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Abstract

Direct policy gradient methods for reinforcement

learning and continuous control problems are a

popular approach for a variety of reasons: 1) they

are easy to implement without explicit knowledge

of the underlying model, 2) they are an “end-

to-end” approach, directly optimizing the perfor-

mance metric of interest, 3) they inherently allow

for richly parameterized policies. A notable draw-

back is that even in the most basic continuous

control problem (that of linear quadratic regu-

lators), these methods must solve a non-convex

optimization problem, where little is understood

about their efficiency from both computational

and statistical perspectives. In contrast, system

identification and model based planning in opti-

mal control theory have a much more solid theo-

retical footing, where much is known with regards

to their computational and statistical properties.

This work bridges this gap showing that (model

free) policy gradient methods globally converge to

the optimal solution and are efficient (polynomi-

ally so in relevant problem dependent quantities)

with regards to their sample and computational

complexities.

1. Introduction

Recent years have seen major advances in the control of

uncertain dynamical systems using reinforcement learning

and data-driven approaches; examples range from allowing

robots to perform more sophisticated controls tasks such

as robotic hand manipulation (Tassa et al., 2012; Al Borno

et al., 2013; Kumar et al., 2016; Levine et al., 2016; Tobin

et al., 2017; Rajeswaran et al., 2017a), to sequential deci-

sion making in game domains, e.g., AlphaGo (Silver et al.,
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2016) and Atari game playing (Mnih et al., 2015). Deep

reinforcement learning (DeepRL) is becoming increasingly

popular for tackling such challenging sequential decision

making problems.

Many of these successes have relied on sampling based

reinforcement learning algorithms such as policy gradient

methods, including the DeepRL approaches. For these ap-

proaches, there is little theoretical understanding of their

efficiency, either from a statistical or a computational per-

spective. In contrast, control theory (optimal and adaptive

control) has a rich body of tools, with provable guarantees,

for related sequential decision making problems, partic-

ularly those that involve continuous control. These latter

techniques are often model-based—they estimate an explicit

dynamical model first (via system identification) and then

design optimal controllers.

This work builds bridges between these two lines of work,

namely, between optimal control theory and sample based

reinforcement learning methods, using ideas from mathe-

matical optimization.

1.1. The optimal control problem

In the standard optimal control problem, a dynamical system

is described as

xt+1 = ft(xt, ut, wt) ,

where ft maps a state xt ∈ Rd, a control (the action) ut ∈
Rk, and a disturbance wt, to the next state xt+1 ∈ Rd,

starting from an initial state x0. The objective is to find the

control input ut which minimizes the long term cost,

minimize

T∑

t=0

ct(xt, ut)

such that xt+1 = ft(xt, ut, wt) t = 0, . . . , T.

Here the ut are allowed to depend on the history of observed

states, and T is the time horizon (which can be finite or

infinite). In practice, this is often solved by considering the

linearized control (sub-)problem where the dynamics are

approximated by

xt+1 = Atxt +Btut + wt,
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and the costs are approximated by a quadratic function in

xt and ut, e.g. (Todorov & Li, 2004). The present paper

considers an important special case: the time homogenous,

infinite horizon problem referred to as the linear quadratic

regulator (LQR) problem. The results herein can also be

extended to the finite horizon, time inhomogenous setting,

discussed in Section 5.

We consider the following infinite horizon LQR problem,

minimize E

[
∞∑

t=0

(x>
t Qxt + u>

t Rut)

]

such that xt+1 = Axt +But , x0 ∼ D ,

where initial state x0 ∼ D is assumed to be randomly dis-

tributed according to distributionD; the matrices A ∈ Rd×d

and B ∈ Rd×k are referred to as system (or transition) ma-

trices; Q ∈ Rd×d and R ∈ Rk×k are both positive definite

matrices that parameterize the quadratic costs. For clarity,

this work does not consider a noise disturbance but only a

random initial state. The importance of (some) randomiza-

tion for analyzing direct methods is discussed in Section 3.

