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Many mechanical systems are nonlinear and often high-dimensional. Constructing accu-
rate models for continuous-time nonlinear systems calls for effectively identifying their
parameters, whereas measurement noise and sensitivity to initial conditions make the
identification challenging. This paper proposes a new parameter identification method
for ordinary differential equations based on the idea of B-Spline Galerkin finite element.
In this approach, the system’s solution is globally constructed by a set of B-Splines. With
Galerkin weak formulation, instead of taking analytical derivatives on basis functions,
the differential terms are eliminated through integration by parts so that the measurement
noise will not be amplified. Then least square algorithms can be adopted for solving the
optimization problem to estimate the parameters. By solving two intractable testbed
problems, the coupled Chua’s circuits and the Tank reactor equations, we show that the
new approach is effective and efficient in dealing with systems with high-
dimensionality, complex nonlinearity, discontinuous input and output, and noisy data
without specific pre-processing. In addition, this method is employed to identify the geo-
metrical and mechanical parameters of a Miura-origami structure under base excitation,
which possesses complex global nonlinearity, exhibits chaotic responses, and suffers from
significant measurement noise. The proposed method gains success in dealing with this
system; based on the identified parameters, the corresponding constituent force-
displacement relation and the simulation results agree well with the experiments.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Ordinary differential equations (ODEs) arise in many contexts of natural and social science for describing the temporal
evolution of anything from a rocket launching to the spread of a disease, from electrical circuits to economic development
[1]. Under some circumstances, the models are based on well-established physical principles, the parameters of ODEs can be
determined from first principles or direct measurement. On the other hand, many ODEs are mathematical simplifications of
actual systems or even data-driven models [2], their parameters cannot be determined through either of these approaches,
which as a result, calls for parameter identification from experimentally measured data.
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The nonlinear least square (NLS) method is a straightforward approach for parameter estimation in ODEs [3,4]. Usually,
closed-form solutions do not exist for a generic nonlinear ODE model. Hence, numerical integration scheme such as the
Runge-Kutta algorithm is often used to obtain approximate solutions of the ODEs for a given set of parameters and initial
conditions; then an iterative procedure is applied to find the optimal estimation of the unknown parameters that minimize
the residual sum of squares of the differences between the experimental data and the numerical solutions [5]. Note that the
system’s initial conditions are always difficult to know accurately or are with noise. To solve this issue, one solution is to
treat the initial conditions as an additional set of unknown parameters in the minimization scheme [6,7]. However, the
NLS method calls for numerical integration during each iteration, which therefore induces problems including high compu-
tational costs and slow convergence, especially for those systems in high dimension and with complex nonlinearities.

An alternative to iterative numerical integration is to build a regression model using measured discrete-time data and
their higher-order derivatives in a ‘‘direct approach” [8–10]. Here the derivatives can be approximated through various
discrete-time algebraic operators, such as bilinear transform, forward/backward/central difference, or generalized finite dif-
ference operators [9–11]. Then the least squares method would be desirable to apply because of its good numerical proper-
ties and low computational burden, especially for fast or non-uniform sampling. Particularly, recent research has
demonstrated the advantages of difference operators (i.e., the delta ‘d’ operator) because the identified model based on
discrete-time representation has structural similarity to the continuous-time ODE-model, and the identified parameters
approach to their continuous-time counterparts as the sampling interval tends to zero [10,12,13]. These estimation methods
have been applied in both linear and nonlinear continuous-time system identification [10,12–15]. Note that in order to
derive high-order derivative, repeated numerical differences on data are unavoidable in these approaches, which may cause
noise amplification and a biased least squares estimate. To overcome this deficiency, various denoising algorithms [16–18]
and bias-removal methods [12,14] have been proposed. However, for those systems that are extremely sensitive to param-
eters, such as chaotic systems [10,19], the denoising and bias-removal approaches would not be effective. To identify and
correct the errors and biases, the system’s underlying dynamic behavior needs to be exploited, which on the other hand,
is always cumbersome and case-dependent.

Another way to avoid iterative numerical integration is to represent the solution globally via a set of convenient basis
functions. Then the numerical difference used in the abovementioned discretization-based methods can be replaced by ana-
lytical derivatives of the basis functions. The choice of basis is crucially important for taking derivatives, because a very accu-
rate representation of the data may exhibit high-frequency small-amplitude oscillations that are catastrophic for derivative
estimation. Generally, Fourier basis [20,21] is always adopted for periodic data, and B-spline basis [22,23] or wavelets basis
[24,25] for open-ended data. In addition to the type of basis, deciding the number of bases is also a dilemma: the more basis
functions, the better fit to the data, but with the risk of simultaneously fitting the undesired noise and amplifying the noise
when taking derivatives; while with fewer basis functions, important smooth characteristics that we are trying to achieve
may be missed [26]. Certain techniques have been proposed to tackle this dilemma, such as stepwise variable selection
and variable-pruning methods [27] for adding or dropping basis functions, iteratively correcting and fitting the measure-
ment [22], and roughness penalty for avoiding over-fitting [26]. For example, with the roughness penalty approach, although
the number of basis functions is equal or greater than that of the knots, penalties will be applied to the roughness so that the
fitted curve would emphasize more on the smooth characteristics of the data. However, a new problem arises that howmuch
degree of roughness penalty should be applied; determining of which can be achieved through, e.g., the generalized cross-
validation method [28], but is always computationally intensive.

Note that none of the parameter identification methods would be effective in all scenarios. In practice, some essential
issues need to be taken into account when proposing a new method. First, the method has to be computationally efficient
that each trial can be completed in a short time. Second, the method should be robust under noise, since a noisy measure-
ment is always unavoidable. Third, the method is expected to be able to deal with complex nonlinearity and high dimension-
ality. In this paper, inspired by the B-Spline Galerkin finite element method [29,30], a new identification approach is
developed. More specifically, in this method, although still relying on basis functions (B-Spline) to globally represent the
solution, derivatives on basis functions are replaced by analytical integration-by-parts based on the Galerkin weak formu-
lation. Hence, this method not only removes the need for time-consuming numerical integrations but also avoids numerical
differences on discrete data or derivatives on basis functions that may induce undesired noise amplification. Note that sim-
ilar ideas based on conventional Galerkin finite element method [31] have been proposed in [32], where piecewise-liner
basis functions were adopted for constructing the solutions of linear systems (truss structures). In this research, via solving
two numerical testbed problems and dealing with a practical Miura-origami (Miura-ori) dynamic problem, we show that the
new method extends its applicability to high-dimensional systems with complex nonlinearity, and is both efficient and
robust. Therefore, the method developed in this paper significantly advances the state of the art in terms of broad applica-
bility, computationally efficiency, and robustness.

