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Abstract. With the rise of increasingly advanced reverse engineering
technique, especially more scalable symbolic execution tools, software
obfuscation faces great challenges. Branch conditions contain important
control flow logic of a program. Adversaries can use powerful program
analysis tools to collect sensitive program properties and recover a pro-
gram’s internal logic, stealing intellectual properties from the original
owner. In this paper, we propose a novel control obfuscation technique
that uses lambda calculus to hide the original computation semantics
and makes the original program more obscure to understand and re-
verse engineer. Our obfuscator replaces the conditional instructions with
lambda calculus function calls that simulate the same behavior with a
more complicated execution model. Our experiment result shows that our
obfuscation method can protect sensitive branch conditions from state-
of-the-art symbolic execution techniques, with only modest overhead.

Key words: Software obfuscation, control flow obfuscation, reverse en-
gineering, lambda calculus

1 Introduction

As binary analysis techniques keep advancing, reverse engineering is becom-
ing more effective than ever before. Consequently, malicious parties are able to
employ the latest binary analysis techniques to identify exploitable software vul-
nerabilities for injecting malicious code into legit applications. Binary analysis
tools can also get misused to reveal important internal logic of the distributed
software copies, potentially leading to intellectual property thefts and therefore
severe financial loss to the original developers.

One of the protection techniques that prevents undesired reverse engineering
is software obfuscation. Generally, software obfuscation are program transforma-
tions that make software more complicated than its original form and difficult for
adversaries to understand and analyze, while preserving the program’s original
semantics [24].

In this paper, we propose a novel obfuscation method, called lambda obfus-
cation, that utilizes the concept of lambda calculus, a powerful formal compu-
tation system widely adopted by the programming language community. The
main idea of our approach is to utilize the unique computation model of lambda
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calculus, which is vastly different from the widely used imperative programming
paradigm, to simulate the security-sensitive parts of the original programs. In-
stead of imperatively performing computation with data and control step by
step, lambda calculus is entirely based on function application and reduction.
The concept of control flow becomes insignificant in lambda calculus, and all
data structures, including primitive data types like integer, are represented as
high-order functions, potentially making conventional information flows implicit.
When this highly abstract computation model is implemented and deployed with
low-level machine code, a huge semantics gap emerges and imposes great chal-
lenges on manual and automated program analysis, therefore hindering reverse
engineering.

Being Turing complete and considered as the smallest universal program-
ming language [21], lambda calculus is capable of expressing all kinds of compu-
tation patterns available with a typical imperative programming language, e.g.,
C, Pascal, and Fortran. If the simulated computation is free of side effects, the
source-level conversion can be fairly straightforward, yet the resulting program
binary after transformation will become much more complicated and obscure.

To demonstrate the feasibility and practicality of lambda obfuscation, we
implemented a prototypical lambda obfuscator based on the LLVM compiler
infrastructure [13]. The obfuscator transforms qualified branch conditions into
lambda calculus terms that simulate their original behavior. In order to re-
turn the simulation results, an interpreter that evaluates the lambda calculus
is linked to compiled binaries including the procedures and intermediate val-
ues for computing the heavily obfuscated results. We comprehensively evaluated
our obfuscation technique in four aspects, namely potency, resilience, cost, and
stealth. The evaluation result indicates that our method can make the obfus-
cated programs more obscure and prevent automatic software analyzers from
revealing possible execution paths. In particular, we assessed lambda obfusca-
tion’s resilience against KLEE, an advanced symbolic execution engine [3] and
obtained promising results.

The rest of the paper is organized as follows. We first discuss historical work
on control flow obfuscation in Section 2. We then briefly introduce the basics of
lambda calculus, followed by the design of lambda obfuscation in Section 3. The
technical details of the implementation are presented in Section 4. Section 5 eval-
uates the performance of our approach. Some research questions are discussed
in Section 6 and we finally conclude the paper in Section 7.