Throughout, assume that A and B are such that the optimal

cost is finite (for example, the controllability of the pair

(A,B) would ensure this). Optimal control theory (Ander-

son & Moore, 1990; Evans, 2005; Bertsekas, 2011; 2017)

shows that the optimal control input can be written as a

linear function in the state,

ut = −K
∗xt

where K∗ ∈ Rk×d.

Planning with a known model. For the infinite horizon

LQR problem, planning can be achieved by solving the

Algebraic Riccati Equation (ARE),

P = ATPA+Q−ATPB(BTPB +R)−1BTPA , (1)

for a positive definite matrix P which parameterizes the

“cost-to-go” (the optimal cost from a state going forward).

The optimal control gain is then given as:

K∗ = −(BTPB +R)−1BTPA. (2)

To find P , there are iterative methods, algebraic solution

methods, and (convex) SDP formulations. Solving the ARE

is extensively studied; one approach due to (Kleinman,

1968) (for continuous time) and (Hewer, 1971) (for discrete

time) is to simply run the recursion Pk+1 = Q+ATPkA−
ATPkB(R + BTPkB)−1BTPkA where P1 = Q, which

converges to the unique positive semidefinite solution of the

ARE (since the fixed-point iteration is contractive). Other

approaches are direct and are based on linear algebra, which

carry out an eigenvalue decomposition on a certain block

matrix (called the Hamiltonian matrix) followed by a matrix

inversion (Lancaster & Rodman, 1995). The LQR problem

can also be expressed as a semidefinite program (SDP) with

variable P as given in (Balakrishnan & Vandenberghe, 2003)

(see Section A in the supplement).

However, these formulations: 1) do not directly parameter-

ize the policy, 2) are not “end-to-end” approaches, in that

they are not directly optimizing the cost function of interest,

and 3) it is not immediately clear how to utilize these ap-

proaches in the model-free setting, where the agent only has

simulation access. These issues are outlined in Section A of

the supplement.

1.2. Contributions of this work

Even in the most basic case of the standard linear quadratic

regulator model, little is understood as to how direct (model-

free) policy gradient methods fare. This work provides

rigorous guarantees, showing that, while in fact the approach

deals with a non-convex problem, directly using (model free)

local search methods leads to finding the globally optimal

policy (i.e., a policy whose objective value is ε-close to the

optimal). The main contributions are as follows:

• (Exact case) Even with access to exact gradient evalua-

tion, little is understood about whether or not conver-

gence to the optimal policy occurs, even in the limit,

due to the non-convexity of the problem. This work

shows that global convergence does indeed occur (and

does so efficiently) for gradient descent methods.

• (Model free case) Without a model, this work shows

how one can use simulated trajectories (as opposed to

having knowledge of the model) in a stochastic pol-

icy gradient method, where provable convergence to a

globally optimal policy is guaranteed, with (polynomi-

ally) efficient computational and sample complexities.

• (The natural policy gradient) Natural policy gradient

methods (Kakade, 2001) — and related algorithms

such as Trust Region Policy Optimization (Schulman

et al., 2015) and the natural actor critic (Peters &

Schaal, 2007) — are some of the most widely used and

effective policy gradient methods (see (Duan et al.,

2016)). While many results argue in favor of this

method based on either information geometry (Kakade,

2001; Bagnell & Schneider, 2003) or based on connec-

tions to actor-critic methods (Deisenroth et al., 2013),

these results do not provably show an improved conver-

gence rate. This work is the first to provide a guarantee

that the natural gradient method enjoys a considerably

improved convergence rate over its naive gradient coun-

terpart.

More broadly, the techniques in this work merge ideas from

optimal control theory, mathematical optimization (first
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order and zeroth order), and sample based reinforcement

learning methods. These techniques may ultimately help in

improving upon the existing set of algorithms, addressing

issues such as variance reduction or improving upon the

natural policy gradient method (with, say, a Gauss-Newton

method as in Theorem 7). The Discussion section touches

upon some of these issues.

