
DOI: 10.4018/IJPOP.2016010101

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

Natural Shell:
An Assistant for End-User Scripting
Xiao Liu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Yufei Jiang, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Lawrence Wu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

Dinghao Wu, College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

ABSTRACT

Scripting is a widely-used way to automate the execution of tasks. Despite the popularity of scripting,

it remains difficult to use for both beginners and experts: because of the cryptic commands for the

first group, and incompatible syntaxes across different systems, for the latter group. The authors

introduce Natural Shell, an assistant for enabling end-users to generate commands and scripts for

various purposes. Natural Shell automatically synthesizes scripts for different shell systems based on

natural language descriptions. By interacting with Natural Shell, new users can learn the basics of

scripting languages without the obstacles from the incomprehensible syntaxes. On the other hand, the

authors’ tool frees more advanced users from manuals when they switch shell systems. The authors

have developed a prototype system and demonstrate its effectiveness with a benchmark of 50 examples

of popular shell commands collected from online forums. In addition, the authors analyzed the usage

of Natural Shell in a lab study that involves 10 participants with different scripting skill levels. Natural

Shell effectively assists the users to generate commands in assigned syntaxes and greatly streamlines

their learning and using experience.

KEywORdS
Education, End-User Scripting, Natural Language Programming, Shell, WinBat

INTROdUCTION

The command line interface is essential for users and administrators, as it allows them to fully harness

and customize the power of operating systems (Robbins & Beebe, 2005). Shell scripting significantly

extends the utility of the command line by automating a batch of commands. However, despite the

popularity that shell script enjoys, its syntax is cryptic for beginners and it requires quite a bit of

practice before they can put down the manual.

Shell scripting is complicated, because of the rigid syntax and the inconsistency between shell

systems. Most commands have “options”, which significantly change and extend the functions of

commands. However, the use of options is excessively succinct and thus, makes the commands

incomprehensible for newcomers to a particular shell. Besides, the large amount of options that each

command accepts, adds more cognitive load during the learning process. Take the grep command as an

1

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

2

example, there are 47 options that grep accepts including popular ones like “-i” for case-insensitive,

“-r” for recursive search, and “-w” for word only. It is difficult for novices to remember more than a

few, and for experts to remember all the options. Moreover, this situation compounds when a user has

to get accustomed to the syntax of some other shell as she switches to another shell system. If a Linux

user wants to delete a directory in MS Windows, she may encounter difficulties, since MS Windows

Command Prompt adopts del rather than rm, as the command to perform delete operations. Other

superficial differences include argument position, case-sensitivity, options for commands instead of

separate commands, etc. Even within the UNIX-like OS family, there are Ksh, Csh, Bash, and Zsh

shells, each of which has its own features. Because of the difficulties engendered by shell scripting,

there is a need for a “unified shell”.

Previous efforts have focused on whether to set up a reasoning system for UNIX Shells, or how

to augment the UNIX shell with more powerful functions. Lee proposed a natural interface for shell

scripting that can reason based on pre-defined cases (Lee & Lee, 1995). The reasoning system behind

the interface generates scripts for seasoned users, but it overlooks the uninitiated users. Weaver et

al. (Weaver & Smith, 2012) presented another UNIX text-processing tool that extends the original

shell to support frequent manipulations on text files. However, their tool is platform-sensitive. We

believe that a cross-platform system can handle more cases and be particularly useful for those who

work across multiple operating systems.

Natural language is recognized as a more versatile method for beginners to work with programming

tasks (Ballard & Biermann, 1979; Dijkstra, 1979; Brill, 1992). The way people perceive knowledge

with natural language descriptions differs from that using strict and unintuitive scripting commands

and their arcane outputs. Comparisons using different dimensions were discussed including simplicity,

affordance, memorability, and common results, concluding that natural language has clear advantages.

In this paper, we propose a tool that interacts with end-users in natural language and transforms

their descriptions into shell scripts, as shown in Table 1. The higher level of abstraction eliminates

the syntactical differences between shell systems. Users can write scripts built on bare, pseudo-style

logic. As such, we believe that the natural language shell makes shell scripting accessible to typical

computer end-users. Our design, which we call Natural Shell is based on Weizenbaum’s ELIZA

(Weizenbaum, 1966), a chatbot that uses a rule-based method to process English conversations.

Natural Shell inherits the rule-based method from ELIZA but adopts regular expressions other than

keywords to construct rules. In addition, a generic scripting language is created, called “Uni-Shell”, that

functions as an intermediary between the natural language interpreter and the target shell commands.

Compared to the alternative portages, e.g., Csh or Bash for UNIX and batch for Windows, Uni-Shell

is more natural and universal. On the other hand, it is succinct enough such that frequent users may

prefer it, compared to taking natural language as the input.

The whole script generation is an interactive process as can be seen in Figure 1. The system

consists of three parts: ELIZA, SiE (Scripting in ELIZA) script and Shell Executor. These three

processes form a pipeline. ELIZA module first processes natural languages descriptions to synthesize

the commands in Uni-Shell and then responds in natural language to confirm. Then, SiE script takes in

the Uni-Shell commands from the ELIZA module and synthesizes the target shell commands, which

are then picked up and executed by the Shell Executor. Instead of typing with natural languages,

commands in Uni-Shell are also provided for users as a second choice. Users can directly input a

Table 1. Natural language descriptions and the associated Shell/Batch commands

Natural Language Descriptions: Remove Directories that Contain “foo” in the Name

Csh: if grep $name “foo” rm -r $name endif

Bash: if grep $name “foo” rm -r $name fi

Batch: if FINDSTR /r %name “foo” RD /s/q %name

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

3

complete script in Uni-Shell and our tool will generate a script in any specified syntax for them and

then pass it to the Shell Executor module for execution. Results are displayed in response to the

execution of the generated command/script.

