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ABSTRACT: Scour of rock in unlined rock spillway channels is a critical issue facing many of the world’s dams. From a modeling
point of view this poses a challenging and interesting problem that combines rock mechanics and hydraulics of turbulent flow. We
analyze this interaction between the blocky rock mass and water by directly modeling the solid and fluid phases—the individual
polyhedral blocks are modeled using the Discrete Element Method (DEM) while the water is modeled using the Lattice Boltzmann
Method (LBM). The LBM mesh is entirely independent of the DEM discretization, making it possible to refine the LBM mesh such
that transient and varied fluid pressures acting of the rock surface are directly modeled. This provides the capability to investigate
the effect of water pressure inside the fractured rock mass, along potential sliding planes, and can be extended to rock falls and slides
into standing bodies of water such as lakes and reservoirs. Herein we present preliminary results to demonstrate the capabilities of

the methodology.

1. INTRODUCTION

Scour of rock is a very challenging and interesting
problem that combines rock mechanics and hydraulics of
turbulent flow. On a practical level, rock erosion is a
critical issue facing many of the world’s dams at which
excessive scour of the dam foundation or spillway can
compromise the stability of the dam resulting in
significant remediation costs, if not direct personal
property damage or even loss of life. The most current
example of this problem is Oroville Dam in Northern
California—massive scour damage to both the service
and emergency spillways during the flood events of
February 2017 led to the evacuation of more the 188,000
people living downstream of the dam.

In order to effectively model rock scour, it is necessary to
consider the interaction between the blocky rock mass and
the water flowing over and through it. Simulations
modeling this process can follow one of two approaches:

e Account for fluid-solid interaction based on a
locally averaged approach (Anderson & Jackson,
1967, Tsuji et al., 2008, Furuichi et al., 2014)

e Directly simulate hydrodynamic forces on the solid
particles (Noble & Torczynksi, 1998, Holdych,
2003, Holzer & Sommerfeld, 2009)

In the locally averaged approach, the number of solid
particles is greater than the number of fluid cells, making
this approach less computationally expensive. However,
since the fluid-solid coupling is done on a volume-
averaged basis, all particles within a local region will
experience the same hydrodynamic forces. In certain
applications this may be appropriate, but for rock scour
this approach does not offer sufficient resolution.

The second approach attempts to overcome this
shortcoming by directly simulating the hydrodynamic
forces on the solid particles. To achieve this, it is
necessary to have a much higher resolution fluid mesh and
consequently many more fluid cells compared to solid
particles. This added accuracy makes direct simulations
significantly more computationally expensive.

Our approach falls into the second category where fluid-
solid interaction is directly simulated. This is achieved by
coupling the Discrete Element Method (DEM) with the
Lattice Boltzmann Method (LBM) in three dimensions.
The solid polyhedral particles are modeled using DEM
while the fluid phase is simulated using LBM. As
previously mentioned, this approach is computationally
intensive and requires parallel computing to accelerate
computations. We implemented our computations in
parallel using the Kokkos C++ library (Edwards et al.
2014). Kokkos achieves performance portability among
different computing platforms, allowing the same code to



be compiled to target the hardware it will be executed on.
The resulting software, written in C++, is capable of
modeling fluid-solid interaction in three dimensions and
can be executed in parallel to accelerate computations.

2. SOLID PHASE MODEL

In fractured rock, the displacements occur primarily along
the joints within the fractured rock mass—the three
dimensional orientation of the discontinuities largely
influence the block removability, kinematics and stability
(Goodman & Shi, 1985). Therefore, it is important that
any numerical model used to describe the mechanical
behavior of rock is able to capture the discontinuous
nature of the rock. Continuum models are not able to
capture this behavior since the rock is not continuous at
all. Distinct particle methods such as the Discrete Element
Method (Cundall & Strack, 1979) and Discontinuous
Deformation Analysis (Shi & Goodman, 1988) directly
model individual particles, making them ideal for
modeling fractured rock.

We chose to use DEM since the time integration
formulation is explicit. This means that all block force and
moment computations are local and, once all contact
detection has been completed for a particular time step,
the block displacements and rotations can be updated
without needing any additional information about
neighboring blocks. This local nature of the calculations
makes them attractive for parallel computing.