1.3. Related work

In the reinforcement learning setting, the model is unknown,

and the agent must learn to act through its interactions with

the environment. Here, solution concepts are typically di-

vided into: model-based approaches, where the agent at-

tempts to learn a model of the world, and model-free ap-

proaches, where the agent directly learns to act and does not

explicitly learn a model of the world. The related work on

provably learning LQRs is reviewed from this perspective.

Model-based learning approaches. In the context of

LQRs, the agent can attempt to learn the dynamics of “the

plant” (i.e., the model) and then plan, using this model, for

control synthesis. Here, the classical approach is to learn

the model with subspace-based system identification (Ljung,

1999). Fiechter (1994) provides a provable learning (and

non-asymptotic) result, where the quality of the policy ob-

tained is shown to be near optimal (efficiency is in terms of

the persistence of the training data and the controllability

Gramian). Abbasi-Yadkori & Szepesvári (2011) also pro-

vides provable, non-asymptotic learning results in a regret

context, using a bandit algorithm that achieves lower sam-

ple complexity (by balancing exploration-exploitation more

effectively); the computational efficiency of this approach

is less clear.

More recently, Dean et al. (2017) expands on an explicit

system identification process, where a robust control syn-

thesis procedure is adopted that relies on a coarse model

of the plant matrices (A and B are estimated up to some

accuracy level, naturally leading to a “robust control” setup

to then design the controller based in the coarse model).

Tighter analysis for sample complexity was given in Tu &

Recht (2018); Simchowitz et al. (2018). Arguably, this is

the most general (and non-asymptotic) result that is efficient

from a statistical perspective. Computationally, the method

works with a finite horizon to approximate the infinite hori-

zon. This result only needs the plant to be controllable; the

work herein needs the stronger assumption that the initial

policy in the local search procedure is a stable controller

(an assumption which may be inherent to local search pro-

cedures, discussed in Section 5). Another recent line of

work (Hazan et al., 2017; 2018; Arora et al., 2018) treat

the problem of learning a linear dynamical system as an

online learning problem. (Hazan et al., 2017; Arora et al.,

2018) are restricted to systems with symmetric dynamics

(symmetric A matrix), while (Hazan et al., 2018) handles a

more general setting. This line of work can handle the case

when there are latent states (i.e., when the observed output

is a linear function of the state, and the state is not observed

directly) and does not need to do system identification first.

On the other hand, they don’t output a succinct linear policy

as Dean et al. (2017) or this paper.

Model-free learning approaches. Model-free approaches

that do not rely on an explicit system identification step

typically either: 1) estimate value functions (or state-action

values) through Monte Carlo simulation which are then used

in some approximate dynamic programming variant (Bert-

sekas, 2011), or 2) directly optimize a (parameterized) pol-

icy, also through Monte Carlo simulation. Model-free ap-

proaches for learning optimal controllers are not well under-

stood from a theoretical perspective. Here, Bradtke et al.

(1994) provides an asymptotic learnability result using a

value function approach, namely Q-learning.

2. Preliminaries and Background

2.1. Exact Gradient Descent

This work seeks to characterize the behavior of (direct)

policy gradient methods, where the policy is linearly pa-

rameterized, as specified by a matrix K ∈ Rk×d which

generates the controls:

ut = −Kxt

for t ≥ 0. The cost of this K is denoted as:

C(K) := Ex0∼D

[
∞∑

t=0

(x>
t Qxt + u>

t Rut)

]

where {xt, ut} is the trajectory induced by following K,

starting with x0 ∼ D. The importance of (some) random-

ization, either in x0 or noise through having a disturbance,

for analyzing gradient methods is discussed in Section 3.

Here, K∗ is a minimizer of C(·).

Gradient descent on C(K), with a fixed stepsize η, follows

the update rule:

K ← K − η∇C(K) .

It is helpful to explicitly write out the functional form of the

gradient. Define PK as the solution to:

PK = Q+K>RK + (A−BK)>PK(A−BK) .

and, under this definition, it follows that C(K) can be writ-

ten as:

C(K) = Ex0∼D x>
0 PKx0 .

Also, define ΣK as the (un-normalized) state correlation

matrix, i.e.