The rest of the paper is organized as follows. Section 2 introduces the system we are to identify and three problems that
will be tackled by the new method, including two numerical testbed problems and a Miura-ori structure with strong non-
linearity. This is followed by detailed descriptions of the proposed method and the optimization procedures for linear and
nonlinear systems in Section 3. The effectiveness of the method is verified in Section 4 on the two testbed problems. In
Section 5, the method is applied to identify the geometric and physical parameters of a Miura-ori structure under dynamic
excitations. Finally, summary and heuristic discussions are presented in Section 6.
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2. Problem statement

2.1. Description of the system

The ordinary differential equations (ODEs), after certain normalizations, can be represented as
Fig. 1.
of the C
_xðtÞ ¼ fðx;u; tjhÞ; ð1Þ

where x is an s-dimensional vector of variables evolving with time; f represents a vector field; u is an r-dimensional vector of
the input or control; and h ¼ ½h1; h2; . . . ; hp�T denotes a p-dimensional vector of unknown constant parameters that need to be
identified, with true values htrue; t 2 ½a; b� ð0 6 a < b < 1Þ denotes the time. Assuming that the input and output variables
can be measured at time instants ti, i ¼ 1; . . . ;N; the corresponding measurements are ûðtiÞ and x̂ðtiÞ, which are subject to
measurement errors euðtiÞ ¼ uðtiÞ � ûðtiÞ and exðtiÞ ¼ xðtiÞ � x̂ðtiÞ, respectively. The goal of parameter identification is to esti-
mate h with these measurements.

2.2. Two numerical testbed problems

Two numerical testbed problems are examined to verify the effectiveness of the proposed identification method. Here we
briefly introduce the two problems, with a major focus on the intractable issues. The first is the coupled Chua’s Circuits [33–
35], which is a complicated high-dimensional dynamical system with rich nonlinear, initial-condition-sensitive, and
parameter-sensitive dynamics (e.g., chaos). The second is the Tank reactor equations [36,37], which describe a common ideal
reactor type in chemical engineering, the continuous flow stirred-tank reactor (CSTR). The input variables of the Tank reactor
equations are step functions, which will induce discontinuities in the output derivatives that would severely complicate the
parameter estimation.

2.2.1. Coupled Chua’s circuits
Fig. 1(a) shows four Chua’s circuits that are mutually coupled via six linear resistors Rc . The coupled Circuits’ dynamics is

described by the following state equations of dimension-12 [33]:
_vC1j ¼ 1
C1j

1
Rj
ðvC2j � vC1jÞ � f ðvC1jÞ þ 1

RC
ð�3vC1j þ

Pi–j
i vC1iÞ

h i
;

_vC2j ¼ 1
C2j

1
Rj
ðvC1j � vC2jÞ þ iLj

h i
;

_iLj ¼ � 1
Lj ½vC2j � R0jiLj�;

8>>>><
>>>>:

ð2Þ
where j ¼ 1;2;3;4; vC1j and vC2j denote the voltages across the capacitors C1j and C2j, respectively; iLj denotes the current
flowing through the inductors Lj. The Chua’s diode NRj (a type of two-terminal, nonlinear active resistor) in each Chua’s cir-
cuit exhibits the following voltage-current relation (Fig. 1(b))
f ðvC1jÞ ¼ GbvC1j þ 1
2
ðGa � GbÞ � ½jvC1j þ 1j � jvC1j � 1j�: ð3Þ
Here except the resistors Rj, the other parameters of the Chua’s circuits are assumed to be identical such that C1j ¼ C1,
C2j ¼ C2, Lj ¼ L, and R0j ¼ R0, and NRj ¼ NR. Hence, totally there are 11 parameters to be identified (Ga, Gb, C1, C2, L, R0, RC ,
R1, R2, R3, R4).
(a) Diagram of the four mutually coupled Chua’s circuits, where each Chua circuit is denoted by shaded rectangle. (b) Voltage-current characteristic
hua’s diode NRj .
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It has been numerically and experimentally evident that under critical parameters the mutually coupled Chua’s Circuits
would exhibit torus-doubling and even chaos phenomena [33], which are very sensitive to initial conditions and parameters.
To identify the coupled circuits’ parameters from noisy measurements, methods based on iterative numerical integration
would be inappropriate because of the heavy computation burden caused by the system’s high dimensionality, a large num-
ber of parameters, and dependence on initial conditions and parameters. The methods based on difference operators or basis
functions would also become challenging because discrete difference on noisy data and derivations on basis functions would
cause unacceptable noise amplification. Data pre-processing would be infeasible when the system is highly nonlinear, and
especially when the responses are chaotic.

2.2.2. Tank reactor equations
The continuous flow stirred tank reactor (CSTR) is an ideal reactor type in chemical engineering that runs at steady state

with continuous flows of reactants and products. Generally, the CSTR consists of an agitated-tank surrounded by a cooling
jacket. The behavior of CSTR can be modeled by the following normalized equations (normalized by setting the volume of the
tank to 1) [36,38,39]
_C ¼ �bCCðT; FinÞC þ FinCin;

_T ¼ �bTTðFco; FinÞT þ bTCðT; FinÞC þ FinTin þ aðFcoÞTco;
ð4Þ
where Fin, Cin and Tin are the flow rate, concentration, and temperature of the reagents, respectively; the reactor produces a
product and leave the tank with concentration C and temperature T . Fco and Tco are the flow rate and temperature of the
coolant in the cooling jacket, respectively. The weight functions bCC , bTC , bTT and a depend on four parameters s;j; a and
b, and can be expressed as:
bCCðT; FinÞ ¼ j expf�104sð1=T � 1=Tref Þg þ Fin;

bTTðFco; FinÞ ¼ aðFcoÞ þ Fin;

bTCðT; FinÞ ¼ 130bCCðT; FinÞ;

aðFcoÞ ¼ aF1:5
co

Fco þ aF0:5
co =2

;

ð5Þ
where Tref is a fixed reference temperature, 350 K in this case. Here s, j, and a are the parameters to be identified; they deter-
mine the reaction kinetics and locate in the region ½0:4;1:8�.