2.1. Formulation
The equations of translational and rotational motion for
an individual rock block are:
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where X, and w; represent the translational and rotational

acceleration of the block; F; and M; are the total force and
moment acting on the block; a is the damping constant;
and g; is the gravitational acceleration. These equations
are integrated over time using a velocity Verlet time
integrator for translation and a quaternion-based time
integrator (Johnson et al., 2008) for rotation.

The total force and torque acting on the block are
determined based on contact between blocks. Contact
forces and moments are calculated following the method
of Hart et al., 1988.

2.2. Contact Detection

In order to determine the contact forces and moments, it
is necessary to establish which blocks are in contact with
each other. This is the most computationally expensive

portion of DEM—approximately 80% of computation
time is spent here (Horner et al., 2000).

Establishing contact between blocks is done in two
phases: first, a neighbor search to establish which blocks
are close enough to possibly be in contact and, second,
checking whether those blocks are actually in contact. We
implemented the CGRID algorithm (Williams et al.,
2003) to perform the neighbor search. Unlike other
neighbor search algorithms, such as NBS (Munjiza &
Andrews, 1998), CGRID is able to maintain O(N)
operations to complete spatial binning even if the particle
sizes are substantially different—often the case for
fractured rock.

Figure 1: Two colliding block with overlapping region. Arrows
indicate the direction of normal vectors to block faces (After
Boon et al., 2012).

Once the neighbor search has established which blocks
could possibly be in contact, the neighboring blocks are
checked to determine which pairs are actually in contact.
For this phase of the computations, we used a linear
programming approach as described by Boon et al., 2012.
As shown in Figure 1, each polyhedral block can be
defined as a set of linear inequalities describing the faces
of the block. Using this formulation, contact detection can
be recast as a convex optimization. This algorithm greatly
simplifies the contact detection process—the only data
necessary for describing the blocks is the normal of each
of the block faces and the distance of that face from the
block centroid. Contact is established by solving a linear
program,; if contact exists, the contact point is taken as the
analytical center of the region of overlap, indicated by the
hashed region in Figure 1. The contact normal is
calculated using the gradient vector of “potential
particles” within each of the contacting blocks.

3. FLUID PHASE MODEL

The behavior of viscous fluid is described by the Navier
Stokes equation. In computational fluid dynamics, several
methods have been used to simulate the behavior of fluid



by approximating the Navier Stokes equation
numerically. The Finite Element Method (FEM) and
Finite Volume Method (FVM) are two of the most
popular methods; they can capture shocks and can offer
higher order accuracy. However, when a solid phase is
allowed to move through the fluid phase; these methods
can become prohibitively computationally expensive and
complicated: As the fluid moves through the FEM
domain, it is necessary to re-mesh the fluid in the vicinity
of the block and translate solutions from the old mesh to
the updated one. For the FVM, establishing the support
for higher order solutions is no longer clear when fluid
cells are covered by solids.

An alternative to using the FEM or FVM, is the Lattice
Boltzmann Method (LBM). Instead of solving the Navier
Stokes equations, the LBM is based on kinetic theory and
solves a mesoscopic description of fluid behavior—
distributions of particles form the fundamental
description of fluid behavior. It can be shown that the
LBM recovers the macroscopic Navier-Stokes equations
through a Chapman-Enskog expansion (Succi, 2001). The
LBM formulation is intrinsically parallelizable and the
method is able to deal with complex geometries and solids
moving through the fluid mesh in a relatively
straightforward fashion.

3.1. Formulation

In addition to discretizing physical space and time, the
LBM also discretizes velocity space in the Boltzmann
equation. The set of discrete velocities and accompanying
weights are selected to satisfy the correct macroscopic
conservation laws (Kriiger et al., 2016). Figure 2 shows
two such sets, one with 9 discrete velocities in two
dimensions and another with 27 discrete velocities in
three dimensions.
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Figure 2: D2Q9 and D3Q27 discrete velocity sets

This discretization in time, physical and velocity space of
the Boltzmann equation leads to the lattice Boltzmann
equation:

fi(x+c At t+At)— f.(x,t) =Q.(x,1) 3)

This equation describes the two steps in the LBM:
streaming and collision. In the streaming step, particle
populations fi(x,) move to neighboring point x + ¢;A¢ with
velocity ¢; at the next time step ¢+ A¢. The collision step
is described by the collision operator, Q;, which models
particle collisions by redistributing particles among the
populations fi(x,?) at each node in the fluid mesh.

