to beliefs that reverse engineering is not a realistic threat
to common mobile software vendors. In reality, however, many
of such challenges can be practically addressed or circumvented,
especially on iOS.

Since most iOS apps are built with the standard toolchain pro-
vided by Apple, the shapes of their binary code are utterly uniform.
This is a highly desired situation for reverse engineering. By analyz-
ing the common code patterns and developing corresponding analy-
sis heuristics, modern binary analysis tools have grown reasonably
proficient at decompiling iOS apps, making reverse engineering
much less laborious than before. Figure 2 is an example that demon-
strates the quality of the decompilation result for a popular open
source i0S app. The decompilation is done by IDA Pro [8], the most
widely used reverse engineering toolkit in industry. As can be seen,
the generated pseudocode is almost identical to the original source
code, except for the language implementation details which are
implicit in the source code but recovered by the decompiler, e.g., the
self pointer. To experienced reverse engineers, these differences
are negligible.

In addition to the support of increasingly mature analysis tools,
reverse engineering is made even more effective on iOS due to its



1 @implementation TSAnimatedAdapter 1
2 ... 2
3 3
4 — (BOOL)canPerformeditingAction: (SEL)action { 4
5 return (action == @selector(copy:) 5
6 || action == NSSelectorFromString(@"save:")); 6
7 } 7
8 8
9 ... 9
10  @end 10

(a) Original Objective-C source code

// TSAnimatedAdapter — (bool)canPerformEditingAction: (SEL)
bool _ cdecl —[TSAnimatedAdapter canPerformEditingAction:]
(struct TSAnimatedAdapter *self, SEL a2, SEL a3) {

bool result;

if ( "copy:" == a3 )

result = 1;
else

result = NSSelectorFromString(CFSTR("save:")) == (_QWORD)a3;
return result;

}

(b) Pseudocode obtained from decompiling the binary

Figure 2: Decompiling an open source iOS app [7] with IDA Pro

development and production environment. The majority of iOS
apps are written in Objective-C, a C-like, object-oriented, and fully
reflexive programming language developed by Apple. In Objective-
C, method names are called selectors and method invocations are
implemented in a message forwarding scheme. When a method is
called on an object, the language runtime will dynamically walk
through the dispatch table of the class of the object to find a method
implementation whose name matches with the selector. If no match
is found, the runtime will repeat the procedure on the object’s
base class. Naturally, the message forwarding scheme requires the
Objective-C compiler to preserve all method names in program
binaries. Method names are extremely useful information when
analyzing large software binaries, for it allows human analysts to
infer program semantics and quickly identify critical points worth
in-depth inspection among a huge amount of code.

On the Android platform, there is a similar problem since Java is
also a fully reflexive language. Having realized the potential risks,
Google integrated a method and class name scrambler into the
Android development toolchain [11]. In contrast, iOS developers do
not get any support from Apple, leaving all code completely unpro-
tected by default. Furthermore, Apple now advises i0S developers
to submit apps in the form of LLVM intermediate representation,
which is even less challenging to analyze than ARM machine code.
Overall, reverse engineering iOS apps can be made very effective if
developers do not take actions of prevention.

4 EXPERIENCE WITH iOS OBFUSCATION

Regarding obfuscation, our major objective is to protect a com-
mon code base shared by a group of commercial iOS apps. These
apps span a wide range of functionality categories, including news,
utility, navigation, payment, social networking, and shopping.

4.1 Tools

i0S apps can be developed in several different programming lan-
guages, including C, C++, Objective-C, and Swift. Apple provides
different frontends for each language, while all backends are based
on the LLVM compiler infrastructure.! Therefore, all source code in
an iOS project is eventually translated into the LLVM intermediate
representation (IR). Most of the compiler assets for iOS development
have been made open source. This allows other software vendors
to develop new features for the compilers.

I The swift compiler backend is based on a separately maintained LLVM version, thus
slightly different from the standard one.