In this system, the state variables are controlled by five input variables Fin, Fco, Cin, Tin, and Tco. To examine its dynamics,
square waves are always assigned to input parameters in virtual experiments. At critical parameters, the step changes of
inputs will induce rapid variations of the outputs, which would generate discontinuities in the corresponding derivatives
of the outputs. Hence, it would be challenging to find approximate basis functions to fit the responses; and traditional iden-
tification methods based on derivative estimations (i.e., numerical differences on discrete data or derivatives on basis func-
tions) may become complicated.

2.3. Miura-ori structure

Origami is the art of paper folding and now refers the transformation of 2D flat sheets into sophisticated 3D shapes with
diverse geometries. Origami-inspired structures and mechanical metamaterials have shown extraordinary properties and
performances originating from the intricate geometries of folding, such as various deformation mechanisms [40], negative
Poisson’s ratio [40–42], self-locking [43,44], bistability and multistability [45–47], and tunable wave propagation [48,49],
etc. These properties strongly depend on the geometric and physical parameters of origami, such as the folding dihedral
angles and the crease rotational stiffness, which, unfortunately, are always difficult to know through simple measurement.
Note that without accurate information on these parameters, getting reliable quantitative descriptions and predictions on
origami structures’ dynamics would be challenging. This issue arouses our interests on adopting dynamic identification
methods to accurately estimate the parameters.

The origami structure to be studied in this paper is a stacked Miura-ori (SMO) structure, shown in Fig. 2(a). It is composed
of two Miura-ori cells with different geometries, i.e., cell length parameters ðax; bxÞ and angle cx, where the subscript x takes
‘A’ or ‘B’ corresponding to cells A and B, respectively. To ensure compatibility between cells A and B when connecting them
together, the geometric parameters have to satisfy the constraints bA ¼ bB ¼ b and cos cB= cos cA ¼ aA=aB. Folding of the SMO
structure can be described through the folding angles hx or the dihedral angles between facets qxiðx ¼ A;B; i ¼ 1;2;3;4Þ. Note
that folding of the SMO structure is one degree-of-freedom (say, with independent folding angle hA), then hB and all the other
dihedral angles (qxiðx ¼ A;B; i ¼ 1;2;3;4Þ and qC) can be determined (see Appendix A). The overall height of the SMO struc-
ture H can be expressed as
H ¼ aB sin hB sin cB � aA sin hA sin cA; ð6Þ

where hB ¼ arccosðcos hA tan cA= tan cBÞ: Note that hA ranges between �p=2 and p=2, while hB keeps positive such that cell A
bulges out of the larger cell B when hA < 0 and nests into B otherwise. In what follows, for clarity, we denote the



Fig. 2. (a) Construction and geometry of the SMO structure. (b) The bulged-out and nested-in configurations of the SMO structure. (c) The SMO structure
under base excitation and its equivalent dynamic model.
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configuration with hA < 0 as ‘bulged-out’ and otherwise as ‘nested-in’ (Fig. 2(b)). On the other hand, Eq. (6) indicates that
there is a one-to-one correspondence between H and hA. Then alternatively, the folding angle can be expressed by an implicit
function of H, i.e., hA ¼ HðHÞ.

Rotational stiffness is assigned to the creases in cell A, KA1 ¼ KA3 ¼ kAb, KA2 ¼ KA4 ¼ kAaA; in cell B, KB1 ¼ KB3 ¼ kBb,
KB2 ¼ KB4 ¼ kBaB; and at the connecting creases, KC ¼ kCb. We assume that the torsional stiffness per unit length at cell A
creases and connecting creases are the same and are relatively low, i.e., kA ¼ kC ¼ k, while the torsional stiffness per unit
length at cell B creases is significantly higher than k (say, kB ¼ lk, l > 1 is a positive constant). Here the unit rotational stiff-
ness k and the ratio l are difficult to measure and need identification.

With the folding and dihedral angles as well as the torsional stiffness at the creases, the potential energy of the SMO
structure PðhAÞ can be obtained
PðhAÞ ¼ 1
2

X4
i¼1

KAiðqAi � q0
AiÞ

2 þ
X4
i¼1

KBiðqBi � q0
BiÞ

2 þ 4KCðqC � q0
CÞ

2

" #
; ð7Þ
where q0
Ai;q0

Bi and q0
C are the dihedral angles corresponding to the stress-free stable folding configuration hA ¼ h0A

� �
that no

crease is deformed from its ‘‘natural” stress-free shape. The stress-free dihedral angle h0A is difficult to be accurately mea-
sured and therefore also needs identification. The higher stiffness at the cell B creases as well as the non-unique angle rela-
tion between hA and hB are important for generating structural bistability. With appropriate values of l, k, and h0A, the
potential energy would exhibit a double-well profile, indicating the existence of bistability [45,50]. Taking derivate of
PðhAÞ with respect to H yields the force in the height direction FH
FH ¼ dP
dhA

dH
dhA

; ð8Þ
which is also a function of hA. Hence, given a value of height H, the corresponding folding angle hA can be obtained from
hA ¼ HðHÞ; substituting it into FH , the stiffness can be determined. It is worth pointing out here that FH is a complicated non-
linear function of H, reflecting the strong global nonlinearity of the SMO structure.

If the bistable SMO structure is employed in a dynamic environment, one way to describe the system’s response is to
build an equivalent lumped-mass model in which the SMO structure is simplified into a massless nonlinear bistable spring
(Fig. 2(c)). For example, if we apply a base excitation to the bistable SMO structure, its equation of motion can be expressed
as
m€XðtÞ þ FHðHðtÞÞ þ cð _XðtÞ � _YðtÞÞ ¼ 0; ð9Þ

where m is the equivalent lumped mass; YðtÞ is the base displacement excitation, and XðtÞ is the displacement response of
the lumped mass; c is the equivalent viscous damping coefficient, which is also unknown and needs to be identified.