2 Related Work

Software obfuscation techniques can be divided into four major categories,
namely layout obfuscation, preventive obfuscation, data obfuscation, and control
obfuscation [2]. Arguably as the most popular one, control obfuscation focuses on
concealing and complicating control flow information of the program. There has
been a large volume of research striving to develop effective control obfuscation
techniques from different angles.
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One of the classic approaches to achieving control obfuscation is by designing
resilient opaque predicates. A predicate is opaque if it evaluates to a predeter-
mined constant regardless of its input, while this invariant is hard to reveal
through static analysis [30]. Most opaque predicates are derived from number-
theoretic theorems [17], e.g., the quadratic residue lemmas [1]. One of the funda-
mental drawbacks of employing opaque predicates is that they always evaluate
to the same value at run time, thus vulnerable to dynamic analysis. The invari-
ant nature of opaque predicates can result in a likely detection by adversaries
through sophisticated program analysis. In order to overcome this disadvantage
of invariant opaque predicates, Palsberg et al. [18] introduced dynamic opaque
predicates in which a family of correlated predicates whose evaluation results
are only invariant in specific execution contexts.

Sharif et al. [22] proposed a conditional code obfuscation technique that
leverages the inconvertibility of cryptographic hash functions to protect branch
conditions. They used the hash functions to obfuscate the value of variable for
which the branch condition can be satisfied. Because of the preimage resistance
properties of these cryptographic hash functions, it is not practically feasible for
static analyzers to reconstruct the values that satisfy the condition and the con-
trol flow logic information is therefore concealed and protected. However, their
approach is only applicable to branch conditions evaluated through the equality
relation, while it fails to protect conditions that contain inequality relations.

There is a line of research on building obfuscation techniques based on code
mobility [7, 28, 20]. These approaches only deploy partial and incomplete appli-
cation code on the local machine and retrieve the rest of binary instructions from
a remote trusted server. While these obfuscation techniques can reduce attacker’s
visibility to the software semantics, they also heavily rely on the availability of
network communications and remote servers, which limits the application sce-
narios of their techniques.

Control flow obfuscation can also be implemented by introducing exotic com-
putation gadgets and paradigms. Ma et al. [15] proposed to replace important
branch conditions with trained neural networks that simulate the program be-
havior when the branch conditions are triggered. Their approach can protect
program against concolic testing due to the complexity of neural networks. How-
ever, it is required to train corresponding neural networks in advanced based
on the target branch conditions. Their approach becomes less flexible and te-
dious to deploy when the number of branch conditions requiring obfuscation
increases. Wang et al. [25] introduced another obfuscation framework called
translingual obfuscation. They proposed to translate programs written in im-
perative programming languages, which are relatively easier to reverse engineer,
to languages of different paradigms. In particular, they demonstrated the fea-
sibility of obfuscating C programs with Prolog, a logic programming language
based on first-order logic resolution. Due to the vastly different execution models
of the original and target languages, traditional binary analysis methods have
difficulty in countering translingual obfuscation. Another obfuscation method,
called Turing obfuscation [27], augmented the concept of translingual obfusca-
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tion by transforming C programs into compositions of primitive Turing machines
rather than programs written in another language. Our research shares a similar
idea with Turing obfuscation, while we adopt lambda calculus as the foundation
of obscurity, which is a more heterogeneous computation model.

3 Design

The basic idea of lambda obfuscation is to leverage the unique computation
model of lambda calculus for protecting the relatively straightforward impera-
tive computation procedures in common programs. Even though different pro-
gramming languages adopt different execution models, it is considered relatively
easier to reverse engineer imperative languages whose computation schemas align
the best with the underlying hardware. Typical imperative languages include C,
Fortran, and Pascal. On the contrary, execution models of functional languages,
such as lambda calculus, result in greater differences between the source code
and compiled binary code, which can increase the difficulty of de-obfuscation.
Therefore, we can translate and implement functionalities of a program using
different programming languages to mix execution models and conceal sensitive
program information. In this paper, our lambda obfuscation technique embeds
functional execution model of lambda calculus into C programs that use imper-
ative execution model. It translates the path condition instructions in original
compiled binary code into function calls that are implemented using lambda cal-
culus. In this way, we are able to make the execution model of the obfuscated
programs more complicated, thus hindering reverse engineering.