Considering the iOS app build process, we decided to imple-
ment our obfuscation tool as a series of LLVM IR transformation
passes. Compared with other options like source-level and binary-
level obfuscation, the IR-level solution provides multiple appealing
benefits:

e IR obfuscation is language independent. A single IR transfor-
mation module can process most part of an i0S app, which
is not the case for source-level obfuscation.

e Apple now advises app developers to submit their products in
the form of LLVM IR rather than binary. IR-level obfuscation
fits this practice better than binary-level obfuscation.

e A compiler-based obfuscator is mostly transparent to app
developers, minimizing the interference to the normal devel-
opment process.

The current implementation of our obfuscator consists of about
3.8K lines of C++ code,? plus another 1K lines of third-party code
for random number generation and security hashes. The obfuscator
provides different obfuscation algorithms that can be arbitrarily
combined per developer demands. The granularity of obfuscation
is configurable through customized compiler flags and extended
function attributes. Figure 3 shows how app developers can control
the granularity of obfuscation at the compilation unit level and
function level. In actual development, each obfuscation algorithm
can be configured separately.

4.2 Obfuscation Algorithms

Choosing the appropriate obfuscation algorithms is the first step
to effective protection of iOS apps. In addition to effectiveness,
obfuscation in real-world software engineering also needs to take
many other factors into account. On iOS, there are several issues
that may not exist on other platforms. We discuss these factors with
more details below.

Platform-wide security policies. 10S is considered to be one of the
most secure mobile systems, for it enforces extremely restrictive
security policies on its apps. The policy affecting obfuscation the
most is called code signing. To counter software tampering, iOS
ensures that every executable page owned by a third-party app
must be signed and checked for integrity before code in that page
is executed for the first time after the process starts. On the other
hand, changing the execution permission of a memory page is not
allowed for third-party apps. This means self-modifying code is

2Code statistics in this paper include comments and blanks.



(a) Obfuscate the whole compilation unit

(b) Obfuscate the whole compilation unit excluding foo

1 // source.c, compiled with —obf flag 1 // source.c, compiled with —obf flag 1 // source.c, compiled without —obf flag
2 2 2

3 void foo() { 3 attribute_ ((no_obf)) void foo() { 3 attribute_ ((obf)) void foo() {

4 e 4 .. 4 Ces

5} 5} 5 )

6 6 6

7 void bar() { 7 void bar() { 7 void bar() {

8 e 8 e 8 e

9 } 9 } 9 }

(c) Obfuscate only foo in the compilation unit

Figure 3: Obfuscation configuration examples

strictly prohibited on iOS, leaving dynamic code rewriting obfus-
cation unfeasible. For this reason, many packer-based obfuscation
techniques that are popular on Android [47] are not viable options
for iOS.

Binary size. For apps that need to support all living iOS versions
(including 7 and above), Apple imposes a 60 MB limit on the size of
the code section in each executable [10]. Since many popular apps
have large code bases, this limit is very tight. Even if the code to be
obfuscated is only a small part of the apps, developers cannot afford
obfuscation algorithms that bloat the software size too much. That
includes virtualization-based obfuscation [24, 41], which requires
integrating a full-fledged hardware emulator into the app.

LLVM IR compatibility. Since our obfuscator operates on LLVM
IR, it can be challenging, if possible at all, to implement certain
obfuscation algorithms that require extensive manipulations of
low-level machine instructions.

App review. AlliOS apps are reviewed by Apple App Store before
allowed to be published. This is a necessary procedure for mini-
mizing the number of low-quality and malicious apps delivered to
users. While the details of app reviews are kept confidential, it is
likely that both humans and automated analyzers are participating
in the process. It is imperative that our obfuscation does not have
adverse impact on the review. In particular, we must make sure
that the applied obfuscation algorithms strictly abide by the iOS
developer regulations [9].3

Considering the factors listed above, we made a careful selection
of obfuscation algorithms, listed as follows.