ΣK = Ex0∼D

∞∑

t=0

xtx
>
t .
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Lemma 1. (Policy Gradient Expression) The policy gradi-

ent is:

∇C(K) = 2
(
(R+B>PKB)K −B>PKA

)
ΣK

Later for simplicity, define EK to be

EK =
(
(R+B>PKB)K −B>PKA

)
,

as a result the gradient can be written as ∇C(K) =
2EKΣK .

Proof. Observe:

CK(x0) = x>
0 PKx0

= x>
0

(
Q+K>RK

)
x0

+ x>
0 (A−BK)>PK(A−BK)x0

= x>
0

(
Q+K>RK

)
x0

+ CK((A−BK)x0) .

Let ∇ denote the gradient with respect to K, note that

∇CK((A − BK)x0) has two terms (one with respect to

K in the subscript and one with respect to the input (A−
BK)x0), this implies

∇CK(x0) = 2RKx0x
>
0 − 2B>PK(A−BK)x0x

>
0

+∇CK(x1)|x1=(A−BK)x0

= 2
(
(R+B>PKB)K −B>PKA

) ∞∑

t=0

xtx
>
t

using recursion and that x1 = (A−BK)x0. Taking expec-

tations completes the proof.

2.2. Review: (Model free) sample based policy gradient

methods

Sample based policy gradient methods introduce some ran-

domization for estimating the gradient.

REINFORCE.(Williams, 1992; Sutton et al., 2000) Let

πθ(u|x) be a parametric stochastic policy, where u ∼
πθ(·|x). The policy gradient of the cost, C(θ), is:

∇C(θ) = E

[
∞∑

t=0

Qπθt
(xt, ut)∇ log πθ(ut|xt)

]
,

where Qπθ
(x, u) = E

[
∞∑

t=0

ct|x0 = x, u0 = u

]
,

where the expectation is with respect to the trajectory

{xt, ut} induced under the policy πθ and where Qπθ
(x, u)

is referred to as the state-action value. The REINFORCE al-

gorithm uses Monte Carlo estimates of the gradient obtained

by simulating πθ.

The natural policy gradient. The natural policy gradi-

ent (Kakade, 2001) follows the update:

θ ← θ − η G−1
θ ∇C(θ),where:

Gθ = E

[
∞∑

t=0

∇ log πθ(ut|xt)∇ log πθ(ut|xt)
>

]
,

where Gθ is the Fisher information matrix. There are numer-

ous succesful related approaches (Peters & Schaal, 2007;

Schulman et al., 2015; Duan et al., 2016). An important

special case is using a linear policy with additive Gaussian

noise (Rajeswaran et al., 2017b), i.e.

πK(x, u) = N (Kx, σ2I) (3)

where K ∈ Rk×d and σ2 is the noise variance. Here, the

natural policy gradient of K (when σ is considered fixed)

takes the form:

K ← K − η∇C(K)Σ−1
K (4)

To see this, one can verify that the Fisher matrix of size

kd× kd, which is indexed as [GK ](i,j),(i′,j′) where i, i′ ∈
{1, . . . k} and j, j′ ∈ {1, . . . d}, has a block diagonal form

where the only non-zeros blocks are [GK ](i,·),(i,·) = ΣK

(this is the block corresponding to the i-th coordinate of

the action, as i ranges from 1 to k). This form holds more

generally, for any diagonal noise.

Zeroth order optimization. Zeroth order optimization is a

generic procedure (Conn et al., 2009; Nesterov & Spokoiny,

2015) for optimizing a function f(x), using only query

access to the function values of f(·) at input points x (and

without explicit query access to the gradients of f ). This

is also the approach in using “evolutionary strategies” for

reinforcement learning (Salimans et al., 2017). The generic

approach can be described as follows: define the perturbed

function as

fσ2(x) = Eε∼N (0,σ2I)[f(x+ ε)]

For small σ, the smooth function is a good approximation

to the original function. Due to the Gaussian smoothing,

the gradient has the particularly simple functional form (see

Conn et al. (2009); Nesterov & Spokoiny (2015)):

∇fσ2(x) =
1

σ2
Eε∼N (0,σ2I)[f(x+ ε)ε] .