3.1 Lambda Calculus Basics

Lambda calculus is a formal system that uses the basic operations of function
abstraction and application to describe computation [19]. The basic building
blocks of lambda calculus are expressions called lambda terms. There are three
types of lambda terms, namely variable, abstraction, and application, the syntax
of which is defined by the following BNF specifications:

(expression) ::= (variable) Variable
|  A(variable).{expression) Abstraction
| (expression)(expression) Application

A variable in lambda calculus is an arbitrary identifier. An abstraction can
be viewed as a notation for defining anonymous functions. For example, lambda
term (A\z.e) defines an anonymous function whose parameter is the variable x and
the function body is another lambda term e. An application term captures the
action of applying a function to its arguments. For example, lambda expression
(f t) means applying function f to an expression ¢, which is provided as the
argument to f. All valid lambda terms can be formed by repeatedly combining
the three basic lambda terms. Below are some examples of valid lambda terms:
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x A variable x

Azr.x An identity function

(Ax.x) y Applying identity function to variable y

Ap.A\g.p q A function applying its first argument to the second one

When the A symbol precedes a variable, it binds all the occurrences of this
variable in the abstraction body. A variable is called a bound variable if its name
is associated with a A symbol. Other variables in the function body are called
free variables [11]. For example, in the following expression, variable z is a bound
variable while variable y is a free variable.

AT.x Y

Reduction The meaning of lambda calculus is defined by how lambda calculus
can be reduced [6]. This reduction process is achieved by substituting all free
variables in a way similar to passing the defined parameters into the function
body during a function call [23]. The main rule to perform reduction in lambda
calculus is called B-reduction, which can be defined as follows:

(Az.e1) e2 = e1[z — eg]

where notation ej[x — ez] denotes substituting all free occurrences of the vari-
able z with es in e;. S-reduction captures the essence of function application
and can be used to simplify and evaluate lambda terms. During the reduction
process, all intermediate function applications are carried out and eliminated.
The reduction process stops when B-reduction rule cannot be performed any
more. Here are several 3-reduction examples.

Azx)y=vy
(Ar.z)(Ay.y) = \y.y
Az 2)(Ay.y) = Ay-y)(Ay-y) = Ay.y

3.2 Church Encoding

In lambda calculus, abstracts, or functions, is the only primitive type that is nat-
urally available. Therefore, to perform meaningful computation that resembles
what a modern programming language is capable of, it is imperative to find an
encoding scheme to express basic data types like integer and operators in lambda
calculus. For the purpose of lambda obfuscation, we employ Church encoding to
represent natural numbers and operators to implement lambda obfuscation. In
this section, we briefly introduce the basics of Church encoding.

Firstly developed by Alonzo Church, Church encoding describes the value of
a natural number as the number of times for which a function is applied to an
argument. Natural numbers expressed this way are called Church numerals. For
example, when encoded as a Church numeral, the natural number 2 is a lambda
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abstraction that applies its first argument to its second argument twice. The
Church numerals can be defined as follows:

0= Afz.x
l1=Afox.fx

2= A2 z.f (f 2)
3= AfAxf (f (f @)
n=Af x.f"x

As the definition indicates, the Church numeral n can be viewed as a high-
order function that takes a input function f and applies it to a value x for n
times. Therefore, a successor (SUCC) operator that takes a Church numeral n
and returns n + 1 essentially is appending another application of function f to
Church numeral n, which is defined as follows:

SUCC = AnAfAz.f (n f x)

Within this context, the addition operator can be accordingly defined as a
lambda expression. Conceptually, adding m to n is equivalent to adding 1 to
n for m times. Therefore, a PLUS operator that adds m to n is identical to
applying SUCC operator to n for m times. Therefore, PLUS operator can be
defined using SUCC operator as follows:

PLUS = Am.An.m SUCC n

The predecessor (PRED) operator that takes a Church numeral n and returns
n — 1 is more complicated to define, but conceptually it is still equivalent to
getting the high-order function that applies its argument one less time than
Church numeral n. Similarly, subtraction (SUB) operator can be defined based
on PRED operator. Other important operators and logical predicates are defined
as follows:

PRED = An.Af \x.n (Ag.Ah.h (g f)) (Au.z) (Au.u)
SUB = Am.An.n PRED m
TRUE = Azx.\y.x
FALSE = Az \y.y
ISZERO = An.n (Az.FALSE) TRUE
LEQ = Am.An.ISZERO(SUB m n)
GEQ = dm.An.LEQ n m

Note that the PRED and SUB operators defined above are “truncated”, mean-
ing the decrementation stops at 0. This is expected since we have not defined
negative integers yet, which it is entirely feasible in lambda calculus. Due to
limited space, we do not list the complete definitions of all primitives employed
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lambda obfuscation. If interested, readers can find the corresponding information
in many materials on programing languages and logic!.