(1) Symbol name mangling that turns understandable human-
written identifiers into strings that do not indicate program
semantics.*

(2) String literal encryption that hides the plaintext of the string
literals stored in the binary. The protected strings are de-
crypted at run time.

3 It is known that some iOS developers have tried to misuse obfuscation to disrupt and
mislead the review process such that the apps can secretly possess features disallowed
by Apple. We emphasize that techniques discussed in this paper are not meant to
advocate such behavior, nor any app obfuscated by us ever seeks to bypass Apple’s
review through obfuscation.

4 Although symbol name mangling was valid obfuscation on iOS by the time of paper
writing, our latest communication with Apple suggests that it may not be acceptable
any more. Readers interested in adopting this method should carefully consult with
Apple about their possibly undocumented regulations.

(3) Disassembly disruption that confuses instruction decoding
and function recognition in binary analysis. Typical methods
of disruption include interleaving data with code and forging
code patterns that code analyzers recognize as special hints
for disassembly.

(4) Bogus control flow insertion that constructs unfeasible code
paths guarded by opaque predicates [23].

(5) Control flow flattening that obscures the logic relations be-
tween program basic blocks [21].

(6) Garbage instruction insertion that injects garbage code that
is irrelevant to program functionality [22].

Among these obfuscations, symbol name mangling and string
literal encryption are mainly for misleading human perception
while the others are meant to confuse both humans and automated
tools. The major focus of our solution is to impede automated binary
disassembly and decompilation, which are the early steps of most
malicious activities conducted by the practitioners of underground
economy targeting iOS apps.

We ensure that all selected obfuscation algorithms well abide
by Apple’s security policies. By analyzing other obfuscated i0S
apps found in the App Store, we have confirmed that these algo-
rithms or their variants have been previously employed by legit app
developers, indicating that they are unlikely to affect the review
process. Regarding the limit for binary size, obfuscation (1), (2), and
(3) barely introduces spatial overhead into the obfuscated binaries.
For the other three algorithms, the expanded binary size can be
controlled within an acceptable rate by carefully tuning the con-
figurable obfuscation parameters, e.g., the ratio of inserted opaque
predicates and garbage instructions to the amount of the original
code.

Through our implementation, we have confirmed that all se-
lected algorithms are fully compatible with LLVM IR, except for
(3), which needs to directly manipulate machine code. We partially
addressed this problem with the use of inline assembly, a feature
supported by many implementations of C-family languages and
LLVM itself. Figure 4 shows an example of interleaving data and
code at the LLVM IR level. The inserted data are used for disrupting
disassembly. The data chunks are guarded by an opaque predicate
so that they are never reached and thus do not compromise nor-
mal execution. In Section 4.3, we will discuss implementing binary
obfuscation at the IR level in more depth.

Many obfuscation methods we employed have reference imple-
mentations from the open source community [5, 6, 32]. We inten-
tionally made our implementation different from the public ones



1 ; @foo: A function computing foo(a, b) =a + b

2 define i32 @foo(i32 %a, i32 %b) #0 {

3 entry:

4 ; %x: uninitialized 32-bit integer variable

5 %x = alloca i32, align 4

6 %0 = load 132, 1i32% %x, align 4

7 %1 = load 132, i32x %x, align 4

8 %add = add nsw 132 %1, 1

9 smul = mul nsw i32 %0, %add

10 %srem = srem i32 %mul, 2

11 ; %tobool: opaque predicate 'x*(x+1)%2 != 0' (constantly
false)

12 %tobool = icmp ne i32 %rem, 0

13 br il %tobool, label %if.then, label %if.else

14

15 ; %if.then: unreachable block guarded by %tobool

16 if.then:

17 ; insert 4-byte data Oxdeadbeaf with inline asm

18 call void asm sideeffect ".long, Oxdeadbeaf", ""()

19 br label %if.end

21 if.else:

22 %addl = add nsw i32 %a, %b

23 br label %if.end

24

25 if.end:

