
1. INTRODUCTION 

Scour of rock is a very challenging and interesting 
problem that combines rock mechanics and hydraulics of 
turbulent flow. On a practical level, rock erosion is a 
critical issue facing many of the world’s dams at which 
excessive scour of the dam foundation or spillway can 
compromise the stability of the dam resulting in 
significant remediation costs, if not direct personal 
property damage or even loss of life. The most current 
example of this problem is Oroville Dam in Northern 
California—massive scour damage to both the service 
and emergency spillways during the flood events of 
February 2017 led to the evacuation of more the 188,000 
people living downstream of the dam. 

In order to effectively model rock scour, it is necessary to 
consider the interaction between the blocky rock mass and 
the water flowing over and through it. Simulations 
modeling this process can follow one of two approaches: 

 Account for fluid-solid interaction based on a 
locally averaged approach (Anderson & Jackson, 
1967, Tsuji et al., 2008, Furuichi et al., 2014) 

 Directly simulate hydrodynamic forces on the solid 
particles (Noble & Torczynksi, 1998, Holdych, 
2003, Hölzer & Sommerfeld, 2009) 

In the locally averaged approach, the number of solid 
particles is greater than the number of fluid cells, making 
this approach less computationally expensive. However, 
since the fluid-solid coupling is done on a volume-
averaged basis, all particles within a local region will 
experience the same hydrodynamic forces. In certain 
applications this may be appropriate, but for rock scour 
this approach does not offer sufficient resolution. 
The second approach attempts to overcome this 
shortcoming by directly simulating the hydrodynamic 
forces on the solid particles. To achieve this, it is 
necessary to have a much higher resolution fluid mesh and 
consequently many more fluid cells compared to solid 
particles. This added accuracy makes direct simulations 
significantly more computationally expensive. 
Our approach falls into the second category where fluid-
solid interaction is directly simulated. This is achieved by 
coupling the Discrete Element Method (DEM) with the 
Lattice Boltzmann Method (LBM) in three dimensions. 
The solid polyhedral particles are modeled using DEM 
while the fluid phase is simulated using LBM. As 
previously mentioned, this approach is computationally 
intensive and requires parallel computing to accelerate 
computations. We implemented our computations in 
parallel using the Kokkos C++ library (Edwards et al. 
2014). Kokkos achieves performance portability among 
different computing platforms, allowing the same code to 
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be compiled to target the hardware it will be executed on. 
The resulting software, written in C++, is capable of 
modeling fluid-solid interaction in three dimensions and 
can be executed in parallel to accelerate computations. 

2. SOLID PHASE MODEL 

In fractured rock, the displacements occur primarily along 
the joints within the fractured rock mass—the three 
dimensional orientation of the discontinuities largely 
influence the block removability, kinematics and stability 
(Goodman & Shi, 1985). Therefore, it is important that 
any numerical model used to describe the mechanical 
behavior of rock is able to capture the discontinuous 
nature of the rock. Continuum models are not able to 
capture this behavior since the rock is not continuous at 
all. Distinct particle methods such as the Discrete Element 
Method (Cundall & Strack, 1979) and Discontinuous 
Deformation Analysis (Shi & Goodman, 1988) directly 
model individual particles, making them ideal for 
modeling fractured rock. 

We chose to use DEM since the time integration 
formulation is explicit. This means that all block force and 
moment computations are local and, once all contact 
detection has been completed for a particular time step, 
the block displacements and rotations can be updated 
without needing any additional information about 
neighboring blocks. This local nature of the calculations 
makes them attractive for parallel computing. 

2.1. Formulation 
The equations of translational and rotational motion for 
an individual rock block are: 
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where ix and ሶ߱ ௜ represent the translational and rotational 

acceleration of the block; Fi and Mi are the total force and 
moment acting on the block; α is the damping constant; 
and gi is the gravitational acceleration. These equations 
are integrated over time using a velocity Verlet time 
integrator for translation and a quaternion-based time 
integrator (Johnson et al., 2008) for rotation. 

The total force and torque acting on the block are 
determined based on contact between blocks. Contact 
forces and moments are calculated following the method 
of Hart et al., 1988. 

2.2. Contact Detection 
In order to determine the contact forces and moments, it 
is necessary to establish which blocks are in contact with 
each other. This is the most computationally expensive 

portion of DEM—approximately 80% of computation 
time is spent here (Horner et al., 2000). 