Through implementing the Church encoding of necessary operators, we are
able to perform basic arithmetic operations in lambda calculus, including ad-
dition, subtraction, multiplication, and division. We can also simulate equality
and all kinds of inequality comparisons, e.g., greater than, smaller than. For
example, 0 4 1 is equivalent to perform reduction on the following lambda term
in lambda calculus:

PLUS 0 1 = (Am.An.m SUCC n)(A\f A \z.x)(Afdx.f x)
= (Am.Anm (AnAf e f (n f ) n)Afdz.x)(Af Az .f x)

In other words, the Church encoding provides the lambda calculus terms with
which we can simulate the computation of path conditions in typical C programs.

From the perspective of program obfuscation, the Church encoding “acci-
dentally” possesses the capability of eliminating explicit control flows. As an
example, the ISZERO lambda term simulates a typical branch operation in im-
perative programming. However, the computation, or more precisely the reduc-
tion, of ISZERO does not contain any explicit decision making. Therefore, no
logic-significant control flows can be observed, which is one of the major advan-
tages of lambda obfuscation over traditional techniques.

3.3 Data Structures

To implement lambda obfuscation, we need to first design the data structure to
represent lambda terms. As introduced earlier, a lambda term can be one of the
variable type, abstraction type, and application type. Naturally, we use enum
structure to enumerate all three types, namely Tvar, Tlam, and Tapp. Because
lambda terms are defined inductively, the data structure we use needs to refer
and link to other lambda terms recursively. We define a C struct called term
including two main fields, i.e., type and data. The type field stores the type of
lambda terms. The data field stores different information based on the type of
the lambda term. For a variable, it only stores the identifier, which is a char.
For the abstraction structure, it includes a char to store the variable and a term
pointer as the function body. An application consists of two term pointers to link
the two expressions. Figure 1 presents the SUCC operator and Church numeral
2 using the data structures described above.

The benefit of representing lambda calculus with the term data structure is
twofold. Firstly, our data structure, along with the computation model of lambda
calculus, makes the execution flow more complicated for analysis tools to reason
about. In the imperative execution model, computation is conducted through
series of explicit instructions that modify memory states [4]. While in lambda

1 Our current implementation does not support floating point numbers and arithmetic,
but it is feasible and can be added into the implementation with more engineering
effort.
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Tvalrl Tapp
char f term* left _ﬁ{iTvar
Tlam Tlam Tlam Tapp » char '
char 'n' char 'f' char 'x' term* left term" right
term* body term* body term* body term* right Tapp
term* left Tvar Tvar
term* right char ' char 'f'
SUCC operator: An.Af.Ax.f (n f x)
> Tvar
Tlam Tlam Tapp char ' Tvar
char 'f' char 'x' term* left char 'f'
term* body term* body term* right ————»| _Tapp
term* left
) Tvar
term* right
char 'x'

Church numeral 2: Af.Ax.f (f x)

Fig. 1. SUCC operator and Church numeral 2 in term structure

obfuscation, computation is conducted through manipulating term objects, such
as creating new term objects, changing term pointers, modifying variable identi-
fier, and removing existing term objects. Thus, it requires analysis tools to trace
the modifications of every intermediate steps to understand the internal logic
which is not only resource-intensive but also time-consuming. Our data struc-
ture and unique execution model and lambda calculus significantly increase the
cost and difficulty for binary analysis tools to reveal the internal logic of obfus-
cated programs. Secondly, the Church encoding, and our implementation of it
using term, is “unnatural” by itself in the first place. The encoding adopts a
significant different approach to encode natural numbers and other data types
that are mostly primitive in a traditional imperative computation model. In-
stead, numbers become a link of term objects. As such, there are no more clear
indications on what numbers the computation is operating on. This notably
increases the cost to trace a value in lambda calculus because it now requires
adversaries to trace the whole link of term objects to identify the number. More-
over, with Church encoding, every expression can is represented as a function,
making data and operation much less distinguishable. In particular, the Church
numerals are simply high-order functions that take functions as arguments and
return functions as results. From this point, Church numerals are no different
than other lambda calculus operators, such as PLUS operator or SUB operator.
During the evaluation process, data and operator logic are mixed together. In
summary, leveraging this simple data structure we design to represent lambda
calculus in our implementation can make the obfuscated programs more obscure
for attackers to reverse engineer.
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3.4 Lambda Obfuscation

Theoretically, the lambda calculus is mostly as powerful as a modern program-
ming language, due to its Turing completeness. However, obfuscating the entire
program is usually against the common software engineering practices due to
considerable performance and maintenance cost. Therefore, software develop-
ers usually have to manually pick the part of code they consider sensitive and
vulnerable as obfuscation candidates.