In sum, in this bistable SMO structure under displacement excitation, there are four parameters to be identified: the unit
torsional stiffness k, the stiffness ratio l, the stress-free angle h0A, and the equivalent viscous damping coefficient c. Note that
bistability is a strong nonlinear characteristic that would induce rich dynamics, including small-amplitude intra-well oscil-
lations, large-amplitude inter-well steady-state and chaotic oscillations, etc. [50–54]. With the same excitation but different
initial conditions, the structure would exhibit qualitatively different dynamics, either local responses that are confined to
one of the potential well or global responses that surround or switch between two wells. Such initial-condition dependence
would aggravate the computational burden of an identification method based on iterative numerical integration. On the
other hand, the system possesses strong global nonlinearities and may exhibit global chaotic responses, and the dynamic
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measurement would involve unavoidable noises, which also complicate the methods based on discrete differences or deriva-
tives on basis functions.

3. System identification procedures

This section introduces the main procedures of the new identification method. Based on the Galerkin finite element
approximation, first, a set of convenient basis functions BiðtÞði ¼ 1;2; . . . ;nÞ is employed to globally represent the input u
and the solution x [1]
u ¼
Xn
i¼1

aiBiðtÞ; ð10Þ

x ¼
Xn
i¼1

biBiðtÞ; ð11Þ
where ai and bi are the coefficient vectors. In this method, we use the same number of basis functions as the measured data
ðti; ûðtiÞ; x̂ðtiÞÞ, i ¼ 1; . . . ;N (n ¼ N), so that in principle, any degree of variation in the data can be captured by the expansion.
However, the large number of basis functions would lead to over-fitting of the data, i.e., the noise-induced variations are also
fitted. This issue will be significantly magnified when derivatives are taken. Here new procedures are proposed to solve this
problem, without imposing heavy calculation burden.

We construct a Galerkin weak formulation by multiplying both sides of Eq. (1) with basis function BiðtÞ and integrating
both sides over the time interval ½a; b�,
Z b

a
BiðtÞ _xðtÞdt ¼

Z b

a
BiðtÞfðx;u; tjhÞdt: ð12Þ
The left-hand side of Eq. (12) can be rewritten based on the rule of integration by parts,
Z b

a
BiðtÞ _xðtÞdt ¼ BiðtÞxðtÞjba �

Z b

a

_BiðtÞxðtÞdt: ð13Þ
Assuming that the basis functions take zero at the boundary points a and b, Eq. (12) becomes
�
Z b

a

_BiðtÞxðtÞdt ¼
Z b

a
BiðtÞfðx;u; tjhÞdt: ð14Þ
Such procedures successfully avoid taking derivatives on the noisy data, thus solve the problem of noise amplification with
high calculation efficiency.

A variety of basis functions are available for our method [26], in which the B-splines is considered as a convenient choice
and has widely been used [55–57]. The B-splines of different orders can be recursively defined by
uð0Þ
i ðtÞ ¼

0; t < ti;

1; ti < t < tiþ1;

0; t > ti;

8><
>:

uðjÞ
i ðtÞ ¼ t � ti

tiþj � ti
uðj�1Þ

i ðtÞ þ tjþiþ1 � t
tjþiþ1 � tiþ1

uðj�1Þ
iþ1 ðtÞ:

ð15Þ
In application, typically cubic B-splines are used (with j ¼ 3); its explicit formula is given by
BiðtÞ ¼

0; t 6 ti�2;
1

6h3
ðt � ti�2Þ3; ti�2 6 t 6 ti�1;

1
6 þ 1

2h ðt � ti�1Þ þ 1
2h2

ðt � ti�1Þ2 � 1
2h3

ðt � ti�1Þ3; ti�1 6 t 6 ti;

1
6 þ 1

2h ðtiþ1 � tÞ þ 1
2h2

ðtiþ1 � tÞ2 � 1
2h3

ðtiþ1 � tÞ3; ti 6 t 6 tiþ1;

1
6h3

ðtiþ2 � tÞ3; tiþ1 6 t 6 tiþ2;

0; t P tiþ2;

8>>>>>>>>>><
>>>>>>>>>>:

ð16Þ
where h is the spacing between the knots ti (equally sampled). In this method, the sampling points are taken as the knots,
which is a fixed setting once the measurement data have been obtained. With such procedure, the cumbersome knot-setting
task is significantly simplified, and the noise amplification can be avoided by the proposed integration by parts. Fig. 3(a)
shows five cubic B-splines with unit spacing length, and Fig. 3(b) displays the cubic B-spline and its first derivative (dashed
line). It reveals that they are smooth, differentiable, and with compact-support, i.e., they take zero at the boundary points,
satisfying the conditions for integration by parts.
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Fig. 3. (a) Five cubic B-splines with unit spacing length. (b) Cubic B-spline basis function and its first derivative.
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Substituting the B-spline expression to Eq. (11), at knot ti we have
x̂ðtiÞ ¼
Xn
i¼1

biBiðtiÞ ¼ bi�1Bi�1ðtiÞ þ biBiðtiÞ þ biþ1Biþ1ðtiÞ ¼ 1
6
bi�1 þ 2

3
bi þ 1

6
biþ1; ð17Þ
which can be written in matrix form as
x̂ðt�1Þ
x̂ðt0Þ
x̂ðt1Þ
..
.

x̂ðtnÞ
x̂ðtnþ1Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 1
6

4 1 0 � � � 0
1 4 1 � � � 0
0 1 4 � � � 0
..
.

0 � � � 1 4 1
0 � � � 0 1 4

0
BBBBBBBBB@

1
CCCCCCCCCA

b�1

b0

b1

..

.

bn

bnþ1

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð18Þ
Here x̂ðt�1Þ and x̂ðtnþ1Þ are dummy values required for generating a determined system; they govern the behavior of x at the
boundaries and can be chosen such that the second derivatives at the boundaries are zero. The coefficient matrix in Eq. (18)
is explicitly invertible, making it straightforward to solve the coefficient vectors biði ¼ �1;0;1; . . . ;nþ 1Þ and to obtain the
corresponding interpolation function x. Applying the same procedures on Eq. (10), the coefficient vectors
aiði ¼ �1;0;1; . . . ;nþ 1Þ and the interpolation function of input u can be similarly obtained.