26 %2 = phi 132 [%x, %if.then], [%addl, %if.else]
27 ret i32 %4

28}

Figure 4: Example of obfuscation utilizing LLVM IR inline
assembly

by altering code patterns and introducing new features. Attackers
will need more sophisticated techniques to nullify the mutated ob-
fuscation effects [44]. Indeed, most of the mutations we made are
supplementary and it is questionable whether they render the ob-
fuscations fundamentally more difficult to defeat. Ideally, a reliable
defensive measure should be secure even if its technical details are
known to attackers. This is however a standard not met by most
obfuscation techniques used in practice. As a consequence, keeping
the obfuscation details confidential is one of the few advantages
that benign developers can hold over adversaries. Regardless, the
customized obfuscation techniques can at least make reverse engi-
neering much more tedious and frustrating, since reverse engineers
will have to undo the customization before reducing the mutated
obfuscation to its baseline form. Again, we would like to note that
the main contribution of the paper is not developing or evaluating
new obfuscation methods, but maximizing the value of existing
techniques in practical engineering.

4.3 Implementation Pitfalls

We have encountered a series of technical issues when trying to
implement the aforementioned algorithms, many of which are quite
stealthy and lead to subtle problems affecting the potency and
practicality of our work. Some of the issues are generally relevant
to software obfuscation, but more of them are unique to iOS.

4.3.1 Inline Assembly. As previously mentioned, the inline as-
sembly feature of LLVM allows IR transformations to manipulate
machine instructions. To the best of our knowledge, this is the only
solution that makes binary-level obfuscation possible if we are to
follow the currently recommended iOS app development procedure.

Since directly manipulating or adjusting machine instructions
after compiling the source code is not possible, the capability of
our solution is significantly limited. In principle, inline assembly
can only perform instruction insertion but not code modification or
deletion. Moreover, at the time of IR transformation, most machine
code is not yet generated by the LLVM backend, making it extremely
difficult to construct complicated binary transformations solely
with LLVM IR manipulation. Another factor to consider is the
characteristics of the ARM architecture. Compared with the CISC
architectures x86 and x64 where binary-level obfuscation is quite
prevalent, ARM is RISC and employs the fixed-length instruction
encoding. This invalidates many obfuscation techniques that exploit
the variable-length encoding of instructions, such as overlapping
instructions [16].

According to our experience, the following obfuscation-oriented
transformations can be correctly implemented with LLVM inline
assembly:

e Insert junk instructions.

Interleave data and code in unreachable basic blocks.
Perform control flow transfers that are consistent with the
IR-level control flows.

Diversify stack frame layouts by manipulating the stack and
frame pointer registers.

It should be noted that the correctness of these transformations
cannot be guaranteed for concurrent code, due to the lack of sup-
port for volatile inline assembly in LLVM. In certain cases, aggres-
sive compiler optimization may also make binary-level obfuscation
problematic. As such, it is extremely crucial to thoroughly test
the obfuscator in real app development and production settings.
Because of this potential instability of binary-level obfuscation in
LLVM IR, developers should take deliberation to make appropriate
trade-offs among security, reliability, and maintainability when
designing an iOS obfuscator.

4.3.2  Heterogeneous Hardware. In contrast to Android, iOS runs
on a very limited set of models of hardware, therefore hardware
fragmentation is much less of an issue for most iOS developers. For
obfuscation, however, heterogeneous architectures is still a factor
that needs to be considered, especially when obfuscation aims to
hinder binary disassembly, which is heavily architecture dependent.

i0S and its variants support both 32-bit and 64-bit ARM architec-
tures. For iPhone apps, 32-bit binaries are no longer supported since
i0S 11, while other Apple mobile devices like smart watches and
smart TVs will keep supporting 32-bit binaries for a much longer
time. If a developer intends to release its apps on all active iOS
devices and the code fragments to be protected are shared by apps
on different platforms, obfuscation should guarantee that code for
the two architectures are equally protected. If code for one archi-
tecture is less well obfuscated than that for the other, attackers will
simply choose to breach the weaker spot, leaving the more effective
protection on the other architecture meaningless. This is similar to
what we have emphasized in Section 1 about protecting iOS and
Android apps with comparable effort.