To demonstrate the value of lambda obfuscation, we particularly pick path
conditions as the targets to apply obfuscation to. To be specific, we re-implement
the computation of path predicates with lambda calculus. Path conditions, in
most software, are the crux of understanding program behavior and computation
logic. By focusing on this part, we are able to evaluate lambda obfuscation
without domain-specific knowledge about the software we obfuscate.

Branches are usually implemented through comparison. To obfuscate a path
condition instruction, we combine the corresponding lambda comparison oper-
ator with the compared parameters which are both encoded as lambda terms,
forming a lambda expression that represents the path condition computation.
At run time, the lambda expression is evaluated to a form that cannot be further
reduced. This irreducible lambda term, namely the computation result, will be
decoded back to the imperative value it represents. Typically, a boolean value
will be returned to guide the execution of following branching instruction. In this
way, the branch information gets protected by lambda obfuscation and many po-
tential leakages of sensitive information to adversaries can be prevented.

4 Implementation

We implement lambda obfuscation based on LLVM, a architecture-independent
compilation framework supporting flexible program transformations. As shown
in Figure 2, our obfuscation work-flow is divided into three stages. The first step
is preprocessing. In this stage, we compile all source code to be obfuscated into
the LLVM intermediate representation (IR). The next step is transformation,
in which the obfuscator identifies all eligible instructions used for path condi-
tion computation and translate these instructions into lambda calculus terms.
These instructions will then be replaced by trampolines to a lambda calculus
interpreter that accepts the generated lambda calculus terms as input. In the
last compilation stage, the obfuscated IR code are compiled to machine code
and linked into an executable binary. The lambda calculus interpreter is imple-
mented with 736 lines of C code 2. We elaborate on the details of each stage
below.

2 For more implementation details, please refer to an extended version of this pa-
per [12]
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Preprocessing
Stage

Transformation Compilation
Stage Stage

Target
Program LLVM
Source @ IR
Code
Lambda
Calculus

Obfuscatedw
LLVM IR J

ambda Calculus
Obfuscation Pass

Binary Exectuable

Fig. 2. The work-flow of lambda obfuscation

Source Code

Original LLVM IR Code
define i32 @main() #0 {

entry:

%0 = load i32, i32* %X, align 4
%add = add nsw i32 %0, 1

%cmp = icmp sgt i32 %add, 1

int main() {

if(x+1>1)

Obfuscated LLVM IR Code
define i32 @main() #0 {

entry:

%0 = load i32, i32* %X, align 4
%add = call i32 @lambda_add(i32 %0, i32 1)

%cmp = call i1 @lamb_callee(i32 38, i32 %add, i32 1)

br i1 %cmp, label %if.then, label %if.end br i1 %cmp, label %if.then, label %if.end

Fig. 3. LLVM code of a C program before and after obfuscation

4.1 Preprocessing

In LLVM, the majority of program analysis and optimization phases are con-
ducted at the LLVM IR level. In order to leverage the strength of the transforma-



Lambda Obfuscation 11

tion framework, we compile the source code into LLVM IR code. The compilation
is conducted without any optimization so the IR code captures the unmodified
behavior of the original program. The input source code comprises not only
source code of the program to be obfuscated but also the implementation of our
lambda calculus interpreter. However, only the LLVM IR code generated from
the target program source code will be obfuscated in the transformation stage.
Because we select C programs to evaluate the effectiveness of our obfuscator,
we use clang as our front-end compiler to generate LLVM IR code during our
preprocessing stage.

4.2 Transformation

LLVM provides an easy-to-extend pass-based transformation framework. Users
can customize and implement passes at different program level based on their
needs and requirements. We implement a function pass that processes each func-
tion in a compile unit to identify instructions that are suitable for obfuscation.

