Testing Probabilistic Programming Systems

Saikat Dutta Owolabi Legunsen
University of Illinois, USA University of Illinois, USA
saikatd2@illinois.edu legunse2@illinois.edu
ABSTRACT

Probabilistic programming systems (PP systems) allow developers
to model stochastic phenomena and perform efficient inference on
the models. The number and adoption of probabilistic programming
systems is growing significantly. However, there is no prior study
of bugs in these systems and no methodology for systematically
testing PP systems. Yet, testing PP systems is highly non-trivial,
especially when they perform approximate inference.

In this paper, we characterize 118 previously reported bugs in
three open-source PP systems—Edward, Pyro and Stan—and pro-
pose ProbFuzz, an extensible system for testing PP systems. Prob-
Fuzz allows a developer to specify templates of probabilistic models,
from which it generates concrete probabilistic programs and data
for testing. ProbFuzz uses language-specific translators to generate
these concrete programs, which use the APIs of each PP system.
ProbFuzz finds potential bugs by checking the output from running
the generated programs against several oracles, including an accu-
racy checker. Using ProbFuzz, we found 67 previously unknown
bugs in recent versions of these PP systems. Developers already
accepted 51 bug fixes that we submitted to the three PP systems,
and their underlying systems, PyTorch and TensorFlow.

CCS CONCEPTS

- Software and its engineering — Software testing;

KEYWORDS
Probabilistic programming languages, Software Testing

ACM Reference Format:

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018.
Testing Probabilistic Programming Systems. In Proceedings of the 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’18), November 4-9,
2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3236024.3236057

1 INTRODUCTION

Probabilistic programming has recently emerged as a promising
approach for helping programmers to easily implement Bayesian
inference problems and automate efficient execution of inference
tasks. Both research and industry have proposed various probabilis-
tic programming systems, e.g., Church [40], Stan [35], and many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236057

Sasa Misailovic
University of Illinois, USA
misailo@illinois.edu

Zixin Huang
University of Illinois, USA
zixinh2@illinois.edu

others [8, 16, 36, 46, 61, 71, 119]. These systems automate various
parts of common inference tasks and support many approximate in-
ference algorithms from machine learning and statistics, including
deterministic variational inference and randomized Markov Chain
Monte Carlo (MCMC) simulation. Systems like Edward [31, 118]

and Pyro [84] embed probabilistic inference within the general deep
learning infrastructures, e.g., PyTorch [85] and TensorFlow [116].

A probabilistic programming system (PP system) typically con-
sists of a language, a compiler, and inference procedures. A pro-
grammer writes a program in a probabilistic programming lan-
guage, which extends a standard programming language by adding
constructs for (1) random choice, such as sampling from common
distributions, (2) conditioning on data, such as observation state-
ments, and (3) probabilistic queries, such as obtaining a posterior
distribution or an expected value of a program variable [41]. Next,
a PP system compiles the probabilistic program to an efficient in-
ference procedure, by adapting well-known inference algorithms.
Finally, the programmers run the compiled program on a set of data
points to compute the query result.

Probabilistic programming systems provide many benefits to
programmers who are non-experts in probability and statistics,
but ensuring the correctness of probabilistic programs is notori-
ously difficult [44, 90]. The inherent uncertainty and complexity of
probabilistic inference (which is #P-hard, even with just discrete
variables [17]) make most practical inference algorithms numeri-
cally intensive and approximate. Therefore, a testing approach for
PP systems must account for both numerical errors and errors due
to the approximate nature of inference algorithms.

Current approaches for testing PP systems are typically manual
and ad-hoc. Although recent research looked into analysis of PP
systems [1, 90], none of the proposed approaches can analyze all
stages of modern PP systems. Understanding previously known
bugs in PP systems and finding effective approaches to improve the
systems’ reliability remain open research questions.

1.1 Bugs in Probabilistic Programming Systems

To motivate the design of tools for systematic testing of PP systems,
we characterized the kinds of bugs that are common in existing
open-source systems. To the best of our knowledge, this is the
first systematic study of bugs in PP systems. We studied three
systems: Edward [31, 117, 118], Pyro [84], and Stan [10, 35, 51, 95].
They are written in multiple programming languages, are hosted
on GitHub, have been adopted by both industry and researchers,
are actively developed, and implement many language features
and inference algorithms that are common to most PP systems. In
total, we categorized 118 of 856 commits about bugs as being PP
systems-related, and describe them in more detail.

Many of the identified bugs required domain-specific knowledge
to detect, debug, and fix. Moreover, testing PP systems often re-
quires reasoning about result accuracy (in contrast to the standard

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

S. Dutta et al.

Probabilistic
Rioaren Generator R Translator Probabilistic Al .
Template D+t Programs Checker Eeveallng
ata rograms
L7
I4 14

Figure 1: ProbFuzz Architecture

notion of binary pass/fail result correctness). We identified two
domain-specific classes of bugs in PP systems: algorithmic/accuracy
bugs and dimension bugs. Algorithmic bugs influence computations
of probability expressions and the steps of the inference algorithms,
often resulting in decreased result accuracy and are typically hard
to identify and fix. Dimension bugs occur when computations do
not properly handle the dimensions of data or allowable ranges of
probability distribution parameters. Section 3 describes the lessons
learned from studying these historical bugs, which we leveraged to
design ProbFuzz.

1.2 ProbFuzz

We present ProbFuzz, a novel approach and system for systematic
testing of PP systems. Figure 1 shows the architecture of ProbFuzz.
The inputs to ProbFuzz are (1) a specification of the primitive dis-
crete and continuous distributions, (2) the number of programs to
generate, and (3) a template that specifies the skeleton of a proba-
bilistic program (model) of interest, written in a high-level proba-
bilistic language notation (IR). ProbFuzz outputs a set of programs
that are likely bug-revealing in the PP systems. ProbFuzz has three
main components:

o Generator completes holes in the template to produce (1) a proba-
bilistic program in an intermediate language and (2) accompany-
ing data necessary to run probabilistic inference. Template com-
pletion is a form of fuzzing: Generator produces many programs,
with different concrete distributions, distribution parameter val-
ues, and data values. To generate programs that are more likely to
identify non-trivial bugs, Generator incorporates domain-specific
information, e.g., legal connections among distributions, ranges
of their parameters, and data properties.

Translator converts the intermediate probabilistic program to a
specific API or language of a PP system under test, and selects
system-supported inference algorithms. We implemented three
versions of Translator, for Edward, Pyro, and Stan.

Program Checker runs the generated programs and determines
whether the outputs indicate likely bugs in the PP system on
which the programs were run. Program Checker produces a set
of likely bug-revealing programs for developers to inspect, and
supports checks for standard problems (like crashes or NaN errors
in the output) and accuracy of inference results.

We designed Generator to be general - it represents probabilistic
models in the intermediate first-order probabilistic language, and
can target various PP systems. We designed Translator to be flexible
and extensible. Our experience is that adding support for a new PP
system is relatively easy. Moreover, support for multiple PP system
in the Translator enables differential testing as an oracle in the
Program Checker.

ProbFuzz leverages the observation that testing PP systems is
similar to the well-studied field of compiler testing. A prominent
approach in compiler testing is compiler fuzzing [3, 13, 14, 52-54,

56, 112, 122, 123], which randomly generates many test programs
and checks whether a compiler produces code (or crashes) and
whether generated programs are correct, i.e., produce same results
as reference programs. Our study of existing bugs and evaluation
of ProbFuzz show the importance of (1) domain-specific knowledge
about probability distributions and inference algorithms, (2) joint
generation of programs and corresponding data to run inference,
and (3) reasoning about accuracy. These traits are out of reach for
state-of-the-art compiler fuzzing techniques.

1.3 Results

We evaluated ProbFuzz on three PP systems: Edward, Pyro, and Stan.
Our evaluation shows the effectiveness of ProbFuzz in generating
probabilistic programs and data that reveal dimension/boundary-
value and algorithmic/accuracy bugs in all three systems. We dis-
covered 67 potential previously unknown bugs in these systems.
Further, we used ProbFuzz to target existing bugs in each PP system
we characterized in Section 3, to see in how many categories per
PP system ProbFuzz would have caught a bug. ProbFuzz caught at
least one existing bug in 8 of 9 categories that we targeted. Section 5
presents quantitative results of ProbFuzz.