To the best of our knowledge, Natural Shell is the first shell that uses conversations between

users and computers to automatically and adaptively generates scripts in three different syntaxes. The

key idea of our work is to utilize the regulation of natural language descriptions and to understand

the users’ intentions according to the rules we designed. In the rest of this paper, we first introduce

related works and the arguments that initiated our idea. We briefly summarize the elements of the

user interface we designed and the corresponding functionalities of each panel. Then, we describe

our key techniques by going through an example. It demonstrates the whole process that generates

a script of multiple shell commands. We elaborate on our contribution in end-user scripting with

regard to two end-user problems we frequently sighted in online discussion forums. To demonstrate

the effectiveness and analyze the usage of our system, we evaluate our system with: (1) 50 pieces

of benchmark descriptions collected from users for popular shell commands; and (2) two use-case

scenarios that involve participants with different scripting skill levels – and then we provide our

observations drawn from them for further enhancements of the implementation.

RELATEd wORK

For decades, researchers have constantly developed new tools and theories for computer science

education, due to the rapid pace of computer adoption, the constant product and update cycles, and

the significance of computing in the modern day world. Mainstream researchers suggest that the

difficulties in teaching concepts in programming can be overcome with better tools. Some tools

graphically visualize code (Guo, 2013; Orsega, Zanden, & Skinner, 2012) to simplify the way students

understand programming and inspire their interests. Other tools focus on good scenario design, or

set up efficient tasks that encompass all the major concepts (Wolz et al., 2009; Gallant & Mahmoud,

2008). For instance, game-based scenarios are excellent for engaging students of programming, as well

as making the learning more fun (Lee, 2013; Basawapatna, Koh, & Repenning, 2010). In this paper,

we take the next step to build a programming teaching system based on conversational interactions.

Researchers also argue about which language is best for beginners. Sattar and Lorenzen believe

that the language Alice is best, since one codes by selecting choices from a drop down list which

results in no syntax errors (Sattar & Lorenzen, 2009). Bagert, however, favors Ada for it’s robustness

Figure 1. Natural shell system architecture

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

4

and it’s elegant design (Bagert, 1998). In recent times, many researchers claim that Python is the best

choice because of its simplicity and ubiquity (Alshaigy, 2013; Guo, 2013). We aim to build more

languages into our system after our first trial, which was based on the LOGO programming language

(Liu & Wu, 2014). We built the programming in ELIZA (PiE) to automatically synthesize LOGO

programs, to introduce the process of creating algorithms to the uninitiated. In the research reported

here, we chose the Shell, because of the universal importance of shell scripting and its automation

capabilities, and to broaden the range of people that shell scripting is accessible to.

Another reason we choose shell scripting is the low cost of cognitive load during the learning

process. Cognitive load theory (Sweller, 1988) uses the knowledge on human cognitive architecture

to design the instructional procedures. One of the critical aspects of human cognition that is critical

to the procedure design is that cognitive capacity in working memory is limited (De Jong, 2010).

And these factors are main constraints for people’s learning behavior and ability during a learning

process. However, studies conducted by Sweller and his colleagues (Mwangi and Sweller, 1998;

Sweller and Cooper, 1985) have shown that example-based learning (with interspersed problems to

be solved) is more effective than learning only by problem solving. Natural Shell will provide a set

of examples for popular system operations, e.g. massive copy, file searching, that users are familiar

with. Thus, they can get a smooth transition from daily computer operations to system programming.

Interactivity is the last thing we focus on. From the practical educational perspective, in class,

interactions are classified in three levels by Moore (1989): the learner-content, learner-instructor, and

the learner-learner. Our tool encourages more interactions between the learners and their learning

objectives, at the same time, it creates more opportunities for students to try commands and learn

from their mistakes. To simulate that scenario in the process of coding, we adopt natural language

dialog as the interface. In this case, students can immediately start giving instructions to the computer

just as traditional seasoned programmers do, but in a rapid uptake that is unmatched by any previous

method. On the other hand, MOOC (massive open online course) has been popular, but where the

interaction styles between instructors and students are changing. Compared with traditional in-class

education, co-located interactions are replaced by asynchronized communication (Nath and Agarwal,

2014), in which case, making the leaning process less efficient and fun. Natural Shell, which is an

agent-based interactive programming system, can play the role as a responsive learning content and

the instructor as well. By providing students the closest commands or making recommendations for

incomplete instructions, students will have a better experience when interacting with our tool and

their understanding on system functions can be enhanced during the learning process.

USER INTERFACE

Natural Shell is a new interface for users to interact with system kernel functions, within the design of

a local desktop application. Instead of the numerous command line tools that have a dark background

and over-simplified imperative functionality, Natural Shell is more user-friendly, with an interface

more akin to a modern application program, as can be seen in Figure 2. There are three main boxes

in our design, which are the Natural Command Box, Uni-Shell Command Box and Execution Result

Box. In this section, we will explain the functionalities of this tool in detail.

Figure 2 shows a screen shot of Natural Shell. On the top of the entire interface are a few buttons

that trigger functions. Before a user starts to type in the commands, he/she will first choose the desired

target syntax among three mainstream syntaxes we provide: Bash, Csh and MS-DOS. The chosen

option comes into immediate effect; however, the user can change it anytime during the interaction.