This expression implies a straightforward method to obtain

an unbiased estimate of the ∇fσ2(x), through obtaining

only the function values f(x+ ε) for random ε.

3. The (non-convex) Optimization Landscape

This section provides a brief characterization of the opti-

mization landscape, in order to help provide intuition as

to why global convergence is possible and as to where the

analysis difficulties lie.
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Lemma 2. (Non-convexity) If d ≥ 3, there exists an LQR

optimization problem, minK C(K), which is not convex,

quasi-convex, and star-convex.

The specific example is given in supplementary material

(Section B). In particular, there can be two matrices K and

K ′ where both C(K) and C(K ′) are finite, but C((K +
K ′)/2) is infinite.

For a general non-convex optimization problem, gradient

descent may not even converge to the global optima in the

limit. The optimization problem of LQR satisfies a special

gradient domination condition, which makes it much easier

to optimize:

Lemma 3. (Gradient domination) Let K∗ be an optimal

policy. Suppose K has finite cost and σmin(ΣK) > 0. It

holds that

C(K)− C(K∗) ≤
‖ΣK∗‖

σmin(ΣK)2σmin(R)
‖∇C(K)‖2F .

This lemma can be proved by analyzing the “advantage”

of the optimal policy Σ∗ to Σ in every step. The detailed

lemma and the full proof is deferred to supplementary mate-

rial.

As a corollary, this lemma provides a characterization of the

stationary points.

Corollary 4. (Stationary point characterization) If

∇C(K) = 0, then either K is an optimal policy or ΣK

is rank deficient.

Note that the covariance ΣK � Σ0 := Ex0∼Dx0x
>
0 . There-

fore, this lemma is the motivation for using a distribu-

tion over x0 (as opposed to a deterministic starting point):

Ex0∼Dx0x
>
0 being full rank guarantees that ΣK is full rank,

which implies all stationary points are a global optima. An

additive disturbance in the dynamics model also suffices.

The concept of gradient domination is important in the non-

convex optimization literature (Polyak, 1963; Nesterov &

Polyak, 2006; Karimi et al., 2016). A function f : Rd → R

is said to be gradient dominated if there exists some constant

λ, such that for all x,

f(x)−min
x′

f(x′) ≤ λ‖∇f(x)‖2 .

If a function is gradient dominated, this implies that if the

magnitude of the gradient is small at some x, then the func-

tion value at x will be close to that of the optimal function

value.

Using the fact that ΣK � Σ0, the following corollary of

Lemma 3 shows that C(K) is gradient dominated.

Corollary 5. (Gradient Domination) Suppose Ex0∼Dx0x
>
0

is full rank. Then C(K) is gradient dominated, i.e.

C(K)− C(K∗) ≤ λ〈∇C(K),∇C(K)〉

where λ = ‖ΣK∗‖
σmin(Σ0)2σmin(R) is a problem dependent constant

(and 〈·, ·〉 denotes the trace inner product).

Naively, one may hope that gradient domination immedi-

ately implies that gradient descent converges quickly to the

global optima. This would indeed be the case if the C(K)
were a smooth function1: if it were the case that C(K) is

both gradient dominated and smooth, then classical mathe-

matical optimization results (Polyak, 1963) would not only

immediately imply global convergence, these results would

also imply convergence at a linear rate. These results are

not immediately applicable due to it is not straightforward

to characterize the (local) smoothness properties of C(K);
this is a difficulty well studied in the optimal control theory

literature, related to robustness and stability.

Similarly, one may hope that recent results on escaping

saddle points (Nesterov & Polyak, 2006; Ge et al., 2015;

Jin et al., 2017) immediately imply that gradient descent

converges quickly to the global optima, due to that there are

no (spurious) local optima. Again, for reasons related to

smoothness this is not the case.

The main reason that the LQR objective cannot satisfy the

smoothness condition globally is that the objective becomes

infinity when the matrix A − BK becomes unstable (i.e.

has an eigenvalue that is outside of the unit circle in the

complex plane). At the boundary between stable and unsta-

ble policies, the objective function quickly becomes infinity,

which violates the traditional smoothness conditions be-

cause smoothness conditions would imply quadratic upper-

bounds for the objective function.