As part of our bug discovery and understanding process, we
submitted all 67 potential bugs revealed by ProbFuzz to developers
of the PP systems. So far, developers have accepted 51, rejected 8, 7
are still pending and 1 was already fixed before we could submit it.
The bugs that we found and fixed were not just in Edward, Pyro and
Stan, but also in the underlying software infrastructure on which
they are built (i.e., PyTorch for Pyro, and TensorFlow for Edward).
We describe some of the identified bugs, their fixes, and lessons
that we learned in Section 6.

1.4 Contributions

This paper makes the following contributions:

* Concept. We extend compiler fuzzing to probabilistic program-
ming systems. We generate both probabilistic programs and data
to run inference by encoding domain knowledge and reasoning
about accuracy of inference results.

* Bug Characterization. We present the first study of bugs in PP
systems. Our investigation of 118 previously fixed bugs in three
open-source PP systems showed that these bugs require domain
knowledge to find and fix, and to reason about accuracy.

* Methodology and System. We propose ProbFuzz, a novel gen-
eral approach for systematically testing PP systems. Our current
implementation of ProbFuzz works for three open-source PP
systems and is extensible.

* Evaluation. We evaluated ProbFuzz on both historical and recent
versions of Edward, Pyro and Stan. ProbFuzz found bugs in each
category of previously reported bugs. We also found and reported
67 previously unknown bugs by running ProbFuzz on recent
versions of the PP systems.

Testing Probabilistic Programming Systems

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

L T =[1.0,2.0, ...] 21
2 G =1[7.0,14.0, ...] 0.501 501 401
3 w=Gamma(97.5, 86.2)
4 p = Beta(44.0, 44.0) 0251 55] 11 204
5 observe(
¢ Normal(w-x,p),7y)
; 0.00 ———< 1 —1 9 — L1 O
7 posterior(w) —2.0 05 30 55 80 —2005 30 55 80 —2005 30 55 80 2005 3.0 55 8.0

(a) Probabilistic Program (b) Stan Result

(c) Edward Result

(d) Pyro Result (e) BUGS Result

Figure 2: Example Program and the Posterior Distributions Computed by Various Systems

2 ILLUSTRATIVE EXAMPLE

Figure 2a shows an illustrative example of a potentially bug-revealing
probabilistic program generated by ProbFuzz. The program, shown

in ProbFuzz’s intermediate language, defines two data-sets of con-
stants, X and 3. Each y; is seven times the value of X;. The program

first assigns prior distributions to the variables w and p. Then, it

conditions the linear model w - X + p on the observations of 3. The

probabilistic query on line 7 seeks the posterior distribution w.

Probabilistic inference is a procedure for computing the change
in the distribution of variables based on the observations of data.
Most inference algorithms today are approximate, with the two
dominant approaches being Markov Chain Monte Carlo simulation,
which re-executes the computation with many random samples
(and is implemented in, e.g., Stan and Edward) and variational in-
ference, which approximates the posterior distribution deterministi-
cally, by substituting it with computationally simpler distributions
(and is implemented in, e.g., Edward and Pyro).

Figures 2b-2e show the posterior distributions computed by Stan,
Edward, Pyro, and another probabilistic inference system called
BUGS (which is a precursor of Stan, and shares most of its syntax).
The X-axis presents the numerical values and the Y-axis presents
its probability density function. Given the data x and y, we expect
the mean of the posterior of w to be equal to 7.0. The posterior
distributions computed by three systems are similar, and centered
at 7.0. However, Stan’s distribution has a different shape, and its
mean is close to 1.0. We discuss the reasons behind this accuracy
problem in Section 6.2.

ProbFuzz generates the program in Figure 2a, and many similar
programs, with different prior distributions, distribution param-
eters, and data. ProbFuzz then compiles the programs down to
each PP system, generating specialized API calls or DSL programs.
The translation is non-trivial, and cumbersome for a human, but
can be easily specified in ProbFuzz. Next, ProbFuzz runs generated
programs, automatically compares the output from different PP
systems, and computes accuracy metrics (Section 4.4). Finally, a de-
veloper can inspect ProbFuzz results and investigate any potential
bugs. We discuss ProbFuzz in Section 4.

3 BUG CHARACTERIZATION STUDY

We characterized existing bugs in three open-source PP systems:
Stan [10, 35, 51, 95], Edward [31, 117, 118] and Pyro [84]. Table 1
shows some statistics about the PP systems. The three PP systems
support various approximate probabilistic inference algorithms.

Methodology. We manually searched for bug fixes among commits
in the GitHub repositories of the PP systems in our study. We use
commits to get a larger data set than we could get when starting

from GitHub issues [2, 86]. Given the active development of these
PP systems, many bugs are fixed without first being reported as
“issues”, and most closed issues involve one or more commits.

We obtained all commits in the three PP systems that contained
the keywords, bug|inference|error|fix|nan|exception|overflow|
underflow|infinity|infinite|precision|unstable|instability|r
inging|unbounded|roundoff|truncation|rounding|diverge|cancel
lation|cancel|accuracy|accurate. This resulted in 1837 commits.
We then filtered out commits that are not specific to the domain
of PP systems or probabilistic inference, and could occur in any
software domain. First, we filtered out commits containing the fol-
lowing keywords: typo|docstring|notes|example|examples|tuto
rial|print|doc|Document|messaging|test|messages|manual |doxyg
en|cpplint|Jenkins|submodule |header. Next, we split the remain-
ing 856 commits between two student coauthors, each of whom
read descriptions and reasoned about modified code. Each coauthor
marked a commit as an inference-related code fix, general code fix,
a refactoring, or a duplicate. We filtered out refactoring, duplicates
(e.g., covered by incremental commits fixing the same bug or related
commits from multiple branches), merge commits with many files
changed, and commits that changed only non-source files.

We were left with 455 commits that fix code, out of which our
manual inspection identified 118 commits that are directly related
to the domain of probabilistic inference. The remaining are general
coding problems e.g., I/O errors, API misuses, and documentation
problems. Two coauthors inspected these 455 commits. They com-
pared notes and classified bugs as inference-related only if they
agreed on the final classification, therefore making a conservative
determination about the domain-specific nature of each bug. Simi-
lar to a previous work on analyzing numerical bugs [19], we put
inference-related bugs into four categories. Our bug categories are
algorithmic/accuracy, dimension/boundary-values, numerical, and
language/translation. We made a second pass through the 118 bugs
that satisfy the selection criteria and categorized them based on
error sources and bug manifestations. When possible, we matched
each commit to its related GitHub issue.

Table 1: Project Statistics

Edward Pyro Stan
First commit date Feb 10’16 Jun 15’17 Sep 30°11
No. of contributors 74 26 61
No. of commits 1780 853 13083
Latest commit studied ~ 992ce08 8db8972 14981a3
Lines of code 12035 11609 57770
Prog. language Python Python C++
Infrastructure Tensorflow PyTorch Own

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 2: Breakdown of Commits

Category Edward Pyro Stan)
Algorithmic/accuracy 9 10 16 35
Dimension/boundary 11 14 13 38
Numerical 1 1 17 19
Language/translation 5 7 14 26
> 26 32 60 118

3.1 Characterizing Bugs in PP Systems

Table 2 shows the distribution of the categorized commits. Column
“Category” shows category names. The second to fourth columns
show the number of commits per category in each PP system. Fi-
nally, column }| presents the sum of the commits in each bug
category.

Algorithmic/accuracy bugs. This category contains bugs due to
incorrect implementation of inference algorithms and other related
bugs in the implementations of probability distributions and statis-
tical procedures. They manifest as inaccurate, although plausible
(and therefore hard to catch) results of inference. These bugs af-
fected a variety of inference algorithms and implementations of
probability distributions in all three PP systems. In Edward, the bugs
affected three inference algorithms and two built-in distributions
(Bernoulli and Uniform). In Pyro, the bugs affected three inference
algorithms and the Cauchy distribution. In Stan, the bugs affected
two inference algorithms, one distribution (Bernoulli Logit) and
two auxiliary functions.