Identifying Instruction Candidates After the preprocessing stage, LLVM
IR code generated from the source is fed into another LLVM pass for analysis.
Every IR instruction is analyzed to determine whether it meets our obfuscation
requirement. In theory, lambda obfuscation is capable of obfuscating all kinds
of computation. At this point, our prototype obfuscates path conditions which
serve as crucial parts forming the control flows of a program. As for the types of
instruction, the pass selects the following six types of instructions that compute
different path conditions: equal, not equal, greater than, greater or equal, less
than, and less or equal. To allow users to control the strength of obfuscation,
the pass picks instruction candidates randomly based on a percentage specified
by users.

Transforming Instructions After identifying the candidates for obfuscation,
a translation pass performs lambda transformation for these instructions. Path
conditions are replaced by the corresponding lambda calculus function calls to
lambda calculus interpreter with proper input parameters, including the type
of comparison operators and operands. The lambda calculus interpreter simu-
lates the computation of the path condition and returns the result to a register
which is send back to the original program as the computed path condition.
Figure 3 shows the LLVM IR code of a example C program before and after our
obfuscation.

4.3 Compilation

In the final stage, we compile the obfuscated IR code and the IR code of our
lambda calculus interpreter into native machine instructions. It is worth noting
that since we implemented the lambda calculus interpreter in C, no additional
runtime environment is required to execute the obfuscated binary. This imple-
mentation decision also increases the stealthy of our obfuscation approach.
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5 Evaluation

We evaluate lambda obfuscation in four aspects, i.e., potency, resilience, cost,
and stealth, which are firstly proposed by Collberg et al. [5]. Potency measures
how complicated and unintelligible the program has become after obfuscation.
Resilience indicates how well the obfuscated program can withstand automated
reverse engineering. Cost measures how much the software is slowed down as the
cost of obfuscation. Stealth describes to what extent the obfuscated program
resembles the original program such that the presence of obfuscation is hard to
detect.

For the purpose of evaluation, we picked two open source C programs to
obfuscate using our lambda obfuscation prototype. The two programs are bzip2,
a file compressor, and regexp, a regular expression engine. Both applications
contain many integral path conditions therefore enough obfuscation candidates.

In the evaluation, the obfuscation strength is described by a metric called
obfuscation level, which is defined as the percentage of obfuscated path con-
ditions with respect to all qualified obfuscation candidates. For example, an
application obfuscated at the 20% obfuscation level indicates that the 80% of
the original integral path conditions remain unmodified while the rest 20% are
transformed into lambda calculus terms. To avoid being biased in the experi-
ments, we randomly select path conditions to obfuscate. In reality, however, the
program components to protect are usually identified by developers with care to
achieve the highest possible cost-effectiveness.

5.1 Potency

In order to quantify the potency of lambda obfuscation, we first measured three
basic software complexity metrics that are derived from call graphs and control
flow graphs before and after transformation. The metrics are the number of edges
in the call graph, the number of edges in the control flow graph, and the number
of basic blocks. With the help of IDA Pro, a disassembler widely used in the
industry, we generated call graphs and control graphs from binaries compiled
from original and obfuscated LLVM IR code.

In addition to these basic metrics, we also calculated two advanced indicators
of software complexity which have long been utilized by the software engineering
community, i.e., the cyclomatic number [16] and the knot count [29]. The cyclo-
matic number is defined as F — N + 2 where F is the number of edges and N is
the number of vertices in the program’s control flow graph. The knot count, on
the other hand, is the count of intersections among the control flow paths when
all basic blocks in the function are linearly aligned.

Table 1 presents the potency-related statistics of the two evaluated applica-
tions before and after obfuscation, at the obfuscation level of 30%. As can be
seen through the results, the complexity of both applications has increased by a
significant amount after being obfuscated indicating that lambda obfuscation is
able to make programs more difficult for attackers to reverse engineer.