4.3.3  App Maintainability. In most cases, when commodity soft-
ware crashes, the only information available to software developers
for investigating the root causes are the core dumps and stack traces



collected at crash sites. This applies to iOS apps as well. Developers
can either embed a third-party crash reporting library into their
apps or periodically receive diagnosis reports from Apple. In ei-
ther case, the readability of the stack traces will be affected by
obfuscation, potentially making app maintenance troublesome.

Obfuscation can render crash traces unreadable in two aspects.
Firstly, the symbol names appearing in the stack traces, especially
the function names, are scrambled into strings meaningless to hu-
mans. To undo this effect at the time of crash analysis, the obfuscator
need to memorize the mapping from original symbol names to the
mangled ones during app compilation and revert the obfuscated
names before app maintainers read crash reports. Secondly, obfus-
cation inserts additional code into the software, which cannot be
correlated to any location in the source files. Ideally, if the obfusca-
tor is correctly implemented, obfuscation-specific code should not
cause crashes. However, since i0S apps are mostly written in unsafe
programming languages that are prone to memory errors, faults
caused by defective genuine app code may propagate to surround-
ing locations, possibly reaching code introduced by the obfuscator.
To tackle this problem, we make the obfuscator generate extra de-
bug information for the inserted code. In order to minimize the
confusion caused to crash analysts, we adopt a “nearby principle”
that maps obfuscator-generated code to the source location of the
nearest genuine app code within the same lexical scope.

On i0S, the debug information of an executable is collected into
a dedicated metadata file and is only accessible to app developers.
Therefore, enriching debug information will not accidentally help
reverse engineers better understand the app.

5 EVALUATION

We now report the outcome of our obfuscation effort. The protected
i0S code base consists of 23K lines of Objective-C and C code, which
roughly takes 0.5% to 2% of each including app. We evaluated the
obfuscation in two aspects, i.e., resilience and overhead. According
to the definition by Collberg et al. [23], resilience indicates how
well the obfuscation can withstand automated reverse engineering.
As for overhead measurement, we focus on binary size expansion
and execution slowdown.

5.1 Resilience

Although software obfuscation has been actively researched for
quite some time, how to systematically assess the security strength
of an obfuscator remains an open problem. The theoretically solid
evaluation methodology is to reduce deobfuscation to a computa-
tional problem with provable or conjectural intractability. To date,
this has only been done for indistinguishability obfuscation [27],
which is still not practical for protecting real-world software [36].
On the other hand, evaluation through empirical experiments al-
ways raise concerns about the possibility that the obfuscation can
be effectively nullified by some unknown or future deobfuscation
methods not considered by the evaluation. Some recent effort has
tried to establish standards for assessing the security strength of
obfuscation techniques [14, 37, 42], but it remains unclear how well
they can fit the demands of practical software protection.
Practitioners in industry mostly evaluate the resilience of an ob-
fuscation technique through white-hat penetration tests. Although

the procedures of these tests are exceedingly subjected to human
intuition and experience [14, 17], the early steps are fairly standard.
Typically, the testers will first use automated reverse engineering
tools to reduce binary code into a form that is much more con-
venient for humans to inspect. Our internal penetration test also
follows this scheme. In the section, we report the effectiveness of
our obfuscator by showing its resilience to IDA Pro, the de facto
industrial standard of binary disassembler and decompiler.

Our obfuscation delivers two major disrupting effects on the
efficacy of IDA Pro. The first one is that IDA Pro will report signifi-
cantly more false positives when trying to recognize the starting
addresses of functions in an obfuscated binary, due to the confusing
code patterns we inserted. Table 1 displays the true numbers of
functions, the numbers of functions recognized by IDA Pro, and the
numbers of false positives, counted before and after obfuscation.
Note that the ground truths of function numbers before and after
obfuscation are slightly different because the obfuscator inserted
some helper functions during IR transformations.