These bugs can be further subdivided into logical errors, mathe-
matical errors, and one regression error. Examples of logical bugs in-
clude re-normalizing already normalized data [28], “double-counting”
the values of specific variables [81], and using only the first ele-
ment instead of a whole collection to fill a tensor [75]. Examples
of mathematical errors include incomplete formulae (e.g., missing
terms [26, 77]) and wrong formulae (e.g., [30]). Finally, a regression
in Stan led to lower statistical efficiency [103].
Dimension/boundary-value bugs. These bugs occur when func-
tions do not properly handle the dimensions of input data (a scalar,
vector, matrix, or cube), the ranges of input data, and the ranges
of distribution parameters. They manifest as exceptions or spe-
cial numerical values, e.g., NaN or Inf, in the output (in the case of
boundary-value bugs). The examples of dimension bugs include
those where the functions assumed a particular dimension of input
data (e.g., scalars [25]) and crash if data with different dimension is
passed as input, or assumed a wrong dimension of output which
caused crashes in the function’s clients (e.g., [83]). One bug resulted
from using only one ordering of a list (a vector) to compute entropy,
instead of using all possible orderings (a matrix) [21].

Missing boundary condition checks often happen in implemen-
tations of various probability distributions, e.g., not checking for
boundary values of a parameter leading to NaN [82]. Such bugs typ-
ically manifest substantially late during inference, e.g., computing
log of zero resulting in NaN [80]. We also observed some off-by-one
errors (e.g. in [99, 106]), where if conditions used < instead of <.
General numerical bugs. These bugs are found in general math-
ematical functions, and may manifest as an inaccurate result or a
special value (NaN or Inf). Most of these bugs are in Stan, which
implements its own mathematical back-end, in contrast to Edward

S. Dutta et al.

and Pyro, which use external back-ends (TensorFlow and PyTorch,
respectively). Example numerical bugs that we identified include im-
proper handling of Inf (e.g., [23, 78]) or NaN (including when these
special values propagate to the output [104]), initializing Integer
values to NaN, overflow errors, and convergence bugs.

Language/translation bugs. These bugs occur due to wrong use
of features in the programming language in which the PP system is
written. They can manifest as failed builds, runtime errors, or wrong
results. These can be errors in the interface (e.g., [98], returning a
real instead of an array as expected from the API specification), er-
rors in the back-end or changes in their implementations (e.g., [30]),
errors that break compilation or error reporting (e.g., [105]), and
errors in using functionality. One functionality usage error involved
calling a stateful inference function, making different runs of the
same probabilistic program producing widely different results [22].

3.2 Discussion

We highlight several important observations from our characteri-
zation study, which motivate our approach for testing PP systems:
Observation 1: Domain knowledge is required to detect, an-
alyze, and fix bugs. Most of the inspected Algorithmic/accuracy
and Dimension/boundary-value bugs, and some Numerical bugs
require knowledge of theory of probability or inference. Bugs in the
Dimension/boundary-value category are similar to general bugs
that occur when one does not satisfy the specification of a method.
However, without specification-related assertions (which require
domain-specific knowledge, and are tedious to write) in the code,
such bugs occur in the PP systems, resulting in NaN or silent errors.
Observation 2: Algorithmic bugs require detailed reasoning
about accuracy. For many of the inference and accuracy bugs,
the developers report (in)accuracy of the results and compare the
results either to known (expected) values or against another tool
(e.g., Edward or Pyro against Stan). For algorithmic errors, existing
numerical analyses [57, 87] are typically not applicable. Identifying
errors and their causes requires probabilistic reasoning, detailed
error reports and discussions with PP system developers in order
to diagnose the error (e.g., [107]).

Observation 3: Testing PP systems requires careful genera-
tion of both programs and valid data. Reproducing many of the
bugs that we manually inspected required both a probabilistic pro-
gram and the data to run it on. The GitHub issues related to the com-
mits that we inspected had both programs (or program fragments)
and data necessary to reproduce the bug. Such data is sampled from
probability distributions and is required for setting up priors and
posteriors, distribution parameters, and as inputs for inference. This
is different from compiler testing [3, 13, 14, 53, 112, 122, 123], where
it is sufficient to simply generate programs that take no inputs and
encode arbitrary scalar values of variables.

Observation 4: Many errors are revealed by small programs.
Most GitHub issues related to the commits that we inspected had
small reproducible programs. The observation that many bugs can
be found by small programs is well-known [48], and has been used
extensively in conventional testing. While standard compiler testing
(e.g., CSmith [122]) often generates large programs to maximize
bug-finding capability, small programs seem sufficient for successful
detection and debugging in the PP system domain.

Testing Probabilistic Programming Systems

4 PROBFUZZ

ProbFuzz takes as inputs the template of the probabilistic model,
the number of programs to generate and the systems to test. The
developer writes the templates of probabilistic models in an inter-
mediate probabilistic language with holes, which represent missing
distributions, parameters, or data (Section 4.1).

Figure 3 presents the pseudo code of the ProbFuzz algorithm.
The Generator generates probabilistic models by completing holes
in the template with concrete distributions, parameters and data
(Section 4.2), resulting in a program in an intermediate language.
The Translator then translates the probabilistic program from the
intermediate language into a program that uses the API of the
target PP system (Section 4.3). Next, ProbFuzz runs the programs,
collects output, and its Program Checker computes metrics and
checks for symptoms that may reveal potentially buggy programs
(Section 4.4). Finally, ProbFuzz reports any warnings issued by the
Program Checker to the developer.

4.1 Template and Intermediate Language

ProbFuzz represents the templates and the generated programs
in an intermediate language (IR). Figure 4a presents the syntax
of the IR language of ProbFuzz. The key aspect of the template
is a hole, denoted as “??”. It represents a missing distribution or
parameter. The distributions and parameters are completed with
concrete values (from respective sets Dists and Consts) by replacing
the hole.

A template consists of four sections, which specify data, prior
distributions, model that relates posterior and prior distributions,
and the query. The data section presents the input and the output
data set(s). A data vector is a typed (multidimensional) array, which
is instantiated by ProbFuzz, or a specific list of numerical constants.
The Prior section specifies the prior distributions of the program
variables. A prior distribution can be an instance of a distribution
or a hole. Similarly, one or more parameters of the distribution can
be either expressions or holes. The expressions are typical, with
arithmetic and comparison operators. The language is similar to
the loop-free fragment of the Prob language from [41].

The Model section conditions the random variables to the specific
observations. The observe clause states that the observations of
the model specified as the first parameter are found in the vector
denoted as the second parameter (as is a standard interpretation in
most probabilistic languages). The models can also be composed
using conditionals. Finally, the Query instructs the probabilistic
language to return the marginal posterior distributions for the
specified variables, or their expected values.

Examples. Figure 4b presents a template from our experiments
and Figure 4c presents an example program that has the holes
completed. The template is for a linear regression model, which has
two sets of observations x and y (both are one-dimensional vectors
of length 10). The prior parameters are weight w, bias b, and the
noise p, with unknown distributions. The template conditions an
unspecified distribution with two parameters (the first is the linear
expression w - X + b, the second is p) on the data from the vector y.
Distribution Specification. For each distribution, ProbFuzz spec-
ifies its properties, including the names and ranges of parameters
and the range of the distribution support. Knowing the properties

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

of the distributions allows ProbFuzz to complete the template with
the concrete values of parameters.
To illustrate, the specification of the Normal distribution is:

"name" : "Normal",
"type" : "Continuous",
"support" : "Float"
"args" : [{ "name" : "mu", "type" : "float"},
{ "name" : "sigma", "type" : "float+" } 1,

It specifies that the distribution is continuous and its support (the
range of values that can be sampled from the distribution) is not
constrained. It has two parameters, the mean mu is an arbitrary
floating-point value, while the standard deviation sigma must be
positive. The support and parameters of the distribution can be
bounded. For instance, in the case of Gamma distribution, the sup-
port is only positive real numbers, and in the case of Bernoulli, the
support is {0,13.

4.2 Generator

The Generator generates a concrete program and data from the
provided template. A concrete program consists of complete IR and
data. In a concrete program, all “??” symbols have been replaced by
the corresponding distribution expressions or constant expressions
(as in Figure 4c). The user-defined program templates plus domain
knowledge about distributions and data ranges enable Generator
to achieve more targeted fuzzing.

The Generator has two components, the distribution selector,
which matches the distribution expressions with holes (“??”) in the
template and the data selector, which produces the concrete values
of the parameters of the distributions and computes the values of the
data points. For each generated program, the Generator performs
the following steps:

e Complete the distribution of the model. For the model ex-
pression, the distribution selector finds all the distributions that
can match the pattern (e.g., have two parameters) and uniformly
at random selects one of those distributions to fill in the hole.
Once fixed, this distribution provides the legal values for the
data to generate (based on the distribution support) and the
constraints on the parameters. This bounds the set of allowed
distributions of the priors in the template. For instance, if we
select the Normal distribution for the linear regression template
(Figure 4b), the model constrains the distribution of the variance
p to have positive support.