There are two modes of operation: Novice mode and Apprentice Mode. For novices who are not

familiar with any shell syntaxes, Natural Shell enables them to harness the system functions using

natural language commands. In this mode, the “natural command box” accepts the user’s natural

language descriptions, which either can be a single-line command or multi-line scripts. Unlike the

original shell commands, there is no syntax restriction on the natural language inputs, which provides

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

5

users more flexibility in composing commands and generates fewer errors as well. After typing in

their natural language commands, the user can expect: (1) commands in the Natural Shell syntax

which are presented in the “Uni-Shell command box”; (2) natural language feedback that confirms the

entered commands which is shown in the “execution result box”; and (3) return values from execution

of the synthesized script commands which is also shown in the “execution result box”. However,

some users may have gained familiarity with Uni-Shell and it may be redundant for them to start with

natural language descriptions. Therefore, in the Apprentice Mode, these users can directly compose

their script in Uni-Shell syntax inside the “Uni-Shell command box” and they can either execute the

script in Natural Shell or export the script to local storage in any target syntax.

KEy TECHNIQUES

In this section, we introduce the process of command synthesis with a motivating example. We also

detail four key techniques adopted by Natural Shell within the process.

Example
Creating and deleting files are routine operations for end-users. Writing scripts to automate these

tedious tasks saves time and labor. Unfortunately, with regard to online forums for scripting language

beginners (Unity, 2011; Roblox, 2013; Siri, 2010), many users consider scripting difficult and would

rather manually repeat the tasks than to compose a repeatable script with several lines. Many of them

mention that mastering the rigid syntax of scripting languages is difficult. However, with the tool we

proposed, learning to script can be relatively simplified. Consider the following operations that a user

may conduct: do the following for every sub-folder: go into the sub-folder, select files that contain “foo”

in the name and create a new directory called “bar”, move the selected files into the new directory,

go back to the parent folder. Based on the natural language descriptions, we wish to generate shell

commands in both UNIX shell (Bash, Csh) and MS/DOS syntaxes, respectively, denoted as S
1
, S

2
.

Let’s suppose the natural language description goes like this: “Repeat these for every sub-folder:”

“create a new folder called ‘bar’ in the current directory.” and “move the files containing ‘foo’ in

the name into the new directory”. Natural Shell processes the commands one by one. Then these

Figure 2. User interface of natural shell. (1) Syntax Button: Choose the target syntax. (2) Execute Button: Try out your natural
language command. (3) Export Button: Export the commands in target syntax as a local script. (4) Quit Button: Quit the application.
(5) Natural Command Box: Type in your natural language commands here. (6) Uni-Shell Command Box: The synthesized commands
are shown here. (7) Execution Result Box: Both the natural language feedback and execution return values are shown here.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

6

descriptions are decomposed into three separated commands. When a command in natural language

is received by the ELIZA module, we tokenize the sentence phrase by phrase, denoted w
1
, w

2
, ...,

w
n
. After the phrase separation, we analyze the syntax of each sentence with the assistance from the

ELIZA module. In this module we tag these phrase chunks with some predefined Tokens, such as

the “Predicate”, the “Variable”, the “Control”, or the “Redundant” by adopting regular expression

matching. For instance, if all the descriptive sentences in the example are analyzed, the compositions

are tagged as follows:

“Repeat these for every sub folder”:

(Predicate)+(Redundant)+(Control)+(Variable)

“Create a new folder called ‘bar’ in the current directory”:

(Predicate)+(Constant)+(Predicate)+(Variable)+(Variable)

“Move the files contains ‘foo’ in the name into the new directory”:

(Predicate)+(Variable)+(Predicate)+(Regular)+(Redundant)+(Variable)

To understand sentences constructed by tokens, we design a couple of rules which are represented

in the form of regular expression combinations. We will explain the rationale of choosing regular

expression to express rules in the Keywords vs. Regular Expression Section. After one sentence is

accepted by our system, the corresponding commands in Uni-Shell syntax are synthesized. We detail

the design of this intermediate language in the Uni-Shell Section. To improve the accuracy of the

transcription, rules are designed separately for each class of command. A class is defined as those

descriptions that share the same predicates or control flows. Thus, descriptions in one class certainly

have the same operator or control flow.

Table 2 shows the relationship between some function words and the Uni-Shell commands. In

order to make the system more robust, that is, to enable the system to accept natural language as

flexibly as possible, we collect a group of natural language commands for each Operator. For example,

to represent the idea of “Remove”, users can choose words like “remove”, “delete”, “take away” or

“move away”. These words or phrases are considered to be synonymous in natural language, thus

carrying the same semantic meaning. Different verbs in natural language are used in these sentences

but the sentence structure is the same or very similar. Under this circumstance, we adopt transform

Table 2. Functions words and Uni-Shell commands

Function Words Uni-Shell Commands

Change directory Direct to [path]

Rename Rename [File/Directory] to [name]

Remove Remove [File/Directory]

Create Create [Directory]

Change mode +/-[File/Directory] [read/write/execute]

Repeat For [Var] in [Range] Do [CMD]

While While [COND] Do [CMD]

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

7

T which is borrowed from the ELIZA system to categorize all predicates or parameters with the

same meaning, into a dedicated term. We base our system on the 1987 Penguin edition of Roget’s

Thesaurus of English Words and Phrases (Roget, 1982) for the synonyms to maintain a dictionary

of words that can be transformed to common terms.

In the last step, the commands in Uni-Shell syntax are ported to scripts in any of the assigned

target languages. Adapted to the shell or batch files used in the current system, shell scripts or Windows

batch files are generated from the Uni-Shell commands. Table 3 shows the Uni-Shell commands and

the corresponding Bash, Csh, and MS/DOS commands. To show the versatility of Uni-Shell, we pick

up the commands, the syntaxes of which are different among the three. Before execution, to ensure

the accuracy of these shell commands, we also designed a static type checker to verify the validity

of each parameter that was synthesized from the natural language descriptions. The type checker

automatically casts the parameters according to pre-defined types, e.g., the parameter represents an

existing file pattern should match an existing file name in the working path. Detailed specifications

about this checker are introduced in the Static Type Checker Section.