There are many different collision operators available.
The simplest is the single relaxation time Bhatnagar-
Gross-Krook (BGK) operator (Bhatnagar et al., 1954)
while other models offer increasingly more relaxation
times to account for the difference in rates at which
hydrodynamic quantities relax toward equilibrium. We
implemented a three-dimensional, 27 discrete velocity,
multiple relaxation time model (D3Q27 MRT) as
described by Suga et al., 2015. This model offers more
numerical stability and accuracy by decoupling the
relaxation of different hydrodynamic quantities in
moment space rather than population space, allowing
them to relax to equilibrium at different rates. Once
relaxation is completed, moments are transformed back to
population space where the streaming step is done as
described in the lattice Boltzmann equation.

A full description of the D3Q27 MRT collision operator
is available in Suga et al., 2015, but it is important to
mention that as with all LBM methods the spatial and
temporal discretization are tied to the fluid viscosity by at
least one of the relaxation times. The relation for the
D3Q27 MRT model is:
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where ¢ is the sound speed ratio, 1/ V3, and s5 and s are
relaxation times.

3.2.  Body Forces

The lattice Boltzmann equation in its original formulation
does not account for body forces. Several approaches can
account for body forces in LBM as summarized by Huang
etal., 2011. We use the approach proposed by Guo et al.,
2002, in which the body forces are added as an additional
source term in the lattice Boltzmann equation

fi(x+c At t+At)— f,(x,0) =[Q. (x,8) +S,(x,0)] (5)

3.3. Turbulent Flow

Turbulence is accounted for using the Large Eddy
Simulation (LES) approach. In this approach, scales
smaller than the fluid mesh size are accounted for through
an added subgrid scale eddy viscosity as a function of a
subgrid scale tensor. We applied the wall-adapting local
eddy-viscosity (WALE) model (Nicoud & Ducros, 1999)
which is a function of the velocity gradient tensor.

The velocity gradient tensor can be calculated using
second order finite differences—this requires only



knowing the fluid velocity at the nearest neighboring fluid
nodes. Using the WALE model, the subgrid scale
viscosity is then calculated based on the velocity gradient
at each node and added to the fluid viscosity at that node:
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4. FLUID-SOLID COUPLING

There are several different approaches to describe
boundary conditions for fluid-solid interaction. We
adopted the so-called partially saturated method (PSM) of
Noble & Torczynski, 1998, as modified by Holdych,
2003. As shown in Figure 3, as a solid particle moves
through the fluid mesh it will partially or completely
cover fluid cells—near the boundary of the solid particle,
cells will be part solid and part fluid while they will be
entirely solid in the interior of the particle. This is
accounted for by modifying the lattice Boltzmann
equation to have an additional collision operator for the
solid phase:
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where Q/is the fluid collision operator and Qis a
collision operator for solid nodes:
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Here, u is the local velocity of the fluid and u;is the
velocity of the solid at point x; fieqis the particle
equilibrium population where the subscript 7 indicates the
population with opposite velocity to i. The weighting
factor, B, is determined based on the volumetric solid
fraction, ¢, of the fluid cell:
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The additional collision operator accounts for the
presence of the solid in the fluid, but the fluid action on
the solid also needs to be accounted for. The
hydrodynamic forces and torques on the solid are
calculated according to Owen et al., 2010:
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where x, are all the lattice nodes covered or partially
covered by the solid and X, is the location of the center of
mass of the solid particle.

Figure 3: Node types for fluid-solid coupling

5. PARALLEL IMPLEMENTATION

Direct simulation of hydrodynamic forces on polyhedral
blocks is computationally expensive, especially when
simulations are three dimensional. Accurate resolution of
the hydraulics surrounding the rock blocks requires the
number of fluid nodes to be far greater than the number
of solid particles. This makes the fluid domain solution
the most computationally expensive portion of
simulations and the most important part of the analyses to
accelerate. As previously mentioned, the LBM is
intrinsically parallelizable. The collision step is entirely
localized for laminar flow and information only about a
node’s nearest neighbors is required for turbulent flow.
During the streaming step, information is shared only
with nodes immediately surrounding each other—those
nodes connected to each other by the discrete velocity set.
This localized nature of the LBM is what makes it an
attractive candidate for parallel computing.