Complete the distributions of the priors. Based on the con-
straints from the model, the distribution selector randomly selects
a distribution whose support satisfies the range of values admis-
sible by the model’s parameter. To propagate the information
about distributions, we implement a simple dependence analysis
with interval analysis to keep track of the ranges. For instance, in
Figure 4 the distribution selector may choose Exponential as the
distribution of the prior for p, but not Normal (since its support
is all floating-point values, but p can have only positive values).
Complete the distribution parameters. Data selector picks
the numerical values of the parameters of the distributions with
holes using a method that randomly chooses between two strate-
gies. The first strategy randomly selects a value within the range
of the parameter, as denoted in the distribution specification. A
developer may express preference for larger or smaller values

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

INPUTS: Program count n, Template #,
PP systems under test S x €
OUTPUT: Likely bug-revealing programs report P c €
aop €
function ProsFuzz(n, t, S) bop €
Peo Dist €
fori=1tondo
prog, data « Generator(t)
Results «— @ Type =
fors € S do Data :=
prog « Translators (progp, data) Expr =
statuss, outs < ExecuteProgram(s, prog, data) P o
aram u=
Results « Results U {(statuss, outs)} R
end for Prior :=
warnings < ProgramChecker(Results) Model ==
if warnings # None then
P < P U {warnings}
end if
end for Query ==
return P Template =

end function

Figure 3: ProbFuzz Algorithm

to be inserted here. The second strategy randomly picks values
that are close to the boundary values of the parameter ranges;
these values may be either legal or illegal and can stress-test the
sensitivity of PP systems to boundary conditions and numerical
instabilities. The developer can provide a probability that prefers
one strategy over the other. For instance, in Figure 4c, data selec-
tor picks the values 0.3 and 5.2 as the parameters of the Gamma
distribution in the prior of w. Similarly, it could try generating
programs where the second parameter of Gamma (which should
be positive) is 0.0 or -1.0 to test the capability of the PP system
to identify wrong values.

e Generate the inputs/outputs. Data selector uses the input
range and formulas provided by the developer to compute ex-
pected outputs. It then randomly generates the desired number
of elements in the input vectors and computes the values in the
output vectors.

4.3 Translator

Translator produces a legal program in the language of the target PP
system. The inputs to the Translator are the concrete program and
data produced by Generator. Each PP system has its own Translator.
In addition, Translator takes a configuration file with the list of in-
ference algorithms and a mapping of distributions to corresponding
PP system-specific API calls.

Translator in Edward. First, the Inference Selector chooses an
inference algorithm that the PP system supports, based on the
concrete specification. Second, the Translator replaces distribution
names in the input programs with the corresponding API call in
Edward, and creates one AST node each for the input data (x), the
model in the program, and the selected inference. Third, several AST
nodes are created for the following: (1) one node for the posteriors
or each prior, depending on the inference algorithm to be run,
(2) a node for a placeholder for x, and (3) (optional) one node for
the proposals for each prior, which is needed for some inference
algorithms, e.g., the Metropolis-Hastings (MH) sampling algorithm.
Fourth, a dict node is created which connects the node for each
prior to its respective proposal and posterior nodes, and a dict node

Vars

Consts U {—co, 00}

{+ ==/}

{= >, ...}

{Normal, Uniform, Beta, ...}

Int | Float | Range<c, c> | Type[c]
x : Type | x :=[c*] | x :=Expr

¢ | x | Expr aop Expr | Expr bop Expr
?? | Expr

x :=2? | x :=Dist(Param™)

observe (Dist(Expr?), x)

| observe(??(Expr*), x) | x = Expr

| if (Expr) then Model else Model
posterior(x™) | expectation(x™)
Data* Priort Model* Query

S. Dutta et al.

X : Float[10]
Yi=cxx+c
=??

=??

=7?

Sz

]

observe(??(w - X + b, p), 7)
posterior(w, b, p)

(b) Linear Regression

Template

x = [1.0, ...]
7:=[2.0,...]

w = Gamma(0.3, 5.2)

b = Normal(0.3, 2.1)
p = Exponential(1.2)
observe(Normal(w - x + b, p), y)

(a) Grammar for Probabilistic Program Templates

posterior(w, b, p)

(c) Linear Regression Example

Figure 4: Grammar and Example for ProbFuzz Input Templates

is created which connects nodes for the data placeholder and the
output data, y. Fifth, the dict nodes from the last step are merged
with the node for inference. Sixth, the data node, the model node
and the inference node are combined together as the final AST.
Finally, this AST is converted into a Python program.

Translator in Pyro. The first two steps in the Translator are the
same as for Edward: select inference algorithm, replace distributions
with corresponding API calls and make AST nodes for X, the model
and the selected inference. The third step is to create a function
node for a Pyro model, a combination of posterior nodes for each
prior which are then connected to the data node. Then a function
node for a Pyro guide is created with a posterior node for each prior.
Next, if the selected inference algorithm is a variational algorithm,
an optimization algorithm is chosen together with its parameters
based on the concrete specification, and a node is created. Finally,
a node for running the inference is created. The generated AST is
converted to a Python program.

Translator in Stan. Stan’s Translator does not create ASTs. Rather,
each model is translated line by line to Stan code stored inmodel . stan
file, with data stored in data. json file. Finally, a file, driver.py is
generated and used to run the Stan model.

4.4 Program Checker

The task of the Program Checker is to decide whether output from
running the generated programs may be indicative of bugs in the PP
system on which the program was run. For Edward and Pyro, the
generated Python programs are run directly. The driver.py script
is run for Stan. Program Checker performs a battery of checks,
inspired by the bugs from our characterization study (Section 3):

e Crash checks: they find problems with unexpected termination
or assertion failures. Crash checks will output programs which
crash as likely bug revealing, since all programs generated by
ProbFuzz are syntactically and semantically valid.

o NaN and overflow checks: they will report programs that nei-
ther crash nor produce exceptions, but contain NaN as output val-
ues; as observed in Section 3, they are often related to numerical

Testing Probabilistic Programming Systems

and boundary checking problems. Programs which produce NaN
as output values are potentially bug revealing because it means
that the PP system allowed invalid computations to “succeed”,
instead of warning the developers.

o Performance checks: they report if one PP system converges
much slower than other PP system.

o Differential testing with exact result: these checkers aim to
identify accuracy bugs by comparing the results of approximate
inference with the exact result. The exact result can be obtained
in two ways: (1) using optional data generators, or (2) using exact
inference engine. For exact inference, we translate programs to
PSI [33]. Exact inference (when it scales) removes approximation
and numerical errors, modulo bugs in the exact inference tool.
This approach works when the generated programs are small.

o Differential testing with approximate results: these check-
ers aim to identify accuracy bugs by comparing the differences in
the results produced by (1) different tools and (2) different algo-
rithms within a single tool or even different versions of the same
algorithm (e.g. [107]), and (3) different interfaces to the same in-
ference algorithm. Result comparison across tools or algorithms
is useful for accuracy and numerical bugs. Comparisons across
different interfaces of the same PP system (e.g., RStan, PyStan)
can primarily help find language/translation bugs. The Program
Checker issues a warning about a program from which the results
of one approximate-inference PP system differs significantly from
all other approximate-inference PP systems and the other sys-
tems produce similar outputs, or if the outputs of all approximate
inference differ from the expected output.

Accuracy Comparisons. Analysis of accuracy is a key challenge
in testing PP systems. The computations have various sources of
noise: some inference algorithms are randomized (e.g., MCMC),
while others make algorithmic approximations (e.g., variational in-
ference). In both cases, there may be rounding errors or overflows.

To quantify the magnitude of errors, ProbFuzz allows a developer
to specify custom comparison metrics. In this paper, we compute
an accuracy metric based on relative error of the mean. Symmetric
Mean Absolute Percentage Error [114] computes the distance be-
tween the means of the posterior distributions computed by two
systems (or comparing the result from one system to the exact
result). It is computed as:

10 i - il
SMAPE(x1, ..., Xn,Y1,-. . Yp) = —) —————
e Un n; il + [yil
The arguments x1, . . ., x, are the means produced by the first sys-

tem and yy, . . ., yn are the means produced by the second system.
In contrast to the usual relative error, which divides the difference
by the value from one of the systems, SMAPE does not prefer the
result of any of the systems, and is always guaranteed to produce a
result in the range [0, 1].