To solve this problem, it is observed that when the policy

K is not too close to the boundary, the objective satisfies an

almost-smoothness condition:

Lemma 6. (“Almost” smoothness) C(K) satisfies:

C(K ′)− C(K) = −2Tr(ΣK′(K −K ′)>EK)

+ Tr(ΣK′(K −K ′)>(R+B>PKB)(K −K ′))

To see why this is related to smoothness (e.g. compare to

Equation 13), suppose K ′ is sufficiently close to K so that:

ΣK′ ≈ ΣK +O(‖K −K ′‖)

and the leading order term 2Tr(ΣK′(K ′−K)>EK) would

then behave as Tr((K ′ −K)>∇C(K)), and the remaining

terms will be second order in K −K ′.

Quantify the Taylor approximation ΣK′ ≈ ΣK +O(‖K −
K ′‖) is one of the key steps in proving the convergence of

policy gradient.

1A differentiable function f(x) is said to be smooth if the
gradients of f are continuous. Equivalently, see the definition in
Equation 13.
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4. Main Results

First, results on exact gradient methods are provided. From

an analysis perspective, this is the natural starting point;

once global convergence is established for exact methods,

the question of using simulation-based, model-free methods

can be approached with zeroth-order optimization methods

(where gradients are not available, and can only be approxi-

mated using samples of the function value).

Notation. ‖Z‖ denotes the spectral norm of a matrix Z;

Tr(Z) denotes the trace of a square matrix; σmin(Z) denotes

the minimal singular value of a square matrix Z. Also, it is

helpful to define

µ := σmin(Ex0∼Dx0x
>
0 )

4.1. Model-based optimization: exact gradient methods

We consider three exact update rules. For gradient descent,

the update is

Kn+1 = Kn − η∇C(Kn). (5)

For natural policy gradient descent, the direction is defined

so that it is consistent with the stochastic case, as per Equa-

tion 4, in the exact case the update is:

Kn+1 = Kn − η∇C(Kn)Σ
−1
Kn

(6)

For Gauss-Newton method, the update is:

Kn+1 = Kn − η(R+B>PKn
B)−1∇C(Kn)Σ

−1
Kn

. (7)

The standard policy iteration algorithm(Howard, 1964) that

tries to optimize a one-step deviation from the current policy

is equivalent to a special case of the Gauss-Newton method

when η = 1 (for the case of policy iteration, convergence in

the limit is provided in (Todorov & Li, 2004; Ng et al., 2002;

Liao & Shoemaker, 1991), along with local convergence

rates.)

The Gauss-Newton method requires the most complex or-

acle to implement: it requires access to ∇C(K), ΣK , and

R+B>PKB; it also enjoys the strongest convergence rate

guarantee. At the other extreme, gradient descent requires

oracle access to only ∇C(K) and has the slowest conver-

gence rate. The natural policy gradient sits in between,

requiring oracle access to ∇C(K) and ΣK , and having a

convergence rate between the other two methods.

Theorem 7. (Global Convergence of Gradient Methods)

Suppose C(K0) is finite and µ > 0.

• Gauss-Newton case: For a stepsize η = 1 and for

N ≥
‖ΣK∗‖

µ
log

C(K0)− C(K∗)

ε
,

the Gauss-Newton algorithm (Equation 7) enjoys the

following performance bound:

C(KN )− C(K∗) ≤ ε

• Natural policy gradient case: For a stepsize

η =
1

‖R‖+ ‖B‖2C(K0)
µ

and for

N ≥
‖ΣK∗‖

µ

(
‖R‖

σmin(R)
+
‖B‖2C(K0)

µσmin(R)

)

log
C(K0)− C(K∗)

ε
,

natural policy gradient descent (Equation 6) enjoys the

following performance bound:

C(KN )− C(K∗) ≤ ε .