Uni-Shell
“Uni-Shell” is a context-free language defined by a new shell syntax which has more natural features

than system-specific shells, and such features make each command more readable and easier to learn.

Take the command “copy” in MS/DOS or the “cp” in UNIX shell as an example. To illustrate this

command in “Uni-Shell ”, we adopt the syntax “copy [file/directory] from [directory] to [directory]

” in Uni-Shell. Besides the increased ease in reading it, “Uni-Shell” is an abstracted universal shell

that can be ported to any other shell programming languages, beyond the three presented in this

Table 3. Uni-Shell and the corresponding bash, csh, and batch commands

Uni-Shell Bash Csh Batch

Rename [File/Directory] to

[name]
mv [s] [d] RENAME [s] [d]

Remove [File/Directory] rm [option] [File/Dir] DEL/DELTREE [File/Dir]

Match [r.e.] [FILE] grep [pattern] [FILE] FIND [pattern] [FILE]

+/-[File/Directory] [r/w/e]
chmod [option][+/-][x/r/w]

[File]

ATTRIB [+/-][r/a/s/h]

[File]

if COND1; then if COND1; then
if COND1 CMD1 else

CMD2

CMD1 CMD1

If [COND1] Then [CMD1] Else

[CMD2]
else else

CMD2 CMD2

fi end if

for [VAR] if LIST; do
for [VAR] if LIST;

do for

for [variable] in [LIST] do

CMD

For [Var] in [Range] Do [CMD] CMD CMD

done end

while COND; do while(COND) :loop

While [COND] Do [CMD] CMD CMD CMD

done end if COND goto loop

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

8

paper. Despite the increased learnability of “Uni-Shell”, it is not as redundant as the natural language

descriptions for the same tasks. In addition to conducting the natural language conversations with the

system, users can also write platform-independent scripts using the new “Uni-Shell”.

Keywords vs. Regular Expression
We have designed a set of rules constructed by regular expressions to map descriptions in natural

language to Uni-Shell Commands. We collect a group of natural language synonyms for each Operator.

To match the descriptions in natural language, we adopted regular expressions instead of keywords.

ELIZA is a prototype chatbot that plays the role as a therapist (Weizenbaum, 1966). To understand the

sentences in natural language, that is English, after the word decomposition, ELIZA uses a keyword

mechanism. This keyword mechanism is very intuitive and can filter out target sentences and then

respond with the corresponding answers. However, the rules based on keywords are not as efficient

as the rules constructed with regular expressions. Users misspell terms frequently, for example the

misuse of tense is quite common. To match the multiple descriptions from users, the number of rules

increases linearly since there is at least a verb in each sentence. With the increasing number of rules,

the difficulty in both testing and adding more rules arise. But number can be dramatically reduced

when we adopt regular expressions to construct the rules.

Static Type Checker
In our pilot study, we noticed that some descriptions are successfully compiled by Natural Shell.

However, the synthesized target commands are still problematic. Observing the data, we found

that two major reasons causing errors are parameter formats and rule conflicts. Because there are

no limitations upon input descriptions, the parameter formats are scattered from case to case. For

example, when the user tries to mention a file name, some descriptions with special identifiers like

“(foo.txt)” and “<foo.txt>” will be adopted. For most cases, these special identifiers are successfully

caught by the regular expressions, yet some other cases still exist. The other problem is that some

rules conflict. Since the order of rules is fixed, a sentence will be decoupled with the first rule that

can be applied to it. This mechanism caused some error cases, such as the rules for “whereis” and

“find”. The rules for these two operators are quite similar and the only difference is the object to be

found. While “whereis” is used for searching files related to an executable utility, “find” is used for

searching files in general, but within a targeted directory structure.

To improve the performance of Natural Shell, we implemented a basic static type checker for the

synthesized commands. The type checker is deployed with the syntax directed translation scheme, since

we can get the parsed syntax tree of synthesized command from the SiE module. In this type system,

we have defined 8 types and to make it scalable, the implementation is separated from the SiE script.

Similar to classic type checkers, we have implemented our checking rules as shown in Table 4 and

casting rules as shown in Table 5 which helps us to resolve the errors resulted by scattered user format.

Type checker will first generate the typed Abstract Syntax Tree (AST) from synthesized

commands and it then helps us to infer the type of a given parameter. The proposition Γ ⊢ v ∶ τ is

a typing judgment stating that the term (program component) v has type τ under the type checking

environment Γ, which is a mapping from variables to their types. Each type checking rule has a set of

premises above the bar and a conclusion under the bar. The type checker will check the correctness of

a synthesized shell program starting with the rule (T-PROG) with an empty environment. The type

checker will progress unless all competing premises hold, in which case some other rules will be

employed to verify the correctness of each premise. The system will directly cast the parameter to its

correct type according to the type casting rules in Table 5. For example, if the command “match data

<foo.txt>” is generated from SiE script, we first check the rule (T-PROG) and it should hold if “match

data <foo.txt>” is typed Cmd. With the rule (T-MATCH), we can verify the type of this commands

when the two parameters are of the correct type, such that (data: String) (<foo.txt>: File). With the

casting methods as shown in Table 5 for String and File, the command will be formatted as “match

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

9

‘data’ foo.txt”. On the other hand, with this mechanism, Natural Shell can solve conflict rules based

on given parameters and their corresponding types. For example, from the user’s description: “Find

where is foo.txt”, two commands can be generated by Natural Shell: “find foo.txt” and “whereis foo.

txt”. However, since “foo.txt” is not valid executable, the synthesized result “whereis foo.txt” will

be ruled out by the type checker.