A program may have an accuracy bug if the value of the metric
is above a threshold (which effectively acts as a knob for how many
programs to inspect). If so, ProbFuzz reports the generated program
as revealing a potential accuracy bug. When more than 2 systems
are involved, we do a pairwise comparison. If only one of the PP
systems shows a significant deviation from the others, ProbFuzz
reports that system as likely faulty.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

5 QUANTITATIVE EVALUATION

We describe the research questions that we answer, our experimen-
tal setup and the quantitative aspects of the results in this paper.
We answer the following research questions:

RQ1 How many new bugs per category does ProbFuzz find?
RQ2 How many categories of existing bugs does ProbFuzz find?
RQ3 How sensitive is the accuracy metric to the threshold choice?

RQ4 How does ProbFuzz compare with conventional fuzzing?

Experimental Setup. For our experiments, we used four templates.
We discussed linear regression template in Section 4.1. Other tem-
plates include simple posterior template, which samples from a single
distribution, with a prior for each of its parameters and conditions
on data, conditional template, which chooses between two models
based on the if expression, and multiple linear regression template
with a weight vector for the prior instead of scalar as in linear re-
gression and conditioned on 2-dimensional data sets. We also varied
the data vector sizes. We generated 1000 programs per template for
each tool. We group the programs based on the determination that
Program Checker makes, and then randomly sample a subset of
programs in each class for manual inspection. To find performance
bugs, we randomly sampled for manual inspection the programs
that did not run to completion in the default time-out limit of 3
mins. For accuracy bugs we used the accuracy metric discussed
in Section 4.4 to select wrong programs to manually inspect. The
threshold for SMAPE that we used in selecting the programs for our
manual inspection was 0.1. We ran all experiments on an Intel
Xeon 3.60GHZ machine with 6 cores and 32GB RAM.

5.1 RQ1: New Bugs Discovered by ProbFuzz

Table 3 shows the number per category of the new bugs found
during our evaluation of ProbFuzz. Columns (except }') are the PP
systems in our study, while the rows (except),) are the various
categories for which found some bugs that we found. Bug cate-
gories were described in Section 3. We counted as bugs either as
the number of distinct code locations where we made a fix in pull
requests, or one bug for each issue that we submitted to the devel-
opers without a corresponding pull request. Note that, by counting
each (yet-to-be-fixed) submitted issue as one bug, we are under
counting the number of bugs in the code, and the actual number of
bugs that ProbFuzz found in our experiments is likely higher.

We submitted 15 issues (each one counts as one bug), and 7 pull
requests which fixed 51 bugs in the code. The results show that
the dimension/boundary-value bugs are the most common among
the bugs that we found. We provide more details in Section 6.1
about how prone the PP systems are to dimension/boundary-value
bugs. Among the PP systems, we found the least number of bugs in
Stan, followed by Edward and then Pyro. Interestingly, this matches
the maturity of the PP systems. We also discuss in Section 6.1 one
step that Stan developers have taken over the years to reduce the
amount of bugs in this category.

One key benefit that ProbFuzz provides in the testing of PP
system is the ability to find accuracy bugs, and not just bugs that
lead to crashes or invalid values (e.g., NaN or Inf) in the output.
Accuracy bugs are much more tricky to find and debug; coming up

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 3: New Bugs per Category Discovered by ProbFuzz

Category Edward Pyro Stan 3}
Algorithmic/accuracy 2 1 2 5
Dimension/boundary 13 41 0 54
Numerical 0 0 3 3
Language/translation 1 3 1 5
> 16 45 6 67

with oracles that catch them is quite involved and requires domain
knowledge. As shown in Table 3, we found 5 potential accuracy
bugs in all three PP systems during our manual inspection.

We reported all the bugs in Table 3 to the developers of each
PP system. So far, developers have accepted 51, rejected 8, 7 are
still pending and 1 was already fixed before we could submit it; 30
accepted bugs were in a single pull request to PyTorch.

5.2 RQ2: Old Bugs Rediscovered by ProbFuzz

This experiment checks whether ProbFuzz can catch a variety of
previously fixed bugs that we identified during our characterization
study (Section 3). For each PP system, we attempted to reproduce
at least one bug per category, such that they cover all categories
of interest (Algorithmic/accuracy, Dimension/boundary-value, and
Numerical). We did not target Language/Translation bugs, which
are specific to each PP system and targeting them requires more in-
volved back-ends. We first checked if these bugs may be reproduced
by re-running the tests that failed due to the bug or programs in the
corresponding GitHub issue. We stopped if we could no longer run
the tests/programs. We did not try to reproduce bugs that cannot be
exercised by our four templates. Since some older versions of the PP
systems use different syntax and API to specify models or have since
undergone major changes, we had to create four additional versions
of Translator (for bugs [24, 25, 81, 104]). In addition, we found the
versions of the infrastructure (PyTorch and TensorFlow) which were
in use in the older versions. For accuracy and numerical bugs, we
manually reasoned whether the difference was caused by the bug.

Table 4 shows the numbers and links to bugs that we success-
fully reproduced with ProbFuzz. For each of these bugs, ProbFuzz
generated a program and the data to exercise it. Each cell contains
the bug count in each category per PP system. In addition, each
cell contains the exact reference to the commit with the bug fix.

The results show that ProbFuzz successfully found bugs in eight
out of nine categories of interest. Out of these bugs, six ([24, 25,
76, 79, 97, 100]) were found using the simple posterior template,
three using the linear regression template [27, 81, 104] and one us-
ing multiple linear regression template [101]. Overall, these results
demonstrate that ProbFuzz could have caught a variety of existing
bugs, had it been available prior to the discovery of those bugs. Com-
parison of Tables 3 and 4 shows that ProbFuzz was able to reproduce
existing bugs in categories where we did not find any new bug on
recent versions of the PP systems (e.g, Stan-Dimension/boundary).
Also, ProbFuzz reproduced the only previously known numerical
bugs in Edward and Pyro from our characterization study.

5.3 RQ3: Sensitivity of Accuracy Threshold

The number of programs to inspect depends on the threshold set for
the accuracy metric. Figure 5 presents the sensitivity of the number

S. Dutta et al.

Table 4: Old Bugs per Category Rediscovered by ProbFuzz

Category Edward Pyro Stan >
Algorithmic/accuracy 1[27] 1[81] 0 2
Dimension/boundary 1[25] 1[76] 2[97,101] 4
Numerical 1[24] 1[79] 2[100,104] 4
Language/translation n/a n/a n/a n/a
> 3 3 4 10

of programs reported to potentially reveal accuracy problems as a
function of the bound on the SMAPE metric for the linear regression
template. The X-axis presents the threshold. The Y-axis presents
the fraction of the programs whose accuracy metric (compared to
the reference solution) is above the threshold. For the computation,
we removed (1) the programs that crashed, (2) the programs that
resulted in NaN, and (3) the programs that timed out.

The results show that the threshold value can serve as a knob for
the fraction of the programs to return. For instance, if the threshold
is 0.8, then the number of programs with large accuracy loss is
less than 10% for Pyro and Stan, and around 14% for Edward. Stan
shows an interesting trend of having many programs that have
small accuracy loss of the mean, while Edward and Pyro have more
programs that have larger accuracy differences.

- Edward Pyro Stan

§ 1 1 1

g 0.8 | 0.8 | 0.8 |

& 0.6 0.6 0.6

S 0.4 0.4 0.4

S 0.2 0.2 0.2

A N R B 0 77 O 77

w 0246381 0246381 0246381
SMAPE SMAPE SMAPE

Figure 5: Sensitivity of Accuracy Metric

5.4 ROQ4: Benefit of Domain Knowledge

We compared our results with an “uninformed” fuzzer that does
not utilize domain knowledge about distributions and legal ranges.
Table 5 shows the detailed comparison for 1000 generated programs
per tool per template. Each cell contains the percentage of gener-
ated programs that produced results without crashing, numerical
errors, or timeout for Uninformed ("U’) or Informed (’T’) fuzzer. On
average, less than 21% (Stan 6.35%, Edward 49.07%, Pyro 5.82%)
of programs generated by the uninformed fuzzer produce useful
results, compared to over 84% (Stan 89.35%, Edward 80.3%, Pyro
83.2%) with ProbFuzz. As such, uninformed approach can be fit for
boundary-condition bugs, e.g., when a system fails to recognize a
program with wrong values, but it will not be efficient for bugs that
can be revealed by only well-formed probabilistic programs.