Lambda Obfuscation 13

Table 1. Program metrics before and after obfuscation at obfuscation level 30%

bzip2 Obfus.cated regexp Obfuscated
bzip2 regexp
# of Call Graph Edges | 620 1049 144 380
# of Basic Blocks 2590 2839 392 643
# of CFG Edges 3795 4155 562 883
Knot Count 3162 3304 482 616
Cyclomatic Complexity| 1207 1278 172 242

5.2 Resilience

For resilience evaluation, we performed concolic testing on an arbitrary C pro-
gram before and after obfuscation using our approach. Concolic testing is initially
a software verification technique combing concrete execution of a program with
symbolic execution. Concolic testing aims to cover as many feasible execution
paths of a program as possible [10]. However, attackers can use concolic testing
to reveal sensitive control flow information of a program and learn about pro-
gram semantics. By performing concolic testing experiment, we tried to imitate
a reverse engineering attack on programs protected by lambda obfuscation. We
picked a popular concolic testing tool, KLEE, which is capable of automatically
generating test cases and achieving a high coverage of possible execution paths
[3]. The program used for testing the matchup between KLEE and lambda ob-
fuscation is the obfuscated binary of a simple C program shown in Figure 4.
We used this extremely simple program to rule out irrelevant factors that can
possibly affect the performance of KLEE.

1 int test(int a) {
2 int Var = a;

3 if(var > 16) {
4 Var++;

5

6 return Var;
7}

8

9 int main() {

10 int a;

11 klee_make_symbolic(&a, sizeof(a), "a");
12 return test(a);
13}

Fig. 4. C program to be obfuscated in KLEE experiment

With the experiment, we found that KLEE could successfully finish concolic
testing on the unobfuscated binary. To be specific, KLEE succeeded in discov-
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ering both paths of the C program and generating test cases for the original
program. In contrast, KLEE failed to generate any possible paths for the ob-
fuscated binary. The topmost issue that caused the failure was that there were
too many possible states for KLEE to explore and reason such that KLEE kept
hitting the maximum memory capacity and eventually stopped without return-
ing any possible paths. This result indicates that lambda obfuscation makes an
extremely simple program so complicated that KLEE can no longer reveal any
useful control flow information of the protected program.

5.3 Cost

The major source of performance overhead introduced by lambda obfuscation
comes from the encoding and decoding translation process and the reduction
time of lambda calculus. In order to measure the cost of our technique, we
applied obfuscation to bzip2 and regexp at the obfuscation level of 30%. The
test input used for the experiments are the original test cases shipped with the
source code. Each application was executed 10 times and the average run time
is presented with the slowdown.

Table 2. Overhead of lambda obfuscation on bzip2 and regexp

Interpreter  Average Time Average Time

Invocations (Original) (Obfuscated) Overhead
bzip2 375,351 0.0625s 15.574s 41.492us
regexp 822,873 0.413s 28.716s 34.89us

Table 2 compares the execution time of both applications before and after
obfuscation. We also recorded how many times was our lambda calculus inter-
preter invoked during each application’s runtime and we calculated the average
overhead. As Table 2 shown, on average every single call to our lambda calcu-
lus API requires 38.19 us. We believe the cost is moderate and comparable to
normal function calls. Besides, we argue that the overhead of our lambda cal-
culus obfuscation is reasonable and can be reduced. Since we chose our path
condition instruction candidates totally at random, some of the obfuscated path
condition instructions resided in hot spots and these path condition instructions
were being intensively called and used during runtime. For example, some of the
path condition instructions we obfuscated in bzip2 resided in for loops which
eventually accumulated to slowdown the program. In such cases, the overhead
introduced by lambda obfuscation is inevitable and forgivable. In practice, users
can obfuscate path conditions that are sensitive while less intensively-used to
gain the maximum benefit from lambda obfuscation.
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5.4 Stealth

To measure how stealthy lambda obfuscation is, we collected the distribution of
instructions in the obfuscated sample C programs and compared them with that
of the original binary.

60 T T T \bZIp\z T T
obfuscated bzip2 —x—

percentage

instruction

Fig. 5. Instruction distribution of bzip2

Figure 5 and Figure 6 show the instruction distribution of the original and
obfuscated programs at obfuscation level of 30%. As we can see from the figures,
the distribution of our obfuscated programs is very similar to their original dis-
tributions. In this case, we believe that the behavior of the obfuscated programs
resembles their original one and it would be very difficult for adversaries to de-
tect the presence of lambda obfuscation through the statistical features of the
protected binaries.

6 Discussion

6.1 Countering Dynamic Monitoring

Opaque predicates and many other control flow obfuscation methods are inher-
ently vulnerable to dynamic analysis, i.e., attackers monitoring the execution
of the obfuscated software and checking control flows at run time. Lambda ob-
fuscation may face similar challenges when only partially applied to protecting
branch conditions. Learning from previous work, we find that there are several
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Fig. 6. Instruction distribution of regexp

ways to alleviate this issue. One possible countermeasure is to blur the bound-
aries between lambda simulation and the original program code, using heuristics
like function inlining and jumps across functions [14].