Recommendation vs. Manual
When a programmer fails to compose a shell command in the correct syntax, the system terminal

will always return the usage which is normally in an abbreviated format. For example, if one

mistakenly typed in a “ping” command in terminal, what is expected is the usage information

from manual as follows:

ping [−A aCDdfnoQqRrv][−b boundif][−c count][−G sweepmaxsize][−g sweepminsize]

[−h sweepincrsize][−i wait][−l preload][−M mask|time][−m ttl][−P policy]

[−p pattern][−S src_addr][−s packetsize][−t timeout][−W waittime][−z tos] host

ping[−A aDdfLnoQqRrv][−b boundif][−c count][−I iface][−i wait][−l preload]

[−M mask|time][−m ttl][−P policy]

[−p pattern][−S src_addr][−s packetsize][−T ttl][−t timeout][−W waittime][−z tos] mcast−group

Table 4. Type checking rules for some shell commands

Table 5. Type casting rules

Type Casting Rules

String Cast from any format to a string with double quotes.

Integer Cast from any format to an integer number.

Executable Check whether it is a piece of executable.

Mode Check whether it is in {read, write, execute}.

File Auto-complete the name referred to by existing files.

Directory Auto-complete the name referred to by existing folders.

GZfile Check if end with .gz and auto-complete the name referred to by existing files.

TARfile Check if end with .tar and auto-complete the name referred to by existing files.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

10

In this abbreviated format, all possible options for this command are provided for reference.

However, there is no ranking in the order of these options, in which case, before the user tries to get

a correct syntax, they have to figure out which option they want. In our design, to reduce the user’s

effort in such command option selection, Natural Shell recommends template commands based on your

semantics, if it does not find a rule that can process your natural language description. For example, if

a user wants to use the ping command and says “ping 5 times” to Natural Shell, since there is no such

rule in our system that can handle this description, it will match with the most similar rules and return

the corresponding template commands to the user. As shown in Figure 3, two command templates

are provided: “ping [host] [how long] timeout” and “ping [host] [how many] packets”. Then, if the

user realizes he wants to play the latter one and he types a command in the correct syntax to Natural

Shell, he will then get the expected result from the Natural Shell terminal.

Embedded Terminal
Since our system provides an interface for users to interact with system kernel functions using natural

language descriptions, there is also an embedded terminal for the results returned. This is similar to

traditional command line terminals in Unix/Linux and Windows systems. The embedded terminal

inherits the interactivity of the underlying original terminal, which returns the results immediately

after the execution. However, in addition to the returns from system calls, the embedded terminal

returns natural language feedback to users, as a confirmation of their original command description.

For novice users, this confirmation plays a critical role in the learning process in two ways: it restates

the users descriptions in a comprehensible but more formal way to validate the semantics of the

desired commands; and secondly, it will assist with error instructions when the descriptions are

ambiguous or unclear.

OVERCOME ENd-USER FRUSTRATIONS

Some difficulties in composing scripts encountered by users are quite common. By observing the

questions from a UNIX shell scripting online forum (UNIX, 2015) we conclude that most user-posted

questions on syntax can be categorized into two types: overwhelming options, and nuances between

Shells. In this section, we will elaborate on how our solution overcomes these user frustrations.

Figure 3. Recommend templates for use of the “ping” command

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

11

Option
In the existing scripting languages including Bash, Csh and MS/DOS, options are essential parts of

each command to differentiate the various functionalities. But to users who are not familiar with the

command syntax, they quickly become overwhelming. Although the options are usually abbreviations

for some English words, in many cases, people often forget them even after recurrent practice, since

the number of options is large. In addition, an option with the same name can have the different

meanings across different commands. For example, in bash, “-f” means suppress most error messages

in “rm” and “chmod”. However, “-f” indicates that the pattern is from a file when used with “grep”.

When a user starts to learn a shell from scratch, she often finds these inconsistent uses of option

names, confusing and misleading.

However, with Natural Shell, such problems with “options” are avoided. Assisted by our tool,

people may use a high-level abstracted sentence to express a command. The system then automatically

generates the corresponding option, based on the semantic meaning of the sentence. For example,

by saying “delete the files in this folder without confirmation”, our tool will recognize the keyword

“without confirmation” and translate it into “-f”. Compared to the short and cryptic command

representations adopted in the classic shell designs, natural language input makes our interface

friendlier, and enables users to write scripts intuitively, without the need to check the manual for

the options.

Nuance Between Shells
We define Uni-Shell as an intermediate language that can be ported to the other shell commands,

overcoming the incompatible syntaxes across competing shell systems. When a user is trying to write

a script, she might check some commands via online manuals. It is interesting that the syntaxes on

different platforms are similar but not exactly the same. She will be frustrated to find a newly-learned

command is illegal when she switches to another platform. The human mind processes similar words

or homophones into the one category and that contributes to why people often misspell a word, by

choosing the wrong one (e.g. ‘their’ instead of ‘there’). The same principle can also be applied to

command syntaxes. Nuances between commands can lead to similar such confusion.

Our Uni-Shell performs well with wide-compatibility and better readability than native shells

on multiple operating systems. The feature of the natural language descriptions that it understands

can be both UNIX-like and Windows-like. For example, the slash is used differently between shell

programming languages like Bash or Csh and the MS/DOS prompt. Furthermore, the file system in

Windows is case-insensitive, but the opposite is true for UNIX/Linux. However, our Uni-Shell can

tolerate both the Forward Slash and Back Slash and the insertion of blanks is handled as well. Also,

it can recognize filenames in different case mode according to the current system. Another advantage

of Uni-Shell is that, it makes the intention of the command more clear to the user. Take the “Copy”

command as an example, Uni-Shell defines this command as “Copy from [source] to [destination]”.

This enhanced command is more meaningful to newbies since they often forget the order of [source]

and [destination] in the native shell or the Windows prompt.