The other disrupting effect is that IDA Pro will fail to disassemble
a large portion of the binary code, due to the garbage instructions,
intrusive binary data, and unfeasible control flows forged by the
obfuscator. Figure 5 presents the performance of IDA Pro regarding
the original and obfuscated binaries in terms of the proportion of
successfully disassembled code. Before obfuscation, IDA Pro is able
to disassemble almost all binary code for both 32-bit and 64-bit
architectures. After obfuscation, the disassembler can only process
51.1% of the 32-bit binary and 14.1% of the 64-bit binary.

As discussed in Section 4.3, it is crucial for an iOS obfuscator
to protect binaries of different architectures equally well. When
interpreting the results in Table 1 and Figure 5, it is important to
note that the two metrics used in the evaluation are complementary.
Since a recognized function must have a body, more falsely recog-
nized functions naturally lead to more disassembled binary chunks.
Considering that IDA Pro reports much more false positives in 32-
bit binary function recognition, a disassembly rate higher than the
result for the 64-bit version is plausible. In other words, despite that
IDA Pro can disassemble more code in the 32-bit binary, the addi-
tionally decoded instructions are incorrectly promoted to functions
that do not exist in the source code, which actually has a negative
effect on further analysis. According to our internal penetration
tests, although the two versions of obfuscated binaries confused
IDA Pro in different ways, the end effects are about the same.

5.2 Overhead

To measure the obfuscation overhead, we implemented the eval-
uated code base as a standalone i0S app by adding necessary ini-
tialization procedures and a minimal GUI The newly added code
is negligible for the purpose of measurement. We report both the
spatial and temporal overhead caused by obfuscation. As discussed
in Section 4, the protected part of the code is small compared to
apps including it. Since the routines provided by this part are mostly
decoupled from the main functionality of the apps and typically
run in the background, the impact of obfuscation on the overall
execution speed is expected to be modest. In contrast, the bloated
binary size is more of a concern due to the strict size limit on the
code segments of iOS apps.



Table 1: Performance of IDA Pro Function Recognition

Number of Functions

Target Architecture Original Obfuscated
Ground Truth IDA Reported False Positives Ground Truth IDA Reported False Positives
ARMv7 (32 bit) 993 1152 159 1069 3516 2447
AArch64 (64 bit) 991 1121 130 1065 1778 713
99 1 98.5 Table 2: Binary Size Expansion Due to Obfuscation

100

50

Code Disassembled by IDA Pro (%)

ARMv7

AArch64

I8 Original Binary
I B Obfuscated Binary

Figure 5: Effectiveness of disassembly disruption

5.2.1 Size Expansion. For most of our obfuscated apps, the 64-bit
binaries suffer more from the limited quota of binary size, because
the 32-bit iOS binaries are usually smaller than their 64-bit coun-
terparts. The main reason is that 32-bit binaries are composed of
THUMB? instructions whose encoding is more compact than that
of 64-bit instructions. Meanwhile, the size limits for the two ar-
chitectures are the same, meaning the obfuscated part by itself is
allowed to consume more quota on the 32-bit platform.

Table 2 shows the code segment sizes of the original and obfus-
cated iOS apps. As can be seen, the obfuscation can cause 3 to 4
times of binary inflation, suggesting that whole-app obfuscation is
likely inapplicable to large-sized iOS apps.

