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Multivariate dimension polynomials associated with finitely generated differential and

difference field extensions arise as natural generalizations of the univariate differential and

difference dimension polynomials defined respectively in [1] and [2]. It turns out, however,

that they carry more information about the corresponding extensions than their univariate

counterparts (see [3, Theorem 4.2.17] and [4]). In this presentation we extend the known

results on multivariate dimension polynomials to the case of difference-differential field ex-

tensions with arbitrary partitions of sets of basic operators. We also describe some properties

of multivariate dimension polynomials and their invariants. The following is the outline of

the talk.

Let K be a difference-differential field, CharK = 0, and let ∆ = {δ1, . . . , δm} and

σ = {α1, . . . , αn} be basic sets of derivations and automorphisms of K, respectively. Below

we often use the prefix ∆-σ- instead of “difference-differential”. Suppose that the sets ∆
and σ are represented as unions of disjoint subsets: ∆ = ∪p

i=1∆i and σ = ∪q
j=1σj where

Card∆i = mi (1 ≤ i ≤ p) and Cardσi = ni (1 ≤ i ≤ q). Let Λ denote the free

commutative semigroup of all power products of the form λ = δk1

1 . . . δkm
m αl1

1 . . . αln
n where

kµ ∈ N, lν ∈ Z and for every such λ, let

ord∆i
λ =

∑

µ∈∆i

kµ and ordσj
λ =

∑

ν∈σj

|lν |

(1 ≤ i ≤ p, 1 ≤ j ≤ q). Furthermore, for any (r1, . . . , rp+q) ∈ Np+q , let Λ(r1, . . . , rp+q) =
{λ ∈ Λ | ord∆i

λ ≤ ri for i = 1, . . . , p and ordσj
λ ≤ rp+j for j = 1, . . . , q}. The following

theorem generalizes the main result of [4].

Theorem 1. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension generated by a set η =
{η1, . . . , ηs}. Then there exists a polynomial Φη ∈ Q[t1, . . . , tp+q] (called the ∆-σ-dimension

polynomial of the extension L/K) such that

(i) Φη(r1, . . . , rp+q) = tr. degK K(

s
⋃

j=1

Λ(r1, . . . , rp+q)ηj)

for all sufficiently large (r1, . . . , rp+q) ∈ Np+q (it means that there exist s1, . . . , sp+q ∈ N

such that the equality holds for all (r1, . . . , rp+q) ∈ Np+q with r1 ≥ s1, . . . , rp+q ≥ sp+q);

(ii) degti Φη ≤ mi (1 ≤ i ≤ p), degtp+j
Φη ≤ nj (1 ≤ j ≤ q) and Φη(t1, . . . , tp+q)

can be represented as

Φη =

m1
∑

i1=0

. . .

mp
∑

ip=0

n1
∑

ip+1=0

. . .

nq
∑

ip+q=0

ai1...ip+q

(

t1 + i1
i1

)

. . .

(

tp+q + ip+q

ip+q

)

where ai1...ip+q
∈ Z and 2n | am1...mpn1...nq

.



We sketch the proof of this theorem and present a method of computation of the polyno-

mial Φη based on a generalization of the Ritt-Kolchin method of characteristic sets. Further-

more, we determine invariants of a ∆-σ-dimension polynomial, i. e., numerical characteris-

tics of the ∆-σ-field extension that are carried by such a polynomial and that do not depend

on the set of ∆-σ-generators this ∆-σ-dimension polynomial is associated with. We also give

conditions under which the ∆-σ-dimension polynomial is of the simplest possible form.
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