Due to the compact support property of the cubic B-splines (Eq. (16)), Eq. (14) becomes
�
Z tiþ2

ti�2

_BiðtÞxðtÞdt ¼
Z tiþ2

ti�2

BiðtÞfðx;u; tjhÞdt: ð19Þ
Based on Eq. (17), for the knots locating in time interval ½ti�2; tiþ2�, the interpolation function xðtÞ and uðtÞ can be simplified as
xðtÞ ¼
Xiþ3

k¼i�3

bkBkðtÞ; ð20Þ

uðtÞ ¼
Xiþ3

k¼i�3

akBkðtÞ: ð21Þ
Substituting Eqs. (20) and (21) into Eq. (19), and letting
yi ¼ �
Z tiþ2

ti�2

_BiðtÞ
Xiþ3

k¼i�3

bkBkðtÞdt; ð22Þ

giðhÞ ¼
Z tiþ2

ti�2

BiðtÞf
Xiþ3

k¼i�3

bkBkðtÞ;
Xiþ3

k¼i�3

akBkðtÞ; t
�����h

 !
dt; ð23Þ
Eq. (19) becomes
yi ¼ giðhÞ: ð24Þ

Defining the loss function as
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LðhÞ ¼
XN�3

i¼3

ðyi � giðhÞÞ2; ð25Þ
then the unknown parameters can be estimated by minimizing LðhÞ. In what follows, cases with fðx;u; tjhÞ being linear or
nonlinear in h will be discussed, respectively.

3.1. Optimization with linear parameters

There are many models in physics, engineering, biology, and chemistry that are linear in their parameters. In these sce-
narios, Eq. (1) can be rewritten as
_xðtÞ ¼ fðx;u; tjhÞ ¼ Zðx;u; tÞ � h: ð26Þ

Then Eq. (23) can be transformed into
giðhÞ ¼
Z tiþ2

ti�2

BiðtÞZ
Xiþ3

k¼i�3

bkBkðtÞ;
Xiþ3

k¼i�3

akBkðtÞ; t
 !

dt � h ¼ Xi � h; ð27Þ
and Eq. (25) can be written as
LðhÞ ¼
XN�3

i¼3

ðyi � Xi � hÞ2; ð28Þ
or in a matrix form
LðhÞ ¼
XN�3

i¼3

ðyi � Xi � hÞ2 ¼ 1
2
ðYLin � XLin � hÞTðYLin � XLin � hÞ; ð29Þ
where the subscript ‘‘Lin” indicates the situation with linear parameters, and
XLin ¼ ½XT
3;X

T
4; � � � ;XT

N�3�
T
; ð30Þ

YLin ¼ ½y3; y4; � � � ; yN�3�T : ð31Þ

Eq. (29) suggests that the loss function is a quadratic form in the linear scenario, and the optimal parameters can be obtained
by the one-shot Least Square algorithm. In detail, by taking derivate on Eq. (29) with respect to h, we get
@LðhÞ
@h

¼ �XT
LinYLin þ XT

LinXLin � h: ð32Þ
Then the optimum estimation can be obtained by letting Eq. (32) equal zero, i.e.
h ¼ XT
LinXLin

� ��1
XT

LinYLin: ð33Þ
3.2. Optimization with nonlinear parameters

Here we discuss a more general case that the ODEs are nonlinear in terms of parameters. It is more complicated than the
linear case since the one-shot Least Square algorithm cannot be applied directly; instead, iterative minimization routines are
adopted in this study. In each iteration, we linearize the nonlinear equations through Taylor series expansion so that the one-
shot algorithm can still be used on the obtained linear form.

Denoting the initial parameter guess as h0 and expanding the function fðx;u; tjhÞ into linear form in the neighborhood of
h0, we get
fðx;u; tjhÞ ¼ fðx;u; tjh0Þ þ @fðx;u; tjh0Þ
@h

dhþ OððdhÞ2Þ; ð34Þ
where
dh ¼ h� h0: ð35Þ

Substituting Eq. (34) into Eq. (23) yields
giðhÞ ¼ piðh0Þ þ qiðh0Þdh; ð36Þ

where
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piðh0Þ ¼
Z tiþ2

ti�2

BiðtÞf
Xiþ3

k¼i�3

bkBkðtÞ;
Xiþ3

k¼i�3

akBkðtÞ; t
�����h0

 !
dt; ð37Þ

qiðh0Þ ¼
Z tiþ2

ti�2

BiðtÞ
@f

Xiþ3

k¼i�3

bkBkðtÞ;
Xiþ3

k¼i�3

akBkðtÞ; t
�����h0

 !

@h
dt: ð38Þ
Thus the loss function can be rewritten as
LðhÞ ¼
XN�3

i¼3

ðyi � piðh0Þ � qiðh0ÞdhÞ2; ð39Þ
or in a matrix form
LðhÞ ¼ 1
2
ðYNon � XNon � dhÞTðYNon � XNon � dhÞ; ð40Þ
where the subscript ‘‘Non” denotes the situation with nonlinear parameters and
XNon ¼ ½qT
3ðh0Þ;qT

4ðh0Þ; . . . ;qT
N�3ðh0Þ�

T
: ð41Þ

YNon ¼ ½y3 � p3ðh0Þ; y4 � p4ðh0Þ; . . . ; yN�3 � pN�3ðh0Þ�T : ð42Þ

Similarly, taking derivate on Eq. (40) with respect to dh and letting it be zero, we get
dh ¼ ðXT
NonXNonÞ�1

XT
NonYNon: ð43Þ
Substituting Eq. (43) into Eq. (35) again and replacing h0, we obtain an updated h0, i.e.,
h0 ! dhþ h0: ð44Þ

Repeating this calculating-updating procedure until dh reduces to an acceptable tolerance, the unknown parameters will
converge to their true values.

4. Simulation studies

This section discusses the numerical studies on the Chua’s Circuit and the Tank reactor, introduced in Section 2, to verify
the effectiveness of the new identification procedures proposed in the previous section.