Establishing contact between blocks is done in two 
phases: first, a neighbor search to establish which blocks 
are close enough to possibly be in contact and, second, 
checking whether those blocks are actually in contact. We 
implemented the CGRID algorithm (Williams et al., 
2003) to perform the neighbor search. Unlike other 
neighbor search algorithms, such as NBS (Munjiza & 
Andrews, 1998), CGRID is able to maintain O(N) 
operations to complete spatial binning even if the particle 
sizes are substantially different—often the case for 
fractured rock. 

 

 
Figure 1: Two colliding block with overlapping region. Arrows 
indicate the direction of normal vectors to block faces (After 
Boon et al., 2012). 

Once the neighbor search has established which blocks 
could possibly be in contact, the neighboring blocks are 
checked to determine which pairs are actually in contact. 
For this phase of the computations, we used a linear 
programming approach as described by Boon et al., 2012. 
As shown in Figure 1, each polyhedral block can be 
defined as a set of linear inequalities describing the faces 
of the block. Using this formulation, contact detection can 
be recast as a convex optimization. This algorithm greatly 
simplifies the contact detection process—the only data 
necessary for describing the blocks is the normal of each 
of the block faces and the distance of that face from the 
block centroid. Contact is established by solving a linear 
program; if contact exists, the contact point is taken as the 
analytical center of the region of overlap, indicated by the 
hashed region in Figure 1. The contact normal is 
calculated using the gradient vector of “potential 
particles” within each of the contacting blocks. 

3. FLUID PHASE MODEL 

The behavior of viscous fluid is described by the Navier 
Stokes equation. In computational fluid dynamics, several 
methods have been used to simulate the behavior of fluid 



by approximating the Navier Stokes equation 
numerically. The Finite Element Method (FEM) and 
Finite Volume Method (FVM) are two of the most 
popular methods; they can capture shocks and can offer 
higher order accuracy. However, when a solid phase is 
allowed to move through the fluid phase; these methods 
can become prohibitively computationally expensive and 
complicated: As the fluid moves through the FEM 
domain, it is necessary to re-mesh the fluid in the vicinity 
of the block and translate solutions from the old mesh to 
the updated one. For the FVM, establishing the support 
for higher order solutions is no longer clear when fluid 
cells are covered by solids. 

An alternative to using the FEM or FVM, is the Lattice 
Boltzmann Method (LBM). Instead of solving the Navier 
Stokes equations, the LBM is based on kinetic theory and 
solves a mesoscopic description of fluid behavior—
distributions of particles form the fundamental 
description of fluid behavior. It can be shown that the 
LBM recovers the macroscopic Navier-Stokes equations 
through a Chapman-Enskog expansion (Succi, 2001). The 
LBM formulation is intrinsically parallelizable and the 
method is able to deal with complex geometries and solids 
moving through the fluid mesh in a relatively 
straightforward fashion. 

3.1. Formulation 
In addition to discretizing physical space and time, the 
LBM also discretizes velocity space in the Boltzmann 
equation. The set of discrete velocities and accompanying 
weights are selected to satisfy the correct macroscopic 
conservation laws (Krüger et al., 2016). Figure 2 shows 
two such sets, one with 9 discrete velocities in two 
dimensions and another with 27 discrete velocities in 
three dimensions. 

 

 
Figure 2: D2Q9 and D3Q27 discrete velocity sets 

This discretization in time, physical and velocity space of 
the Boltzmann equation leads to the lattice Boltzmann 
equation: 

( , ) ( , ) ( , )i i i if x c t t t f x t x t             (3) 

This equation describes the two steps in the LBM: 
streaming and collision. In the streaming step, particle 
populations fi(x,t) move to neighboring point x + ciΔt with 
velocity ci at the next time step   t + Δt. The collision step 
is described by the collision operator, Ωi, which models 
particle collisions by redistributing particles among the 
populations fi(x,t) at each node in the fluid mesh. 

There are many different collision operators available. 
The simplest is the single relaxation time Bhatnagar-
Gross-Krook (BGK) operator (Bhatnagar et al., 1954) 
while other models offer increasingly more relaxation 
times to account for the difference in rates at which 
hydrodynamic quantities relax toward equilibrium. We 
implemented a three-dimensional, 27 discrete velocity, 
multiple relaxation time model (D3Q27 MRT) as 
described by Suga et al., 2015. This model offers more 
numerical stability and accuracy by decoupling the 
relaxation of different hydrodynamic quantities in 
moment space rather than population space, allowing 
them to relax to equilibrium at different rates. Once 
relaxation is completed, moments are transformed back to 
population space where the streaming step is done as 
described in the lattice Boltzmann equation. 