Computing systems and hardware are evolving rapidly,
providing tools to expand the types and sizes of analyses
possible. However, these developments are heterogenous
and do not necessarily interface easily with each other or
maintain backward compatibility. When developing
software that exploits a certain accelerator, it can be
challenging and cumbersome to update the source code as
the hardware that it targets is updated. To help alleviate
some of the difficulties associated with this aspect of code
development, the Kokkos C++ library (Edwards et al.,
2014) abstracts both the data parallelism and memory
access on a range of multi-core architectures. This allows
the same source code to be compiled for different
architectures while still maintaining performance.

Using Kokkos, we parallelized the fluid portion of the
computations such that the most computationally
cumbersome calculations can be executed on either the



central processing unit (CPU) or graphics processing unit
(GPU). Approximately 30% of computing time is spent
on the collision step, 30% on generating the output for
visualizations and 20% on the fluid-solid coupling in
terms of identifying which nodes are covered by solids
moving through the fluid mesh. The collision step can be
accelerated using either the CPU or GPU, while the fluid-
solid coupling and output generation can be accelerated
using the CPU.

6. EXAMPLES

The following examples are presented to demonstrate the
capability of our software. It is capable of modeling
coupled fluid-solid interaction but can also be used to
model only fluid or dry rock. The figures in the examples
were rendered using ParaView (Ayachit, 2015).

6.1. DEM Example: Rock Slope Failure

The source code for the application has been heavily unit
tested to ensure that the underlying formulation is
working as expected. Additionally, we have compared
numerical results to the analytical solution for a block
sliding down an inclined plane to verify the correctness of
the DEM implementation. This provides confidence in the
ability of the software to capture the behavior of more
complex analyses, such as shown in the rock avalanche
example in Figure 4. The initial configuration of the
fractured rock mass was generated using SparkRocks
(Gardner et al., 2017) using joint set data from a field site
in the Sierra Nevada. The software is capable of capturing
the behavior of the individual blocks and how they
interact with each other as they move downslope.

(b)

Figure 4 Rock Avalanche: (a) Initial configuration; and (b)
blocks sliding and rolling down slope.

6.2. LBM Example: Stagnation Point Analysis

The LBM portion of the source code has also been
rigorously unit tested and compared to the analytical
solution of several fluid dynamics problems—Couette
flow, gravity-driven planar Poiseuille flow and flow down
and inclined plane. Beyond that, we ran a simplified
stagnation point analysis to verify that the software can
correctly predict the location of the stagnation point
compared to the work done by Frizell, 2007.

Figure 5: Stagnation Point Analysis—Velocity Magnitude

Figure 6: Stagnation Point Analysis—Pressure

Figure 5 shows the velocity magnitude in the channel and
Figure 6 shows the accompanying pressure profile. Figure
7 shows stream tracers for a single snapshot in the
solution—the stream tracers indicate how particles might
travel through the velocity field at that instant in time.
These results match the location of the stagnation point
and show the recirculation zone identified in similar
analyses by Frizell, 2007.

Figure 7: Stagnation Point Analysis—Stream Tracers

6.3. Coupled DEM-LBM Example: Block in Flow
Down Inclined Plane

This example shows the results from a coupled, three-

dimensional analysis considering hydrodynamic forces

on a polyhedral rock block in water flowing down n plane

inclined at 30°. Figure 8 shows the block as it moves



through the fluid mesh, effecting the fluid solution.
Stream tracers show how fluid is forced to flow around
the block and, in turn, applying hydrodynamic forces and
moments to the block.

Figure 8: Block in water flowing down 30° inclined plane

7. CONCLUSION

We present the formulation for a coupled 3-D DEM-LBM
solution of fluid-solid interaction capable of directly
simulating hydrodynamic forces and moments acting on
individual polyhedral blocks, along with preliminary
results to demonstrate the capability of the methodology.
The software implementation is structured so that it can
be compiled to execute in parallel on either the CPU and
GPU or CPU only. This is made possible by applying the
Kokkos library to execute the most computationally
expensive portions of the analyses.

Future work will be focused on further comparisons of
coupled fluid-solid numerical analyses with analytical
and experimental results to validate the accuracy of the
numerical schemes. Ultimately, multiphase capability can
be added to the LBM such that free-surface simulations
involving rock falls and slides into water can be modeled
as well. Additionally, the software will be expanded to
have the capability to run on multiple compute nodes,
whether on a super computer or on the Cloud, such that
larger, real-world scale problems can be analyzed. This
scalability will allow users to run large scale simulations
on the Cloud, eliminating the need for investing and
maintaining their own local computing resources.
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