Another observation is that the obfuscation bloats the 64-bit
binary less than the 32-bit version, in terms of proportion. As men-
tioned above, this is a somewhat desirable outcome since the size
problem is more troublesome for 64-bit binaries. We conducted a
preliminary investigation to explore the causes of this phenome-
non. We found one of the reasons is that the 32-bit and 64-bit ARM
backends of LLVM handle relocatable memory addresses differently.
Since ARM is RISC and has a limited instruction length, loading
a large constant integer into a register usually takes more than
one instruction to accomplish. According to our observation, the
32-bit ARM backend of LLVM materializes relocatable memory ad-
dresses by employing constant pools, while the 64-bit backend uses
dedicated instructions like adrp, which are slightly more efficient
than the 32-bit solution in terms of the total bytes of instructions
generated. Since our obfuscator emits a lot of large constants to

Code Segment Size in Bytes

Target Architecture
Original ~ Obfuscated Increase
ARMv7 (32 bit) 286304 1070656 784352 (+307%)
AArché64 (64 bit) 333376 1165456 832080 (+221%)

represent basic block addresses, the difference between the size
efficiency of the two backends is significantly amplified.

5.2.2 Execution Slowdown. We tested the decrease in execu-
tion speed after obfuscation on an Apple iPad Air, an iOS device
released in 2013, which has a 1.4 GHz dual-core ARM CPU and
1GB RAM. The obfuscated code performs both synchronous and
asynchronous tasks inside host apps. The asynchronous tasks are
scheduled sparsely during app execution and we did not detect
any notable slowdown after obfuscation was applied. As for the
synchronous part, the execution penalty is from 5% to 10% for both
32-bit and 64-bit builds,” while the app-wide slowdown is mostly
negligible. This result indicates that performance degradation is
not necessarily the primary blocker that prevents obfuscation to
be applied to real-world mobile apps.

6 DISCUSSION

6.1 Dilemma of Security and Transparency

In our experience, one of the most challenging factor that prevents
thorough software protection on iOS, and potentially on all plat-
forms featuring centralized software distribution, is the conflict
between seeking more securely obfuscated code and retaining the
transparency to app reviews. Naturally, the more effectively an app
is obfuscated, the more difficult it makes the distributor to review
the functionality of the code, even though the purpose of obfus-
cation is to prevent reverse engineering only from the malicious
parties. Since Apple does not provide official support for iOS app
protection, the developers will have to carefully take the balance
themselves.

An adequate solution to the dilemma is to let the app distribu-
tor perform obfuscation after the review is completed and before
the app is published. Indeed, this solution will shift the burden
of protection from iOS developers to App Store, which may not
be practical in the near future. However, we believe that it could
significantly benefit the entire iOS ecosystem in long terms.

5The precise measurement results are confidential per app developer requirements.



Although it is unclear whether post-review obfuscation can be
expected by iOS developers at this stage, there are indeed other more
realistic measures that iOS can take to improve app code security.
For example, some library developers would like their products to
be freely downloaded by any developers who are interested, yet
they also wish to keep the actual content of the code confidential
from potentially malicious clients and competitors. Since iOS app
code generation can now be conducted remotely on Apple’s cloud,
it is technically feasible for iOS to provide encryption facilities for
third-party library code such that only the programming interface
can be seen by other developers while the actual library content is
only revealed to Apple. Although this cannot prevent the code from
being analyzed after apps containing the libraries are released, it is
still a step forward towards more effective iOS software protection.

6.2 Other Protections

Obfuscation is not a panacea for combating the security threats
targeting mobile apps and there have been many deobfuscation
techniques proposed [24, 35, 45, 46]. A comprehensive defense re-
quires a synergy among various countermeasures. At this point,
obfuscation techniques available on iOS are mostly designed for
hindering static analysis, while reverse engineering can also be
conducted dynamically. Given a jailbroken iOS device, reverse en-
gineers can tamper with an app by injecting third-party code into
its process. In this way, adversaries can debug the app at run time
to circumvent certain static protections provided by obfuscation.
Reverse engineering tools like cycript [3] and Frida [4] have made it
quite convenient to perform on-device debugging for arbitrary iOS
apps. There are at least two effective dynamic tampering attacks:

o Sensitive information pry. Depending on the objective of an
attack, it is sometimes sufficient for attackers to place hooks
at critical program points of an app and dynamically monitor
what types of data are being exchanged. As explained in
Section 3, such information leakage is extremely severe for
data-driven defenses like anomaly detection.

o Replay attacks. On jailbroken devices, attackers is capable of
dynamically invoking arbitrary Objective-C methods of an
app after injecting the debugging module at run time, which
allows them to replay certain communications between apps
and servers. It is known that attackers have used replay to
counterfeit users clicks so that they can trick ad providers
into paying them for nothing [25].