EVALUATION

We conducted two formative studies: a system evaluation to test the effectiveness of Natural Shell. We

are interested in how the proposed characteristics of Natural Shell: 1) natural syntax, 2) interactivity,

3) cross-platform, will influence students’ interest in learning system scripting and what is students’

selection for learning and using shell scripting compared with original shell syntaxes.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

12

System Effectiveness
In this section, we evaluate the effectiveness of Natural Shell in synthesizing the right commands

in target shell syntaxes. We implemented Natural Shell in Python with a simplified interface built

upon Tkinter (the defacto standard GUI for the Python language). To conduct the evaluation, we

compiled a benchmark from popular commands gathered from online forums (Ramesh, 2010), and

asked users to describe these commands in their own language. . To justify the benchmark tasks, we

also recruited an outside expert who has 5+ years of scripting experience to select and generate our

own benchmark with 50 tasks from these frequent commands. We recruited 4 users with different

shell programming background ranging from novices who have no shell programming experience,

to experts who can quickly compose shell scripts in both Bash and Csh. Overall, we collected 200

natural language descriptions for the 50 tasks (4 phrases for each) and we fed Natural Shell these

descriptions with and without the type checker.

Of the 200 natural language phrases, 142 were correctly synthesized into underlying shell syntax

by Natural Shell. That is, Natural Shell was able to synthesize 71% of real-life shell commands that

it was designed for. In addition, we noticed that, among the 58 phrases that failed, 21 were parsed

with the rules in Natural Shell but could not be executed successfully due to format errors or rule

conflicts. After that, we turned on the incorporated type checker and run the test again. All 21 phrases

were then correctly interpreted and executed and we concluded that the adoption of the type checker

increases the overall accuracy of Natural Shell to 82%. The benchmark covers most of the popular

commands used, which can be seen in Table 6. We denote the number passed with the type checker

on, as Pass(T) and the ones without as Pass(NT).

Lab Study
In this section, we will describe the performance of our tool with a usability lab study. We recruited

10 college-aged teens (5 males and 5 females) for the one-on-one think-aloud lab study. Participants

were brought into a lab individually with a researcher, and given a set of use-case scenarios that lead

to tasks and usage of Natural Shell. Before the study, we let each of the participants briefly introduce

themselves with some demographic information and we also let them evaluating themselves on

programming and shell scripting experience from 1 (non-experienced) to 7 (familiar). During the

study, we demonstrate the functionality of Natural Shell to synthesize the commands in the three

target syntaxes as designed and then let them describe how they understand the tool. They were

encouraged to play with Natural Shell from basic one sentence command to scripts within 10 lines

as shown in Table 7. The average session time for the 10 participants is 23 minutes. We recorded

their descriptions on their understanding of Natural Shell in the think-aloud session and the times

they referred to the manual book and raised questions during the process as well.

Following the think-aloud lab study, we conducted an interview with each participant in depth

about the research question we are interested in that how do students select their languages when

given the opportunity to select the language they use to solve their scripting tasks. Students were given

the opportunity to select the language they used to solve their problems, which could be completed

with or without Natural Shell.

Struggles with Scripting
During the think-aloud session, participants struggles with composing a script on their own. All the

10 participants successfully executed the scripts as they want. However, most of the commands (231

of 301) they tried during their 23 minutes are basic shell commands such as copy, paste, and file move

and only a few control flows are successfully constructed. Novice students (7 of 10), the intersection

of who have no background in shell scripting and who rated themselves below 3 generated more

questions and they referred more times to the manual book than the experienced students (3 of 10).

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

13

continued on following page

Table 6. Characteristics of the benchmark set extracted from online forums

Benchmark Command Descriptions Sum Pass(NT) Pass(T)

1 Extract from an existing tar archive. 4 4 4

2 Search for a given string in a file. 4 4 4

3 Search for a given string in all files recursively. 4 1 3

4 Find files using file-name. 4 2 4

5 Converts the DOS file format to Unix file format. 4 2 2

6 Add line number for all non-empty-lines in a file. 4 4 4

7 Remove duplicate lines. 4 2 4

8 Print only specific field from a file. 4 1 3

9 Go to the 143rd line of file. 4 4 4

10 Open the file in read only mode. 4 2 4

11 Find the differences between files. 4 2 4

12 Sort the files in ascending order. 4 4 4

13 Copy all images to external hard-drive. 4 3 3

14 Download all the URLs mentioned in the url-list.txt file. 4 3 3

15 Display file size in human readable format. 4 3 3

16 Print working directory. 4 3 3

17 To create a *.gz compressed file. 4 2 4

18 To uncompress a *.gz file. 4 0 4

19 Shutdown the system and turn the power off immediately. 4 4 4

20 Shutdown the system after 10 minutes. 4 4 4

21 Reboot the system using shutdown command. 4 4 4

22 Force the file system check during reboot. 4 3 3

23 View crontab entry for a specific user. 4 2 4

24 Synchronize the hardware clock with the system date. 4 4 4

25 Restart a service. 4 4 4

26 To view current running processes. 4 3 3

27 To displays only the processes that belong to a particular user. 4 3 3

28 Displays the file system disk space usage. 4 2 2

29 Kill command to terminate a process. 4 3 3

30 Get confirmation before removing the file. 4 2 3

31 Recursively removes all files directories under a directory. 4 4 4

32 Copy file1 to file2 preserving mode, ownership and timestamp. 4 3 3

33 Copy file1 to file2. Confirmation before overwrites. 4 2 2

34 Rename file1 to file2. 4 3 3

35 Prints the content of file1 followed by file2 to stdout. 4 3 3

36 Create a directory and mount it. 4 1 1

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

14

Table 7. Interaction of the use-case scenario

User Transcript Response from Natural Shell Batch File

If there is no specified file name, end

the script

> Okay, Let’s end the scripts when no argument

specified for the file names.