4.1. Parameter identification for the coupled Chua’s circuit

The coupled Chua’s circuit shown in Fig. 1 is a 12-dimensional nonlinear system (Eq. (12)). There are 11 parameters to be
identified. Their critical values are set as Ga ¼ �0:74, Gb ¼ �0:41, C1 ¼ 0:01, C2 ¼ 0:1, L ¼ �0:01868, R0 ¼ 0:019, RC ¼ 10,
R1 ¼ 1:599, R2 ¼ 1:228, R3 ¼ 0:917, R4 ¼ 3:628 such that torus-doubling phenomenon can be generated [24]. The initial con-
ditions for all 12 state variables are random numbers between 0 and 1. We sample the simulation data between 0 and 150
with spacing 0.02 and corrupt the sampling data by Gaussian white noise with a 30 dB signal-to-noise ratio (SNR).

In the identification process, the initial parameters are assumed to be 50% deviated from the true values, and the cutoff
error is e ¼ 10�5. With the proposed procedures, the value of each parameter in each iteration step is shown in Fig. 4(a)–(c),
where the dotted lines denote the true values we set in the simulation. It reveals that all parameters converge to their true
values quickly. This is demonstrated by Fig. 4(d) that the iteration converges exponentially in the neighborhood of the true
value htrue; after seven iterations, the step length has dropped below the cutoff error, stopping the iteration. The overall iden-
tification results are summarized in Table 1; for the 11 parameters, the relative errors between the identified values and the
true values are lower than 0.04%, demonstrating the effectiveness and accuracy of the proposed method.

To further investigate the robustness of the identification method with respect to noise, additional simulations with dif-
ferent noise level have been carried out. Specifically, the simulated signals are corrupted by Gaussian white noise with SNR
varying from 90 dB to 10 dB. Fig. 4(e) displays the noisy signals with SNR = 70 dB, 30 dB, and 10 dB. To compare the robust-
ness of the identification, the overall error is defined as d ¼ normðhid � htrueÞ=normðhtrueÞ, where hid is the vector of the iden-
tified values, and htrue is the vector of the true parameter values. Fig. 4(f) shows the overall error with respect to different
noise levels. With relatively small noise (SNR P 30 dB), the identified values agree well with the true values, showing very
low errors. With the decrease of SNR, i.e., with the increase of noise level, the corresponding overall error grows rapidly.
Especially, the error becomes significant when SNR approaches 10 dB (i.e., the noise is as strong as the signal in terms of
root-mean-square (RMS) amplitude). Overall, our method shows acceptable robustness with respect to noises. For example,
when SNR = 20 dB, i.e., the noise RMS amplitude reaches 10% of the signal RMS amplitude, the overall error is still less than
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Fig. 4. Parameter identification of the coupled Chua’s circuit. (a)–(c) The convergence processes of the 10 identified parameters, where the true values are
denoted by horizontal dotted lines; (d) the logarithm of dh in each iteration step; (e) signals of vC11 corrupted by noises with SNR = 70 dB, 30 dB, and 10 dB;
and (f) the overall errors of the identification results with respect to different levels of noise.

Table 1
Identification results of the coupled Chua’s circuit (with SNR = 30 dB).

Parameters Ga Gb C1 C2 L R0 RC R1 R2 R3 R4

Initial values �0.3700 �0.2050 0.0050 0.0500 0.00934 0.0095 5.000 0.7995 0.6140 0.4585 1.8140
Identified values �0.7397 �0.4101 0.0100 0.1000 0.01870 0.0190 9.998 1.5590 1.2280 0.9170 3.6287
True values �0.7400 �0.4100 0.0100 0.1000 0.01868 0.0190 10.000 1.5990 1.2280 0.9170 3.6280
Relative errors 0.04% 0.02% 0.00% 0.00% 0.02% 0.00% 0.02% 0.00% 0.00% 0.00% 0.02%
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10%. However, note that if the noise is significant enough to qualitatively change the signal (e.g., SNR = 10 dB, the signal is
severely corrupted, see Fig. 4(e)), our method will lose its effectiveness.

4.2. Parameter identification for Tank reactor equations

The Tank reactor equations (Eqs. (4) and (5)) are also nonlinear in parameters. In this simulation, the parameters are cho-
sen as s ¼ 0:8330;j ¼ 0:4610; a ¼ 1:6780 [25]. The five inputs are piecewise step functions shown in Fig. 5(a). We add 40 dB
zero-mean Gaussian white noises to the outputs CðtÞ and TðtÞ, shown in Fig. 5(b). In this system, three parameters, s, j, and a,
need to be identified. Similarly, their initial values are set to be 20% deviated from the true values, and the cutoff error is
e ¼ 10�5.

Fig. 5(c) displays the magnitudes of these parameters in each iteration step. It reveals that with the proposed identifica-
tion method, the parameters converge to the true values within 8 steps, with dh exponentially decreasing to lower than 10�6

at the 8th step (Fig. 5(d)). The identification results are summarized in Table 2.



Fig. 5. Parameter identification of the Tank reactor equations. (a) The five piecewise inputs; (b) the two noisy outputs; (c) convergence processes of the
identified parameters; and (d) the logarithm of dh in each iteration step.

Table 2
Identification results of the Tank reactor equations.

Parameters s j a

Initial values 0.6651 0.3694 1.3343
True values 0.8330 0.4610 1.6780
Identified values 0.8314 0.4617 1.6679
Relative errors 0.19% 0.15% 0.60%
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Here we note that by numerically solving the two intractable testbed problems, i.e., the coupled Chua’s circuit and the
Tank reactor equations, advantages of the new identification method are revealed. First, the proposed approach does not call
for time-consuming numerical integrations, therefore applicable to systems with high dimensionality and complex nonlin-
earity. Second, the method does not require numerical differences on measured data or analytical derivatives on basis func-
tions, thus works well with noisy data. Third, the method is numerically efficient; it costs less than 1 min to get reliable
estimations of the two testbed problems. These fully illustrate the great potential of the proposed method in solving various
identification problems.

5. Parameter identification of a stacked Miura-ori structure

In addition to the numerical examples, this section investigates the dynamics of a stacked Miura-ori structure (SMO) to
demonstrate the virtue of the proposed method. Here we first briefly introduce the prototyping, experimental setup, and the
test procedures (see details in [50]), and then present the identification results.