Various techniques are available for preventing software from
being dynamically debugged by unauthorized parties. However,
anti-debugging faces a problem similar to obfuscation regarding
its security guarantee. In the case of iOS, since attackers are able
to gain full control over the app and the system altogether, code
integrity can be easily breached. In theory, attackers can rewrite app
binaries and remove all anti-debugging facilities before dynamically
inspecting them.

Although neither obfuscation nor anti-debugging is comprehen-
sive by themselves, there is a chance that they can be combined to
patch the weaknesses of each other. To disable anti-debugging, at-
tackers will have to gain certain knowledge about the defenses
in static means. On the other hand, before removing the anti-
debugging facilities, attackers cannot circumvent obfuscation via

dynamic analysis. Therefore, when obfuscation and anti-debugging
are deployed together, they can form an all round defense against
reverse engineering.

7 RELATED WORK

Software obfuscation has been intensively researched from both
theoretical and practical perspectives. It has been formally proved
that a universally effective obfuscator is not possible to imple-
ment [15, 28]. It is however feasible to build secure obfuscation
constructs with limited generality, such as indistinguishability ob-
fuscation [15] for polynomial-sized circuits [27] and the best possi-
ble obfuscation that tries to minimize rather than eliminate infor-
mation leakage [29].

On the practical side, various obfuscation techniques have been
developed and some of them have been shown helpful to soft-
ware protection. Compared with early inventions like the ones
introduced in Section 4, recently proposed solutions employ more
advanced system and language features for obfuscation purposes.
Popov et al. [38] proposed to replace branches with exceptions and
reroute the control flows with customized exception handlers. Chen
et al. [19] employed the architectural support of Itanium processors
for information flow tracking, i.e., utilizing the deferred exception
tokens embedded in Itanium registers to encode opaque predicates.
Wang et al. [42], Lan et al. [33], and Wang et al. [43] obfuscated
C programs by translating them into declarative languages or ab-
stract computation models, making imperative-oriented analysis
heuristics much less effective. There are also obfuscation methods
that are less dependent on special software and hardware features
but utilize more general techniques like compression, encryption,
and virtualization [30, 34, 39, 48].

Most practically usable obfuscation tools supporting iOS are
commercial. Obfuscator-LLVM [32] is an open source project that
provides the implementation of several well known obfuscation
algorithms within LLVM, thus suitable for iOS app protection. Un-
fortunately, the tool is no longer actively maintained. Tigress [12]
is a source-level obfuscator supporting the C programming lan-
guage. Protections provided by Tigress are mostly heavy weight,
e.g., virtualization-based obfuscation and self modification, some
of which are not applicable to iOS apps.

8 CONCLUSION

In this paper, we shared our experience with applying software
obfuscation to iOS mobile apps in realistic software development
settings. We revealed the threats of various malicious activities
targeting mobile apps, including those conducted by well organized
groups of underground economy practitioners. We then discussed
why i0S app vendors should seriously consider protecting their
apps by software obfuscation and what efforts need to be made for
obfuscation to be practical when applied to complicated apps with
large user bases. In particular, we summarized the major pitfalls that
may prevent iOS developers from utilizing obfuscation effectively
and efficiently, together with our responses to these challenges.
We presented quantitative results on the resilience and cost of our
iOS obfuscator. The evaluation is conducted on a common code
base included by multiple commercial iOS apps serving a large
number of users. The results show that software obfuscation, being



an technique accessible to common mobile developers, can indeed
provide reasonably effective protection with modest cost.
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