A full description of the D3Q27 MRT collision operator 
is available in Suga et al., 2015, but it is important to 
mention that as with all LBM methods the spatial and 
temporal discretization are tied to the fluid viscosity by at 
least one of the relaxation times. The relation for the 
D3Q27 MRT model is: 
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where cs is the sound speed ratio, 1/√3, and s5 and s7 are 
relaxation times. 

3.2. Body Forces 
The lattice Boltzmann equation in its original formulation 
does not account for body forces. Several approaches can 
account for body forces in LBM as summarized by Huang 
et al., 2011. We use the approach proposed by Guo et al., 
2002, in which the body forces are added as an additional 
source term in the lattice Boltzmann equation 
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3.3. Turbulent Flow 
Turbulence is accounted for using the Large Eddy 
Simulation (LES) approach. In this approach, scales 
smaller than the fluid mesh size are accounted for through 
an added subgrid scale eddy viscosity as a function of a 
subgrid scale tensor. We applied the wall-adapting local 
eddy-viscosity (WALE) model (Nicoud & Ducros, 1999) 
which is a function of the velocity gradient tensor.  

The velocity gradient tensor can be calculated using 
second order finite differences—this requires only 



knowing the fluid velocity at the nearest neighboring fluid 
nodes. Using the WALE model, the subgrid scale 
viscosity is then calculated based on the velocity gradient 
at each node and added to the fluid viscosity at that node: 
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4. FLUID-SOLID COUPLING 

There are several different approaches to describe 
boundary conditions for fluid-solid interaction. We 
adopted the so-called partially saturated method (PSM) of 
Noble & Torczynski, 1998, as modified by Holdych, 
2003. As shown in Figure 3, as a solid particle moves 
through the fluid mesh it will partially or completely 
cover fluid cells—near the boundary of the solid particle, 
cells will be part solid and part fluid while they will be 
entirely solid in the interior of the particle. This is 
accounted for by modifying the lattice Boltzmann 
equation to have an additional collision operator for the 
solid phase: 
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where f
i is the fluid collision operator and s

i is a 

collision operator for solid nodes: 
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Here, u is the local velocity of the fluid and su is the 
velocity of the solid at point x; ௜݂

௘௤is the particle 
equilibrium population where the subscript ଓ	̅indicates the 
population with opposite velocity to ݅. The weighting 
factor, B, is determined based on the volumetric solid 
fraction, ε, of the fluid cell:  
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The additional collision operator accounts for the 
presence of the solid in the fluid, but the fluid action on 
the solid also needs to be accounted for. The 
hydrodynamic forces and torques on the solid are 
calculated according to Owen et al., 2010: 
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where xn are all the lattice nodes covered or partially 
covered by the solid and Xp is the location of the center of 
mass of the solid particle. 

 
Figure 3: Node types for fluid-solid coupling 

5. PARALLEL IMPLEMENTATION 

Direct simulation of hydrodynamic forces on polyhedral 
blocks is computationally expensive, especially when 
simulations are three dimensional. Accurate resolution of 
the hydraulics surrounding the rock blocks requires the 
number of fluid nodes to be far greater than the number 
of solid particles. This makes the fluid domain solution 
the most computationally expensive portion of 
simulations and the most important part of the analyses to 
accelerate. As previously mentioned, the LBM is 
intrinsically parallelizable. The collision step is entirely 
localized for laminar flow and information only about a 
node’s nearest neighbors is required for turbulent flow. 
During the streaming step, information is shared only 
with nodes immediately surrounding each other—those 
nodes connected to each other by the discrete velocity set. 
This localized nature of the LBM is what makes it an 
attractive candidate for parallel computing. 

Computing systems and hardware are evolving rapidly, 
providing tools to expand the types and sizes of analyses 
possible. However, these developments are heterogenous 
and do not necessarily interface easily with each other or 
maintain backward compatibility. When developing 
software that exploits a certain accelerator, it can be 
challenging and cumbersome to update the source code as 
the hardware that it targets is updated. To help alleviate 
some of the difficulties associated with this aspect of code 
development, the Kokkos C++ library (Edwards et al., 
2014) abstracts both the data parallelism and memory 
access on a range of multi-core architectures. This allows 
the same source code to be compiled for different 
architectures while still maintaining performance. 