Table 5: Comparison of Informed vs Uninformed Fuzzing

Template Stan Edward Pyro

U I U I U I
Simple 16.6 934 525 80.2 140 87.2
LR 6.6 943 433 80.7 52 797
MLR 1.2 796 438 812 41 833

Conditional 1.0 99.0 56.7 79.1 0.0 82.6

Testing Probabilistic Programming Systems

6 QUALITATIVE ANALYSIS

During our development and evaluation of ProbFuzz, we encoun-
tered several potential bugs in PP systems for which we created
fixes and submitted pull requests to the developers. We made fixes
in Edward, Pyro, Stan, and also contributed patches to the underly-
ing frameworks, PyTorch and TensorFlow. We present interesting
cases, lessons learned, and developer responses.

6.1 Dimension/Boundary Bugs are Common

Dimension/boundary-value bugs accounted for 54 previously un-
known bugs, and 38 bugs in our characterization study. In Pyro,
we found 41 bugs in this category. One of these bugs in Pyro would
lead to a crash whenever the input data is of size 1; another bug
caused an overflow in the Adam Optimizer. We also found simi-
lar, previously unknown Dimension/boundary-value bugs in Ed-
ward: four bugs were also due to failure to check that parameter
values are in the correct range. Interestingly, ProbFuzz did not
find any previously unknown dimension/boundary-value bugs in
Stan, despite the fact that our characterization study revealed eight
dimension/boundary-value bugs that were previously reported in
Stan. We attributed this to Stan’s relative maturity, compared with
Pyro and Edward. Indeed, since March 2014, Stan developers have
added a milestone to every major release with the title, “make sure
all distributions throw exceptions at undefined boundaries” [9].
Lesson Learned: The similarity of dimension/boundary-value bugs
found across PP systems suggests that that these bugs are commonly
introduced by the developers of the PP systems that we studied.
Going forward, developers should continuously test their proba-
bilistic codes for this kind of problems. Automated testing, such as
ProbFuzz, can be quite effective for these problems.

6.2 Accuracy Problems are Hard to Analyze

Accuracy problems can be difficult to identify and debug, and they
can have serious consequences. Section 2 presented one such prob-
lem. While this problem was present in Stan, it is interesting that
Stan’s precursor, BUGS, which shares most of its modeling syntax
and principles, computes the correct result. For a non-expert, it is of-
ten hard to figure out the reasons behind this discrepancy. Next, we
provide some insights into how we analyzed this particular case.
We observed that the error is reproduced for any value of the
parameters of Beta distribution, which is the prior for p. Stan pro-
duced warning messages stating that the random variable used for
computing the beta logpdf in a particular step is negative but was
expected to be positive. The Stan manual describes such messages
as follows: Warning messages arise in circumstances from which the
underlying program can continue to operate [108]. Stan often con-
verges to the correct result despite such warnings, but in this case,
it did not. When such warnings persist, Stan developers suggest
“investigating the arithmetic stability of the Stan program” [108].
One way to address the accuracy problem is to change the model.
Stan developers often recommend to manually bound the vari-
ables that have finite support [109]. For p in Figure 2a, we can
set the bounds as follows: real(lower=90, upper=1)p; This makes
Stan produce the correct output: 7.0. The origin of the problem
lies in the way Stan does sampling. For any sampling statement
of the form: p ~beta(a,b), Stan computes the log probability as:

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

target +=beta_lpdf(p | a,b) and updates the log density (logpdf) of
the model. Beta distribution has a support of (0, 1). If p is assigned
a value outside this range, it causes logpdf to be undefined, which
affects convergence. When the bounds are manually bound, Stan
ensures that the parameter is in the valid range.

Such properties that are important for inference are not enforced.
Stan’s development has been influenced by “Folk Theorem” [96],
which implies that in case of a wrong inference, the problem can
be overcome by changing the model, and moreover the inference
algorithms should not be made to work for various uncommon
extreme program/data cases [96]. However, the “Folk Theorem”
assumes that a developer has an intuition about the correct result,
which may often not be the case as the PP systems are becoming
mainstream. To help developers overcome such challenges, PP sys-
tems should provide additional information about the problems
in the interaction between the model and the system. Recently,
Stan developers proposed a “pedantic mode”, as a way to diagnose
various errors and bad modeling practices before running the in-
ference [110], including range checks. We find this an interesting
direction that can demonstrate the power of both probabilistic rea-
soning and static analysis, similar to lightweight static analyses in
the traditional software development, e.g., [6].

Lesson Learned: Debugging accuracy problems requires not only
domain knowledge but also a reasonable understanding of the PP
system under test. The warning messages often provide hints if
there is something wrong with the model. But the messages might
not be informative enough to guide the user in fixing the model. This
parallels the observations from compiler research on the importance
of informative warnings for subsequent developer action [4, 5, 112].

Going forward, we note a promising application of static analysis
to provide explicit hints about the model and its interaction with
the inference algorithm without having to run the program. Like in
compilers, they could provide “useful warnings to alert developers to
potentially problematic code fragments” and “suggestions to eliminate
the warning” [112] in the probabilistic setting. Tools like ProbFuzz
have the potential to empirically discover the kinds of models that
do not work well with a specific inference algorithm and inform
such static analysis.

6.3 Fixing Bugs in PP systems is Non-Trivial

We found out that fixing the bugs, even the relatively straightfor-
ward dimension/boundary-value ones, is highly non-trivial and
often involves changes to the design of the infrastructure (e.g.,
PyTorch and TensorFlow), that PP systems are built on.

As an example of a non-trivial problem, we reported a bug to Stan
developers, which appears in some situations when the model is
provided with an empty data array. In those cases the programs fails
unexpectedly. The developers acknowledged the issue immediately,
but even after an extensive discussion, the developers still have not
been able to resolve the problem after several months.

In Edward, we submitted a pull request to ensure that the n_-
samples parameter of KLPQ inference was > 0. The developers
asked for the same fix to be made in several places in the KLQP
inference: “Cool! Can you also add this change to klap.py for each
initialize() method?” We did as requested and our pull request
was accepted and merged.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

In Pyro, we identified that many distributions used from PyTorch

do not have range checks. As we were discussing the potential fix
with the developers, a PyTorch contributor independently started
implementing their version of the fix. We discovered that the con-
tributor’s proposed fix had several bugs. Our tests that revealed bugs
in the contributor’s fix were driven by the failures that we had seen
while running ProbFuzz-generated programs. Consequently, the
contributor agreed to let us lead the fix, which has been approved
for merging to the PyTorch repository.
Lesson Learned: Bugs in PP systems are not trivial to fix. Tests
generated by ProbFuzz can help identify the causes of the prob-
lems. Moreover, automated testing can help discover incorrect
and incomplete fixes.

6.4 Fixes Extend Across System Boundaries

As we were analyzing bugs and developing fixes, we found out that
the failures that manifest in a PP system are often due to faults in
the underlying infrastructure (PyTorch and TensorFlow). Therefore,
some of the fixes we submitted were accepted by the developers
of the underlying infrastructure. The accepted changes include a
part of distribution checks in PyTorch plus many accompanying
test cases and a fix to a bound for error reporting in TensorFlow.

We submitted our initial issues to the developers of Edward and
Pyro, and they would typically direct us to propagate the fix to the
underlying infrastructure. For Edward, the developer’s response
to our request to enable detailed checking of distribution ranges
was “That’s an interesting suggestion...potentially useful utility. Can
you raise this in TensorFlow?” In Pyro, we submitted a pull request
which added a check to prevent division by zero errors. Multiple
Pyro developers responded and asked us to make the checks in
PyTorch, so more people in the community will benefit: “hello.
thanks for the contribution! ... a more appropriate place... would be in
pytorch... Thanks, this looks helpful...Thumbs up! I agree the PyTorch
folks would appreciate better error checking, then a larger community
could benefit from this fix.” The fix was accepted by PyTorch.
Lesson Learned: In PP systems, the errors and fixes can often
extend across the boundaries of individual systems. ProbFuzz was
effective in identifying such bugs since it analyzed and compared
the end-to-end results of these composed systems.