IF “%1” == “” GOTO

END

Create a directory called SAVE > Okay, Let’s create a directory called SAVE. MD SAVE

Label the following as MOVE-FILE > Okay, Let’s label this part as MOVE-FILES :MOVE-FILES

Copy the specified files to the SAVE

folder

> Okay, Let’s copy the files specified to the

folder called SAVE.
XCOPY %1 SAVE

Shift to the next specified file > Okay, Let’s consider the next file. SHIFT

If no files specified, then go to FILE-

DELETE

> Okay, Let’s do FILE-DELETE of no files

specified

IF “%1”==“” GOTO

FILE-DELETE

Else, go back to MOVE-FILE > Okay, else we go back to the MOVE-FILES. GOTO MOVE-FILES

End this part > Okay, Let’s end MOVE-FILES.

Label the following as FILE-DELETE > Okay, Let’s label this part as FILE-DELETE. :FILE-DELETE

Delete all the files in current folder > Okay, Let’s delete all files in current folder. DEL

End the FILE-DELETE > Okay, Let’s end FILE-DELETE.

Please move all the files in SAVE to

current folder

> Okay, Let’s move all files in folder SAVE to

current folder.
MOVE SAVE

Delete the directory called SAVE > Okay, Let’s delete the folder called SAVE. RD SAVE

Label here as the END > Okay, Let’s label here for the ending. :END

Benchmark Command Descriptions Sum Pass(NT) Pass(T)

37 Give full access to user and group on a specific file. 4 2 2

38 Revoke all access for the group on a specific file. 4 2 2

39 Apply file permissions recursively to all files in sub-directories. 4 2 2

40 Change your password. 4 4 4

41 Remove password for a specific user. 4 4 4

42 Create a directory called temp. 4 2 2

43 View all the interfaces along with status. 4 2 2

44 Find out where a specific Unix command exists. 4 4 4

45 Search for the location of a specific file. 4 3 3

46 Print the last 10 lines of a file by default. 4 1 1

47 View huge log files. 4 4 4

48 Ping a remote host by sending only 5 packets. 4 4 4

49 View the system date. 4 4 4

50 Set the system date. 4 4 4

Total 200 142 163

Table 6. Continued

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

15

From the think-aloud transcripts, we got some interesting findings. Since Natural Shell adopts

natural language commands, every student started to try the tool within 1 minute after the introduction.

They described the tool easy to start with and to understand what is shell scripting was easier in this

way. They find the recommendation function of Natural Shell very useful and tried a lot incomplete

commands as they wanted. The recommended feedbacks were easy to understand as well. However,

according to most novice students (4 of 7) who had no programming background before the study, they

can compose a script with a for-loop and they can delete a folder with –r but still did not understand

the relationship between iteration and recursion. As an explanation, this is a trade-off between natural

syntax and low-level semantics. To achieve the nature in syntax, many of the implementation details

are hidden.

Selection for Natural Shell
In the interview session, most students (9 of 10) expressed their willing to be assisted with Natural

Shell than scripting using the original system syntax. They voted for Natural Shell for three reasons,

simplicity, easy to remember and cross-platform. The only one student who did not vote for Natural

Shell is an experienced programmer and he is very familiar with Bash scripting (5 years’ experience).

As he commented, the tool will make it more complicated for him to compose a script compared

with his original habits.

(Simplicity) One of the students commented on Natural Shell as “Toy Scripting”. She just started

to learn Java has no experience with shell scripting. She said, “I will never use shell scripting without

Natural Shell because the original syntax is too complex”. From her talk, we can conclude that the

simplicity of Natural Shell commands will be the most reason that she will try scripting or she would

prefer conducting the system tasks without a script. Her voice represents most of the non-experienced

participants in our study and we believe Natural Shell can encourage students to try system scripting

which will enhance their daily working efficiency.

(Easy to remember) All the 9 students who voted for Natural Shell expressed their feeling about

the syntax of Natural Shell. On student commented that “It is great to know that there is no syntax

for a programming language. According to my previous experience, only how to print ‘hello world’

can be remembered during the first round going through the manual book of any programming

languages.” As described by these students, Natural Shell will assist their experience with scripting

in the first a few weeks as an introductory. It will be easier for novices to start with compared with

any syntax provided by the system.

(Cross-platform) Only 2 students mentioned the functionality of Natural Shell as we introduced

which is cross-platform while the other students just asked questions like, “I am using OSX. Can I

still use this tool on my platform”? One of the two students who mentioned this advantage of Natural

Shell also expressed his opinions that this kind of natural syntax will be more useful if ported to any

other programming languages.

CONCLUSION

Scripting is widely-used for automating the execution of tasks. Despite its popularity, it remains

difficult to use for both beginners and experts. Beginners are mostly overwhelmed by the numerous

cryptic commands, while experts struggle with incompatible syntaxes across different systems,

including complicated reuse of the option names for different purposes in those different Shells.

Our solution to this problem is a system we built called Natural Shell. It transforms natural language

descriptions into shell scripts. In the process, as a first step within Natural Shell, it translates the natural

language input from a user, to an intermediate level script we call Uni-Shell, which is independent of

the various underlying native scripts. In the last step, Natural Shell, transforms the Uni-Shell script

into the appropriate underlying native script, executes it, then returns the results to the user.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

16

We implemented a sampling of the most commonly used commands from real world shells

into our system, and conducted qualitative user studies on several users with different scripting

skill levels. We tested our system with 200 samples of natural language phrases that call upon 50

popular underlying shell commands, and Natural Shell successfully synthesized 82% of them. The

preliminary results are promising and encouraging. We also conducted a small-scaled lab study with

a think-aloud session and an interview session. Participants’ feedbacks were positive on Natural Shell

and most of them considered our tool a better selection comparing with original shell syntaxes. As

a first step in evaluating Natural, the shell command sampling pool was significant, but the user

study was quite limited. The user-study was qualitative in nature, with a view to getting preliminary

end-user feedback on the prototype system. In the future, we plan to continue to develop the system

to synthesize more commands, and run a larger scale quantitative user study to collect more user

feedback, and a statistically significant quantity of end-user data.