Using Kokkos, we parallelized the fluid portion of the 
computations such that the most computationally 
cumbersome calculations can be executed on either the 



central processing unit (CPU) or graphics processing unit 
(GPU). Approximately 30% of computing time is spent 
on the collision step, 30% on generating the output for 
visualizations and 20% on the fluid-solid coupling in 
terms of identifying which nodes are covered by solids 
moving through the fluid mesh. The collision step can be 
accelerated using either the CPU or GPU, while the fluid-
solid coupling and output generation can be accelerated 
using the CPU. 

6. EXAMPLES 

The following examples are presented to demonstrate the 
capability of our software. It is capable of modeling 
coupled fluid-solid interaction but can also be used to 
model only fluid or dry rock. The figures in the examples 
were rendered using ParaView (Ayachit, 2015). 

6.1. DEM Example: Rock Slope Failure 
The source code for the application has been heavily unit 
tested to ensure that the underlying formulation is 
working as expected. Additionally, we have compared 
numerical results to the analytical solution for a block 
sliding down an inclined plane to verify the correctness of 
the DEM implementation. This provides confidence in the 
ability of the software to capture the behavior of more 
complex analyses, such as shown in the rock avalanche 
example in Figure 4. The initial configuration of the 
fractured rock mass was generated using SparkRocks 
(Gardner et al., 2017) using joint set data from a field site 
in the Sierra Nevada. The software is capable of capturing 
the behavior of the individual blocks and how they 
interact with each other as they move downslope. 

 

 
Figure 4 Rock Avalanche: (a) Initial configuration; and (b) 
blocks sliding and rolling down slope. 

6.2. LBM Example: Stagnation Point Analysis 
The LBM portion of the source code has also been 
rigorously unit tested and compared to the analytical 
solution of several fluid dynamics problems—Couette 
flow, gravity-driven planar Poiseuille flow and flow down 
and inclined plane. Beyond that, we ran a simplified 
stagnation point analysis to verify that the software can 
correctly predict the location of the stagnation point 
compared to the work done by Frizell, 2007. 

 
Figure 5: Stagnation Point Analysis—Velocity Magnitude 

 

Figure 6: Stagnation Point Analysis—Pressure 

Figure 5 shows the velocity magnitude in the channel and 
Figure 6 shows the accompanying pressure profile. Figure 
7 shows stream tracers for a single snapshot in the 
solution—the stream tracers indicate how particles might 
travel through the velocity field at that instant in time. 
These results match the location of the stagnation point 
and show the recirculation zone identified in similar 
analyses by Frizell, 2007. 

 
Figure 7: Stagnation Point Analysis—Stream Tracers 

6.3. Coupled DEM-LBM Example: Block in Flow 
Down Inclined Plane 

This example shows the results from a coupled, three-
dimensional analysis considering hydrodynamic forces 
on a polyhedral rock block in water flowing down n plane 
inclined at 30°. Figure 8 shows the block as it moves 

(a) 

(b) 



through the fluid mesh, effecting the fluid solution. 
Stream tracers show how fluid is forced to flow around 
the block and, in turn, applying hydrodynamic forces and 
moments to the block. 

 
Figure 8: Block in water flowing down 30° inclined plane 

7. CONCLUSION 

We present the formulation for a coupled 3-D DEM-LBM 
solution of fluid-solid interaction capable of directly 
simulating hydrodynamic forces and moments acting on 
individual polyhedral blocks, along with preliminary 
results to demonstrate the capability of the methodology. 
The software implementation is structured so that it can 
be compiled to execute in parallel on either the CPU and 
GPU or CPU only. This is made possible by applying the 
Kokkos library to execute the most computationally 
expensive portions of the analyses.  

Future work will be focused on further comparisons of 
coupled fluid-solid numerical analyses with analytical 
and experimental results to validate the accuracy of the 
numerical schemes. Ultimately, multiphase capability can 
be added to the LBM such that free-surface simulations 
involving rock falls and slides into water can be modeled 
as well. Additionally, the software will be expanded to 
have the capability to run on multiple compute nodes, 
whether on a super computer or on the Cloud, such that 
larger, real-world scale problems can be analyzed. This 
scalability will allow users to run large scale simulations 
on the Cloud, eliminating the need for investing and 
maintaining their own local computing resources.  
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