5.1. Prototyping and experiments

The SMO prototype’s geometric and mechanical parameters are listed in Table 3. The fabrication of an SMO prototype is
shown in Fig. 6(a), where the origami facets are waterjet cut individually from 0.25-mm-thick stainless steel sheets; they are
fixed to a 0.13-mm-thick adhesive-back plastic film (ultrahigh molecular weight (UHMW) polyethylene) to form two Miura-
ori sheets. We paste 0.01-mm-thick pre-bent spring-steel stripes at the creases of the top sheet to provide strong torsional
stiffness. The two sheets are stacked together into an SMO prototype. The obtained SMO prototype maintains rigid foldability
because the steel facets are much stiffer than the creases; meanwhile, the stiffness at the creases with spring-steels is sig-
nificantly higher than the stiffness of other creases, generating structural bistability. To facilitate installation of the prototype
on the shaker, 3D-printed connectors are used (Fig. 6(b)). Note that here the bending stiffness of the plastic film (k), the
bending stiffness of the spring-steel stripes (lk), and the pre-bent angle (h0A) are all unknown.

Fig. 6(c) shows the experimental setup for the dynamic test. With the 3D-printed connectors, we are able to connect the
SMO prototype onto the shaker and connect a lumped mass with the SMO prototype. Very light strings are used to suspend
the SMO prototype. Harmonic base excitations YðtÞ ¼ Y0 sinðxtÞ are applied to the SMO prototype in the horizontal direction
(i.e., the height direction of the SMO structure), with frequency x and amplitude Y0. During measurement, external pertur-
bations are applied to the lumped mass to change the initial conditions so as to capture all possible dynamics. We use two
laser vibrometers to synchronously measure the absolute steady-state motions (including the displacement and velocity) of
the shaker (YðtÞ, _YðtÞ) and the lumped mass (XðtÞ, _XðtÞ). The excitation parameters are listed in Table 3.

Note that the stiffness changes with respect to the height of the SMO structure, i.e., KH is a function of HðtÞ. However, in
the experiment, the height changes cannot be directly measured, rather, only XðtÞ and YðtÞ are recorded. Hence, it is impor-
tant to establish the relation between the measured XðtÞ, YðtÞ and the unmeasurable HðtÞ. In measurement, there is a con-
stant relation between them
Table 3
Parame

Para

Geom
XðtÞ þ X0 ¼ YðtÞ þ HðtÞ; ð45Þ

where X0 is a constant for determining the origin of XðtÞ measurement. Theoretically, X0 equals to the height of the SMO
structure at one stable configuration; while in each measurement, X0 cannot be known accurately, because the measurement
origin for each test cannot be set to be exactly identical, and there is unavoidable signal zero-drift. To address this issue, we
treat X0 as another parameter to be identified. Thus the equation of motion can be rewritten as
mð€XÞ þ cð _X � _YÞ þ FHðX � Y þ X0Þ ¼ 0; ð46Þ

or in a standard state-space ODEs form
_X ¼ V ;

_V ¼ � c
m

ðV �WÞ � 1
m

FHðX � Y þ X0Þ;
ð47Þ
ters of the prototype and the excitation.

meter type Parameters Values Parameter type Parameters Values

etry parameters bA ¼ bB ¼ b 38.1 mm Mechanical parameters kA ¼ kC k
aA 38.1 mm kB lk

m 0.135 kg
cA 60� Excitation parameters x 2–12 Hz
cB 75� Y0 Average: 6.17 mm

Standard deviation: 0.397 mm
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whereW ¼ _Y is the velocity of the base excitation. Thus there are five parameters in total to be identified in this system, they
are the unit torsional stiffness k, the stiffness ratio l, the stress-free angle h0A, the equivalent viscous damping coefficient c,
and X0. Here, except the damping coefficient c, the system is nonlinear in other parameters. The equivalent massm is treated
as measurable and is set as the total mass of the prototype, which does not affect the prediction of dynamics based on the
identified parameters.

With the standard form, we can then apply the proposed method to identify the parameters. Considering that the bistable
SMO structure can exhibit both small-amplitude intra-well responses (within one of the potential well) and large-amplitude
inter-well responses (around or advantages of the new approach, we pick a large-amplitude inter-well chaotic response at
excitation frequency 6.6 Hz for identification. Fig. 7 shows the measured time-histories of the state variables _XðtÞ, _YðtÞ, and
(XðtÞ � YðtÞ), which are used in the identification process. Through fast Fourier transformation, their spectrograms are also
given in Fig. 7(d). The chaotic nature of the response signals ( _YðtÞ and (XðtÞ � YðtÞ)) can be observed from the continuous
spectrum over a limited range, indicating the spread of energy over a wide bandwidth.

Note that FH is an explicit function of hA given in Eq. (8), and the relationship between X0 and hA can be derived by sub-
stituting Eq. (45) into Eq. (6)
XðtÞ � YðtÞ þ X0 ¼ aB sin hB sin cB � aA sin hA sin cA: ð48Þ

Thus, FH is also an implicit nonlinear function of X0. In addition, since the stiffness of the film k may be very small, while the
stiffness ratio l can be very significant, hence rather than directly identifying k and l, k1 ¼ k and k2 ¼ lkwill be examined to
prevent possible singularity and to accelerate the convergence. Applying the linearization process given in Eq. (34), we have
@fðx;u; tjh0Þ
@h

¼ @f
@k1

@f
@k2

@f
@c

@f
@h0A

@f
@hA

@hA
@X0

h i
: ð49Þ



Fig. 7. Measured time history and frequency spectrum of (a) the shaker’s velocity _YðtÞ, (b) the lumped mass’s velocity _XðtÞ, and (c) the relative displacement
ðX � YÞ at the excitation frequency 6.6 Hz. Continuous frequency bands are observed in the responses’ frequency spectrum, indicating their chaotic
characteristics.
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where f is the right-hand side terms of Eq. (47). The initial parameters are set as k1 ¼ 0, k2 ¼ 5, h0A ¼ �p=3, c ¼ 1, and

X0 ¼ 0:051, and the cut-off error is 10�3. Then the other identification procedures can be successively applied. The identifi-
cation algorithm converges after 19 iterations, with the step length lower than the cut-off error. The value of each parameter
Fig. 8. Parameter identification on the SMO structure. (a)–(d) show the convergence process of the identified parameters k1, k2, H0, and h0A , respectively, and
(e) shows the logarithm of dh in each iteration step. The identified force-folding angle curve and the corresponding force-height curve of the SMO structure
are displayed in (f) and (g), respectively, where the stable configurations are denoted by solid circles, and the unstable configuration by an empty circle.