7 DISCUSSION

Comparison with Traditional Testing Approaches. Inference
bugs often require probabilistic reasoning and reasoning about ac-
curacy, using, e.g., domain-specific oracles, metamorphic relations,
or multiple implementations. As such, this category of bugs can
be hard to catch using traditional testing techniques. Common
techniques, such as coverage-based testing, would have problems
because many of these bugs were caused by “faults of omission” [73].
Further, even bugs in covered code may require special values to
manifest. Mutation testing of PP system code can potentially iden-
tify some bugs that result in program crashes or special values, but
non-equivalent mutant survivals may indicate valid approxima-
tions rather than bugs [45], especially as tests in PP systems often
only check whether the result lies in a loosely defined interval.
For the other bug categories, we give examples of previously un-
known bugs that illustrate the advance of ProbFuzz over traditional
testing approaches. For example, a dimension/boundary-value bug

S. Dutta et al.

in Pyro manifested only when required parameters in two differ-
ent functions were simultaneously out of acceptable ranges [20].
Conventional boundary-value analysis that targets one function
at a time will not reveal this bug. As another example, in Edward,
intermediate floating-point values produced by the SGLD inference
algorithm led to NaN output when those values are “close enough” to
the support bound [91]. Traditional boundary-value analysis may
need to try many values near the bound to catch this bug. This bug
remains open even after two workarounds that required advanced
domain knowledge from the Edward developers.

A language/translation bug in Stan led to program crashes only
on empty int arrays in the data, but not on empty real arrays [111].
Empty arrays are allowed in the data. The root-cause of the bug
was that empty int arrays were implemented to be of data type
float. Interestingly, the bug does not manifest in Stan itself, but
in Stan’s PyStan and RStan front-ends. Without the combination of
domain knowledge on valid data elements and fuzzing, it will be
difficult to catch such bugs with traditional testing techniques.

Scope. In our experiments, we used four templates, which focused
on simple probabilistic models. Simple models can help developers
understand potentially faulty executions and they were effective in
finding bugs in the PP systems, but we did not aim for completeness
of models in our evaluation. Going forward, PP system developers
may also be interested in other common models that can be rep-
resented as templates in our language (e.g., hierarchical models,
mixture models), and can be used to test various inference proce-
dures, general or specialized for different model classes. However,
ProbFuzz cannot generate arbitrary probabilistic programs, since
its template language does not support while loops. Also, ProbFuzz
is not suited for bugs that require precise analysis, e.g., [29, 102].

Threats to Validity. They include internal, external, and construct.

Internal. The results of our bug study depend on the set of PP
systems and bugs we examined. We mitigated this risk by study-
ing real bugs in three state-of-the-art PP systems. We may have
wrongly characterized existing bugs as being inference-related. To
mitigate this, two coauthors independently inspected the bugs and
(when possible) the corresponding GitHub issues. We only mark
a bug to be inference related if both coauthors eventually agree,
thus achieving a conservative estimate of the number of inference-
related bugs. We mitigate ProbFuzz implementation errors with
unit testing. As differential testing may wrongly flag a program as
potentially buggy, so we had multiple rounds of discussion among
ourselves, and finally reported potential bugs to the PP system
developers to make the final decision.

External. The results of the characterization study and ProbFuzz
may not generalize to all PP systems. Certain aspects of our ex-
perimental design help to mitigate this risk. The three PP systems
are being actively developed, well-tested, and adopted. We also
demonstrated that ProbFuzz can reproduce existing bugs in each of
the three bug categories across the PP systems.

Construct. ProbFuzz is designed to catch the categories of bugs
identified by our study and may not find arbitrary bugs in PP
systems. Discovery of these bugs is not exclusive to ProbFuzz. Other
general and emerging testing techniques can, in principle, find some
of the bugs identified in our evaluation.

Testing Probabilistic Programming Systems

8 RELATED WORK

Verification and analysis of probabilistic programs. There are
various approaches for verification of probabilisitic programs, in-
cluding probabilistic abstract interpretation [62, 66], symbolic exe-
cution [7, 32, 34, 59], probabilistic model checking [50], and other
methods [16, 67, 70, 88]. Unlike these systems, ProbFuzz aims to
find bugs in the systems on which probabilistic programs run, and
not for debugging or analyzing probabilistic programs.

Program Generation for Compiler and System Testing. Sev-
eral techniques have been proposed for generating programs that
are used in system testing. These include techniques for generating
programs to test compilers [3, 13, 14, 52-54, 56, 112, 122, 123] and to
test refactoring engines and symbolic execution engines [18, 37, 49].
ProbFuzz also generates programs, but does so for a different class
of systems: PP systems, which are characterized by various prob-
abilistic constraints on how to construct programs and measure
accuracy of the output (instead of binary correctness). One techni-
cal difference between ProbFuzz and earlier program-generation
approaches is that ProbFuzz can generate programs in multiple
languages—we currently generate Stan and Python from ProbFuzz,
but more can be easily added. Lastly, ProbFuzz generates both pro-
grams and the data needed to run the programs, whereas all prior
techniques generate only the programs (for compiler and system
testing), or only the data (for testing programs).

Fuzzing. Researchers have previously proposed many fuzzing tech-
niques [38, 39, 47, 60, 63, 65, 72, 74, 92, 93, 113, 122]. Grammar-based
fuzzers [38, 63, 93, 122] encode knowledge about the structure of
valid programs (more generally, inputs), but have no knowledge
about the domain for which programs are typically written. The
closest fuzzing approach that we found to ProbFuzz in terms of
encoding domain knowledge is LangFuzz [47]. LangFuzz improves
grammar-based fuzzing by first generating valid programs accord-
ing to the grammar, and then mutating the programs based on
knowledge about programs that previously caused invalid behavior.
Therefore, LangFuzz incorporates domain knowledge in the form of
historical invalid behaviors. In contrast to LangFuzz, the generation
of programs by ProbFuzz already incorporates domain knowledge,
without needing to perform any mutation or consider history.

Differential and Metamorphic Testing. Differential testing [43,
64, 120], or multiple-implementation testing [15, 55, 94, 115] use
multiple implementations as oracles to find programs that can
likely reveal bugs in PP system. ProbFuzz uses such approach in
its Program Checker. Many problems in machine learning do not
have a reference result, known as the ‘no oracle’ problem [68]. One
solution to this problem is metamorphic testing [11, 12, 42, 58, 68,
69, 89, 121, 124], where metamorphic relations between the inputs
and outputs of a program (or function) are leveraged to find inputs
which cause outputs to diverge. Because metamorphic relations are
hard to design, Srisakaokul et al. [94] recently proposed multiple-
implementation testing of supervised machine-learning algorithms
to find bugs. Implementations which classify differently from the
majority are considered potentially buggy. Our differential testing
of multiple inference algorithms is similar to [94].

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

9 CONCLUSION

We presented the first study of existing bugs in probabilistic pro-
gramming systems (PP systems), and proposed ProbFuzz for testing
for such bugs. ProbFuzz generates probabilistic programs from a
user-specified template for three PP systems: Edward, Pyro, and
Stan. Our study of historical bugs in Edward, Pyro, and Stan showed
that numerical bugs, accuracy bugs and dimensional and boundary-
value bugs form the majority of bugs. We demonstrated the ease of
extending ProbFuzz by supporting several PP system versions in
our study, and the applicability of ProbFuzz by showing that it can
find existing bugs in the aforementioned categories in all three PP
systems. ProbFuzz is already providing practical value: we reported
67 previously unknown bugs that we found by running ProbFuzz
on recent versions of the three PP systems. We created pull requests
with fixes for many of these bugs, 51 of which have been accepted
by the developers. We believe that ProbFuzz opens a new line of
research on testing probabilistic programming systems.

10 ACKNOWLEDGEMENTS

This work was funded in part by NSF Grants No. CCF-1703637,
CCF-1629431, and CCF-1421503. We would also like to thank Milos
Gligoric, Darko Marinov, Martin Rinard, and the anonymous re-
viewers for their comments on the research presented in this paper.

REFERENCES

[1] Eric Atkinson and Michael Carbin. 2016. Towards correct-by-construction
probabilistic inference. In NIPS Workshop on Machine Learning Systems.

[2] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and
Abraham Bernstein. 2010. The missing links: bugs and bug-fix commits. In FSE.

[3] Antoine Balestrat. 2018. CCG - random C Code Generator. https://github.com/
Mrktn/ccg.