• Gradient descent case: For an appropriate (constant)

setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
, σmin(R)

)

and for

N ≥
‖ΣK∗‖

µ
log

C(K0)− C(K∗)

ε

poly

(
C(K0)

µσmin(Q)
, ‖A‖, ‖B‖, ‖R‖,

1

σmin(R)

)
,

gradient descent (Equation 5) enjoys the following

performance bound:

C(KN )− C(K∗) ≤ ε .

In comparison to model-based approaches, these results

require the (possibly) stronger assumption that the initial

policy is a stable controller, i.e. C(K0) is finite (an assump-

tion which may be inherent to local search procedures). The

Discussion mentions this as direction of future work.

The proof for Gauss-Newton algorithm is simple based on

the characterizations in Lemma 3 and Lemma 6, and is

given below. The proof for natural policy gradient and

gradient descent are more involved, and are deferred to

supplementary material.

Lemma 8. Suppose that:

K ′ = K − η(R+B>PKB)−1∇C(K)Σ−1
K , .

If η ≤ 1, then

C(K ′)− C(K∗) ≤

(
1−

ηµ

‖ΣK∗‖

)
(C(K)− C(K∗))
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Algorithm 1 Model-Free Policy Gradient (and Natural Pol-

icy Gradient) Estimation

1: Input: K, number of trajectories m, roll out length `,
smoothing parameter r, dimension d

2: for i = 1, · · ·m do

3: Sample a policy K̂i = K + Ui, where Ui is drawn

uniformly at random over matrices whose (Frobe-

nius) norm is r.

4: Simulate K̂i for ` steps starting from x0 ∼ D. Let

Ĉi and Σ̂i be the empirical estimates:

Ĉi =
∑̀

t=1

ct , Σ̂i =
∑̀

t=1

xtx
>
t

where ct and xt are the costs and states on this trajec-

tory.

5: end for

6: Return the (biased) estimates:

∇̂C(K) =
1

m

m∑

i=1

d

r2
ĈiUi , Σ̂K =

1

m

m∑

i=1

Σ̂i

Proof. Observe K ′ = K − η(R+B>PKB)−1EK . Using

Lemma 6 and the condition on η,

C(K ′)− C(K)

= −2ηTr(ΣK′E>
K(R+B>PKB)−1EK) +

η2Tr(ΣK′E>
K(R+B>PKB)−1EK)

≤ −ηTr(ΣK′E>
K(R+B>PKB)−1EK)

≤ −ησmin(ΣK′)Tr(E>
K(R+B>PKB)−1EK)

≤ −ηµTr(E>
K(R+B>PKB)−1EK)

≤ −η
µ

‖ΣK∗‖
(C(K)− C(K∗)) ,

where the last step uses Lemma 3.

With this lemma, the proof of the convergence rate of the

Gauss Newton algorithm is immediate.

Proof. (of Theorem 7, Gauss-Newton case) The theorem

is due to that η = 1 leads to a contraction of 1− ηµ
‖ΣK∗‖ at

every step.

4.2. Model free optimization: sample based policy

gradient methods

In the model free setting, the controller has only simulation

access to the model; the model parameters, A, B, Q and R,

are unknown. The standard optimal control theory approach

is to use system identification to learn the model, and then

plan with this learned model This section proves that model-

free, policy gradient methods also lead to globally optimal

policies, with both polynomial computational and sample

complexities (in the relevant quantities).

Using a zeroth-order optimization approach (see Sec-

tion 2.2), Algorithm 1 provides a procedure to find (bounded

bias) estimates, ∇̂C(K) and Σ̂K , of both∇C(K) and ΣK .

These can then be used in the policy gradient and natural

policy gradient updates. For policy gradient we have

Kn+1 = Kn − η ̂∇C(Kn). (8)

For natural policy gradient we have:

Kn+1 = Kn − η ̂∇C(Kn)Σ̂
−1
Kn

. (9)

In both Equations (8) and (9), Algorithm 1 is called at every

iteration to provide the estimates of∇C(Kn) and ΣKn
.