Table 4
Identification results of the SMO structure.

Parameters k1 k2 c X0 h0A

Identified values 0.0181 (N/rad) 2.1134 (N/rad) 1.0347 (kg/s) 0.0401 (m) �0.5194 (rad)

Fig. 9. (a) Comparison of the experimental and simulated response of SMO structure; (b) the noisy signal of excitation acceleration €YðtÞ.
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in each step is presented in Fig. 8(a)–(d), and the overall error shows an exponential decrease (Fig. 8(e)). The identified values
of the parameters are summarized in Table 4. It reveals that the identified value of k2 is more than 110 times higher than k1,
manifesting the fact that the crease stiffness k2 originating from the spring-steel belts is much higher than the crease stiff-
ness k1 coming from the plastic film; the stress-free angle h0A locates within ð�p=2;p=2Þ. With the identified parameters, the
force-folding angle (FH � hA) curve and the corresponding force-displacement (FH � H) curve are plotted in Fig. 8(f) and (g),
respectively, which show obvious bistable characteristics, including two stable equilibrium (solid dots) and one unstable
equilibrium (empty dot), as well as a segment with negative stiffness.

To verify the correctness of the identified results, we performed a simulation based on the identified parameters and
applied the measured inputs. Since the exact initial conditions are unknown, the displacement and velocity at time zero
(i.e., Xð0Þ and _Xð0Þ) are used as initial conditions instead. Fig. 9(a) shows the comparison between the measured and simu-
lated response of XðtÞ � YðtÞ in steady-state. Both responses exhibit obvious chaotic characteristics, manifesting as contin-
uous spectrums over a limited range in their spectrogram, and they share very similar amplitudes. However, it is worth
pointing out that the bistable SMO system is extremely sensitive to initial conditions, parameters, and input signals, espe-
cially for the chaotic responses. The measured initial conditions and input signals are corrupted by noise, which accounts for
the quantitative differences between the measured and simulated responses. The noise effect is particularly non-negligible
when we apply finite difference on the velocity single _YðtÞ to generate the excitation acceleration €YðtÞ because the noise is
amplified (Fig. 9(b)).

From another perspective, we verify the identification results via restoring force surface method [58], which reconstructs
the force-displacement relationship from the measurements. In detail, based on the equation of motion (Eq. (46)) and Eq.
(45), the restoring force and the height of the SMO structure at time instant ti (i.e., FHjti and Hjti ) can be calculated from
the measurements
FHjti ¼ m€Xjti þ c � ð _Xjti � _Yjti Þ; ð50Þ
Hjti ¼ Xjti � Y jti þ X0; ð51Þ
where Xjti and Yjti are the measured displacement of the lumped mass and the base at time instant ti, respectively; _Xjti and
_Y jti are the corresponding velocities; and €Xjti is the acceleration of the lumped mass, obtained by forward difference formula.
Applying the above procedures at each measurement between 27 s and 37 s, a series of data ðHjti ; FHjti Þ can be obtained,
which are dotted on Fig. 10. The scatter diagram actually represents the restoring force acting on a mass at various positions
and velocities. It has a good agreement with the identified force-displacement curve (solid), which again, manifests the cor-
rectness of the identification and the effectiveness of the proposed approach.
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6. Conclusion

By applying the B-Spline Galerkin finite element method in time domain, this paper introduces a novel identification
method for parameters in ordinary differential equations. Conventional identification techniques often require cumbersome
numerical integration that is computationally inefficient, or discrete differences on data or analytical derivatives on basis
functions that may unavoidably amplify the measurement noise. On the other hand, although still using B-Splines to globally
construct the solutions, the proposed method eliminates the requirement of taking derivatives on basis function by employ-
ing the Galerkin weak formulation and integration by parts. Such procedures neither amplify the measurement noises nor
impose high computation burden, therefore would exhibit broad applicability, high efficiency, and good robustness. These
advantages are demonstrated through two intractable testbed problems: one is a high-dimensional coupled Chua’s circuit
that may exhibit chaotic responses and is sensitive to initial conditions and parameters; the other is the tank reactor equa-
tion, which is nonlinear in parameters and involves discontinuous input and output. Numerical simulations show that the
proposed method could effectively and efficiently identify the parameters with high accuracy. Meanwhile, a bistable
Miura-ori structure under base excitation is examined with the new method. Although the inherent bistability is a strong
global nonlinearity, and the system exhibits complex dynamic behavior that is sensitive to initial conditions and parameters,
the proposed method successfully identifies the geometrical and mechanical parameters and regenerates the constituent
force-displacement relationship of the origami structure. Numerical simulations and the obtained restoring force surface
demonstrate that the identification results agree well with the experiments.

It is worth noting at the end that there is no ‘‘one size fits all” approach for parameter identification. The proposed method
does show advantages including numerical efficiency, noise robustness, and compatibility to complex nonlinearity and high
dimensionality, but may still have challenges in certain scenarios and calls for additional improvements.
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Appendix A. Geometry of the stacked Miura-ori (SMO) structure

Folding of the SMO structure is one degree-of-freedom, hence all the other dihedral angles between each two adjacent
facets, i.e., qxiðx ¼ A;B; i ¼ 1;2;3;4Þ and qC can be expressed as functions of the folding angle hA and hB
qx1 ¼ qx3 ¼ p� 2hx;

sin
qx2

2
¼ cos hxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 hx sin
2 cx

q ;

qx4 ¼ 2p� qx2:

ðA1Þ
For the bulged-out configuration (hA < 0), we assign qA2 2 ðp;2pÞ; for the nested-in configuration (hA > 0), qA2 2 ð0;pÞ. The
dihedral angles at the connecting creases are given as qC ¼ hB � hA.
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