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

17

REFERENCES

Alshaigy, B. (2013). Development of an interactive learning tool to teach python programming language.
Proceedings of the 18th ACM conference on innovation and technology in computer science education (pp.
344–344). doi:10.1145/2462476.2465601

Bagert, D. J. (1998). Using Ada to teach programming language design concepts. ACM SIGAda Ada Letters,
18(1), 54–64. doi:10.1145/280495.280499

Ballard, B. W., & Biermann, A. W. (1979). Programming in natural language: NLC as a prototype. In Proceedings
of the 1979 annual conference (pp. 228–237). New York, NY, USA: ACM. doi:10.1145/800177.810072

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using scalable game design to teach computer
science from middle school to graduate school. Proceedings of the fifteenth annual conference on innovation
and technology in computer science education (pp. 224–228). doi:10.1145/1822090.1822154

Brill, E. (1992). A simple rule-based part of speech tagger. Proceedings of the workshop on speech and natural
language (pp. 112–116). doi:10.3115/1075527.1075553

De Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought.
Instructional Science, 38(2), 105–134. doi:10.1007/s11251-009-9110-0

Dijkstra, E. W. (1979). On the foolishness of “natural language programming”. In Program construction (pp.
51–53). Springer. doi:10.1007/BFb0014656

Gallant, R. J., & Mahmoud, Q. H. (2008). Using Greenfoot and a moon scenario to teach java programming in
cs1. Proceedings of the 46th annual southeast regional conference (pp. 118–121). doi:10.1145/1593105.1593135

Guo, P. J. (2013). Online python tutor: Embeddable web-based program visualization for cs education. Proceeding of
the 44th ACM technical symposium on computer science education (pp. 579–584). doi:10.1145/2445196.2445368

Hazzan, O., Lapidot, T., & Ragnis, N. (2011). Guide to teaching computer science: An activity-based approach
(2nd ed.). London: Springer. doi:10.1007/978-0-85729-443-2

Ismal, M. N., Ngah, N. A., & Umar, I. N. (2010). Instructional strategy in the teaching of computer programming:
a need assessment analyses. The Turkish Online Journal of Educational Technology, 9(2), 125-131.

Lee, M. J. (2013). How can a social debugging game effectively teach computer programming concepts?
Proceedings of the ninth annual international ACM conference on international computing education research
(pp. 181–182). doi:10.1145/2493394.2493424

Lee, W. I., & Lee, G. (1995). From natural language to shell script: A case-based reasoning system for automatic
unix programming. Expert Systems with Applications, 9(1), 71–79. doi:10.1016/0957-4174(94)00050-6

Liu, X., & Wu, D. (2014). PiE: Programming in ELIZA. Proceedings of the 29th IEEE/ACM international
conference on automated software engineering (ASE).

Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1–7.
doi:10.1080/08923648909526659

Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format
and generating self-explanations. Cognition and Instruction, 16(2), 173–199. doi:10.1207/s1532690xci1602_2

Nath, A., & Agarwal, S. (2014). Massive Open Online Courses (MOOCs)–A comprehensive study and its
application to green computing in higher education institution. International Journal (Toronto, Ont.), 2(2), 7–14.

Orsega, M. C., Vander Zanden, B. T., & Skinner, C. H. (2012). Experiments with algorithm visualization tool
development. Proceedings of the 43rd ACM technical symposium on computer science education (pp. 559–564).

Ramesh, N. (2010). 50 Most Frequently Used UNIX / Linux Commands (With Examples). Retrieved from http://
www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner

Ramirez987. (2015). UNIX shell programming forum. Retrieved from http://www.unix.com/shell-programming-
and-scripting/

International Journal of People-Oriented Programming
Volume 5 • Issue 1 • January-June 2016

18

Rist, R. S. (1991). Knowledge creation and retrieval in program design. Human-Computer Interaction, 6, 1e46.

Robbins, A., & Beebe, N. H. (2005). Classic shell scripting. O’Reilly.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: a review and discussion.
Computer Science Education, 13(2), 137e172

Roblox. (2013). Why is scripting so complicated? Retrieved from http://roblox.wikia.com/wiki/Thread:52908

Roget, P. M. (1982). Roget’s thesaurus. Longman Group Limited.

Sattar, A., & Lorenzen, T. (2009). Teach Alice programming to non-majors. ACM SIGCSE Bulletin.

Siri, L. (2010). Friends don’t let friends program in shell script. Retrieved from https://www.turnkeylinux.org/
blog/friends-dont-let-friends-program-shell-script

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
doi:10.1207/s15516709cog1202_4

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning
algebra. Cognition and Instruction, 2(1), 59–89. doi:10.1207/s1532690xci0201_3

Unity. (2011). Why is scripting so hard? Retrieved from http://answers.unity3d.com/questions/54664/why-is-
scripting-so-hard.html

UNIX. (2015). Unique entries for multiple files. Retrieved from http://www.unix.com/ shell-programming-and-
scripting/260516-unique-entries-multiple-files.html

Weaver, G. A., & Smith, S. W. (2012). Xutools: Unix commands for processing next-generation structured text.
In LISA.

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between
man and machine. Communications of the ACM, 9(1), 36–45. doi:10.1145/365153.365168

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009). Starting with scratch in CS 1. In ACM. SIGCSE
Bulletin, 41(1), 2–3. doi:10.1145/1539024.1508869