The choice of using zeroth order optimization vs using RE-

INFORCE (with Gaussian additive noise, as in Equation 3)

is primarily for technical reasons2. It is plausible that the

REINFORCE estimation procedure has lower variance. One

additional minor difference, again for technical reasons, is

that Algorithm 1 uses a perturbation from the surface of a

sphere (as opposed to a Gaussian perturbation).

Theorem 9. (Global Convergence in the Model Free Set-

ting) Suppose C(K0) is finite, µ > 0, and that x0 ∼ D has

norm bounded by L almost surely. Also, for both the policy

gradient method and the natural policy gradient method,

suppose Algorithm 1 is called with parameters:

m, `, 1/r =poly

(
C(K0),

1

µ
,

1

σmin(Q)
, ‖A‖, ‖B‖, ‖R‖,

1

σmin(R)
, d, 1/ε, L2/µ

)
.

• Natural policy gradient case: For a stepsize

η =
1

‖R‖+ ‖B‖2C(K0)
µ

and for

N ≥
‖ΣK∗‖

µ

(
‖R‖

σmin(R)
+
‖B‖2C(K0)

µσmin(R)

)

log
2(C(K0)− C(K∗))

ε
,

then, with high probability, i.e. with probability greater

than 1− exp(−d), the natural policy gradient descent

update (Equation 9) enjoys the following performance

bound:

C(KN )− C(K∗) ≤ ε .

2The correlations in the state-action value estimates in REIN-
FORCE are more challenging to analyze.
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• Gradient descent case: For an appropriate (constant)

setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
, σmin(R)

)

and for

N ≥
‖ΣK∗‖

µ
log

C(K0)− C(K∗)

ε

× poly

(
C(K0)

µσmin(Q)
, ‖A‖, ‖B‖, ‖R‖,

1

σmin(R)

)
,

then, with high probability, gradient descent (Equa-

tion 8) enjoys the following performance bound:

C(KN )− C(K∗) ≤ ε .

This theorem gives the first polynomial time guarantee for

policy gradient and natural policy gradient algorithms in the

LQR problem.

Proof Sketch The model free results (Theorem 9) are

proved in the following three steps:

1. Prove that when the roll out length ` is large enough,

the cost function C and the covariance Σ are approxi-

mately equal to the corresponding quantities at infinite

steps.

2. Show that with enough samples, Algorithm 1 can es-

timate both the gradient and covariance matrix within

the desired accuracy.

3. Prove that both gradient descent and natural gradient

descent can converge with a similar rate, even if the

gradient/natural gradient estimates have some bounded

perturbations.

The proofs are technical and are deferred to supplementary

material. We have focused on proving polynomial relation-

ships in our complexity bounds, and did not optimize for

the best dependence on the relevant parameters.

5. Conclusions and Discussion

This work has provided provable guarantees that model-

based gradient methods and model-free (sample based) pol-

icy gradient methods convergence to the globally optimal

solution, with finite polynomial computational and sam-

ple complexities. Taken together, the results herein place

these popular and practical policy gradient approaches on a

firm theoretical footing, making them comparable to other

principled approaches (e.g., subspace system identification

methods and algebraic iterative approaches).

Finite C(K0) assumption, noisy case, and finite horizon

case. These methods allow for extensions to the noisy case

and the finite horizon case. This work also made the assump-

tion that C(K0) is finite, which may not be easy to achieve

in some infinite horizon problems. The simplest way to

address this is to model the infinite horizon problem with a

finite horizon one; the techniques developed in Section D.1

shows this is possible. This is an important direction for

future work.

Open Problems.

• Variance reduction: This work only proved efficiency

from a polynomial sample size perspective. An inter-

esting future direction would be in how to rigorously

combine variance reduction methods and model-based

methods to further decrease the sample size.

• A sample based Gauss-Newton approach: This work

showed how the Gauss-Newton algorithm improves

over even the natural policy gradient method, in the ex-

act case. A practically relevant question for the Gauss-

Newton method would be how to both: a) construct a

sample based estimator b) extend this scheme to deal

with (non-linear) parametric policies.

• Robust control: In model based approaches, optimal

control theory provides efficient procedures to deal

with (bounded) model mis-specification. An important

question is how to provably understand robustness in a

model free setting.
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