6.2 Potential Extensions

Currently, lambda obfuscation is only applied to the computation of integral path
conditions. The limitation of our technique is caused by the fact that Church
encoding is only capable of encoding natural number instead of real number.
According to Church-Turing thesis, any data types can be encoded using lambda
calculus [8]. One way to encode real number is using a Cauchy sequence of
rational numbers [9]. After properly encoding real number in lambda calculus,
we can extend our approach to obfuscate instructions involving real number.

Lambda calculus can also be extended to obfuscate other instructions besides
path condition instructions that we currently focus on. Lambda calculus inter-
preter is capable of handling multiple arithmetic operations, such as addition,
subtraction. Our obfuscator can be applied to any instructions containing such
operations. In order to obfuscate these instructions, we can extend our LLVM
obfuscator to identify suitable instructions and replace them with corresponding
lambda calculus function calls.

Another way to enhance the obfuscating effect is to implement indirect con-
trol transferring similar to the obfuscation schema proposed by Ma et al. [15].
Currently, our obfuscator replaces path condition instructions with lambda func-
tion calls that return boolean signals to guide following conditional jump instruc-
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tions. Instead of returning boolean signals, the obfuscator can return instruction
addresses and we can modify following conditional jump instructions to be un-
conditional jump instructions that take instruction addresses. In this way, we
can transform conditional logic into unconditional control transfer to make the
obfuscated programs even more confusing for attackers to make sense.

We are also envisioning that obfuscating effect can be notably enhanced by
“recursively” applying the proposed technique. That means, we first obfuscate
the input program with our Lambda obfuscator, and further re-obfuscate the
first round product with our technique. As discussed by existing research [26],
such recursive process can even be launched for hundreds of iterations, which
could largely increase the program complexity to defeat adversary analysis.

6.3 Combining with Other Obfuscation Methods

In this paper, we implement the lambda transformation at LLVM IR level us-
ing pass framework. In LLVM, every pass can be considered as an independent
optimization of the original program and multiple different passes can be ap-
plied if needed. Therefore, lambda calculus is compatible with other obfuscation
techniques if they happen at source code level or at LLVM IR level. Lambda
calculus obfuscation can serve as an extra obfuscation layer to be applied before
compilation of the program with other obfuscation techniques to make the pro-
gram more obscure and secure. Besides, lambda obfuscator comes with reduction
rules to evaluate lambda calculus which means the obfuscated program can run
without an extra runtime environment. It can independently encode and decode
lambda numerals and perform the whole evaluation process. This independent
characteristic makes lambda calculus obfuscation less possible to affect other
obfuscation techniques if applied together.

6.4 Obfuscating Complete Branch Predicates

Currently, in the obfuscated program, path condition instructions are replaced
with lambda calculus function calls with instruction type and operands as input
parameters. In order to further limit adversaries’ knowledge to program seman-
tic, we can further obfuscate instruction information. One possible solution is
to encode all instruction information using lambda calculus and combine them
into one single lambda term. Every instruction can be transformed into a dif-
ferent lambda calculus function which encapsulates the lambda calculus term
that represents the instruction type and operands. By calling every instruction-
specific function, our lambda calculus evaluator can still simulate the behavior
of each obfuscated instruction. In this way, the instruction information is con-
cealed through lambda calculus encoding and less program semantic is leaked to
attackers.
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7 Conclusion

In this paper, we propose a novel obfuscation technique based on lambda cal-
culus. The behavior of path condition instruction is simulated using lambda
calculus while sensitive instruction information is concealed. The complicated
execution model of lambda calculus makes the obfuscated programs more ob-
scure for the adversaries to make sense and reverse engineer. We implement a
lambda obfuscator that transforms path condition instructions into correspond-
ing lambda calculus function calls. A lambda interpreter is also implemented to
evaluate lambda calculus function calls and return boolean signals to guarantee
the behavior of original path condition instructions is still preserved. We evaluate
our prototypical implementation of lambda obfuscation with respect to potency,
resilience, cost and stealthy. The experiment result shows that our obfuscation
technique can make the program more obscure with only modest overhead.
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