[4] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error
messages?. In ICSE.

[5] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source
software. In SANER.

[6] AlBessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. CACM
53, 2 (2010).

[7] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, and Corina S Pasdreanu.
2015. Iterative distribution-aware sampling for probabilistic symbolic execution.
In FSE.

[8] Johannes Borgstrém, Andrew D Gordon, Michael Greenberg, James Margetson,
and Jurgen Van Gael. 2011. Measure transformer semantics for Bayesian machine
learning. In ESOP.

[9] Bob Carpenter. 2017. https://github.com/stan-dev/stan/issues/603.

[10] Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Michael A Brubaker, Jigiang Guo, Peter Li, Allen Riddell,
et al. 2016. Stan: A probabilistic programming language. JSTATSOFT 20, 2
(2016).

[11] Tsong Y Chen, Shing C Cheung, and Siu Ming Yiu. 1998. Metamorphic testing: a

new approach for generating next test cases. Technical Report. CS Department,

Hong Kong University of Science and Technology.

Tsong Yueh Chen, Jianqiang Feng, and TH Tse. 2002. Metamorphic testing of

programs on partial differential equations: a case study. In COMPSAC.

[13] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric

Eide, and John Regehr. 2013. Taming compiler fuzzers. In PLDL

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.

Coverage-directed differential testing of JVM implementations. In PLDL

Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:

Automated identification of cross-browser issues in web applications. In 2010

IEEE International Conference on Software Maintenance. IEEE, 1-10.

Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and

Johannes Borgstrom. 2013. Bayesian Inference Using Data Flow Analysis. In

FSE.

[12

[14

[15

[16

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

[17] Gregory F Cooper. 1990. The computational complexity of probabilistic inference

using Bayesian belief networks. Artificial intelligence 42, 2 (1990).
[18

Testing of Refactoring Engines. In ESEC/FSE.
[19

Press, 509-519.

[20] Domain Error in arguments 2018. https://github.com/uber/pyro/issues/875.
[21] Edward Commit 002a27e 2016. https://github.com/blei-lab/edward/commit/

002a27e.

[22] Edward Commit 10118db 2016. https://github.com/blei-lab/edward/commit/

10118db.

[23] Edward Commit 3616d41 2016. https://github.com/blei-lab/edward/commit/

3616d41.

[24] Edward commit 3616d41 2016. https://github.com/blei-lab/edward/commit/

3616d41.

[25] Edward commit 43d8a39 2016. https://github.com/blei-lab/edward/commit/

43d8a39.

[26] Edward Commit 79f4193 2017. https://github.com/blei-lab/edward/commit/

794193,

[27] Edward commit 79f4193 2017. https://github.com/blei-lab/edward/commit/

79f4193.

[28] Edward Commit 972a9d9 2017. https://github.com/blei-lab/edward/commit/

972a9d9.

[29] Edward Commit c9afcb1f 2017. https://github.com/blei-lab/edward/commit/

c9afcbl.

[30] Edward Commit fe01657 2016. https://github.com/blei-lab/edward/commit/

fe01657.
[31] EdwardWebPage 2018. Edward. http://edwardlib.org.

[32] Antonio Filieri, Corina S Pasareanu, and Willem Visser. 2013. Reliability analysis

in symbolic pathfinder. In ICSE.

[33] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic

Inference for Probabilistic Programs. In CAV.

[34] Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. 2012. Probabilistic

symbolic execution. In ISSTA.

[35] Andrew Gelman, Daniel Lee, and Jigiang Guo. 2015. Stan A Probabilistic Pro-
qlang
gramming Language for Bayesian Inference and Optimization. Journal of Edu-

cational and Behavioral Statistics (2015).

[36] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. 1994. A language

and program for complex Bayesian modelling. The Statistician (1994).

[37] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kun-
cak, and Darko Marinov. 2010. Test generation through programming in
UDITA. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 1. ACM, 225-234.
[38

Whitebox Fuzzing. In PLDIL
[39

whitebox fuzz testing.. In NDSS.

[40] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and
Joshua B Tenenbaum. 2012. Church: a language for generative models. arXiv

preprint arXiv:1206.3255 (2012).
[41

2014. Probabilistic programming. In FoSE.

S
)

COMPSAC.

[43] Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized differential

testing as a prelude to formal verification. In ICSE.
[44

reliability of MCMC inference with bidirectional Monte Carlo. In NIPS.

[45] Farah Hariri, August Shi, Owolabi Legunsen, Milos Gligoric, Sarfraz Khurshid,
and Sasa Misailovic. 2018. Approximate Transformations as Mutation Operators.

In ICST.
[46

(47

Fragments. In USENIX Security.
[48

software design feature with a counterexample detector. TSE 22, 7 (1996).

N
o)

ing the Costs of Bounded-Exhaustive Testing. In FASE.
[50

Programs. ATVA (2016).
[51

Automatic Variational Inference in Stan. In NIPS.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated
Anthony Di Franco, Hui Guo, and Cindy Rubio-Gonzalez. 2017. A comprehen-

sive study of real-world numerical bug characteristics. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani.

Arnaud Gotlieb and Bernard Botella. 2003. Automated metamorphic testing. In

Roger B Grosse, Siddharth Ancha, and Daniel M Roy. 2016. Measuring the

Shawn Hershey, Jeff Bernstein, Bill Bradley, Andrew Schweitzer, Noah Stein,
Theo Weber, and Ben Vigoda. 2012. Accelerating inference: towards a full
language, compiler and hardware stack. arXiv preprint arXiv:1212.2991 (2012).

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Daniel Jackson and Craig A Damon. 1996. Elements of style: Analyzing a
Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov. 2009. Reduc-

Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-Pieter Ka-
toen, and Lukas Westhofen. 2016. Bounded Model Checking for Probabilistic

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015.

[52]

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63]

[64

[65

[66]

[67

[68

[69

[70

[71

[72

[73]

[74]

[75

[83

[87]

[88

[89

[90

S. Dutta et al.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via
Equivalence Modulo Inputs. In PLDIL

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In OOPSLA.

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-testing of
Link-time Optimizers. In ISSTA.

Nuo Li, JeeHyun Hwang, and Tao Xie. 2008. Multiple-implementation Testing
for XACML Implementations. In TAV-WEB.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core Compiler Fuzzing. In PLDL

Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F Donaldson, Rafael
Zahl, and Klaus Wehrle. 2017. Floating-point symbolic execution: A case study
in N-version programming. In ASE.

Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. 2014. How
effectively does metamorphic testing alleviate the oracle problem? TSE 40, 1
(2014).

Kasper Luckow, Corina S Pasdreanu, Matthew B Dwyer, Antonio Filieri, and
Willem Visser. 2014. Exact and approximate probabilistic symbolic execution
for nondeterministic programs. In ASE.

Rupak Majumdar and Ru-Gang Xu. 2007. Directed Test Generation Using
Symbolic Grammars. In ASE.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-
order probabilistic programming platform with programmable inference. arXiv
preprint 1404.0099 (2014).

Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. 2013.
Dynamic enforcement of knowledge-based security policies using probabilistic
abstract interpretation. JCS 21, 4 (2013).

Peter M. Maurer. 1990. Generating test data with enhanced context-free gram-
mars. Ieee Software 7, 4 (1990), 50-55.

William M McKeeman. 1998. Differential testing for software. DEC Digital
Technical Journal 10, 1 (1998).

Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. CACM 33, 12 (1990).

David Monniaux. 2000. Abstract interpretation of probabilistic semantics. In
SAS.

Carroll Morgan, Annabelle Mclver, and Karen Seidel. 1996. Probabilistic predi-
cate transformers. TOPLAS 18, 3 (1996).

Christian Murphy and Gail E Kaiser. 2010. Improving the dependability of
machine learning applications. Technical Report. CS Department, Columbia
University.

Christian Murphy, Gail E Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing.. In SEKE.
Chandrakana Nandi, Dan Grossman, Adrian Sampson, Todd Mytkowicz, and
Kathryn S McKinley. 2017. Debugging probabilistic programs. In MAPL.
Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel. 2014. R2:
An efficient MCMC sampler for probabilistic programs. In AAAL

Peter Oehlert. 2005. Violating Assumptions with Fuzzing. IEEE Security and
Privacy 3, 2 (2005).

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In ICSE.

Paul Purdom. 1972. A sentence generator for testing parsers. BIT Numerical
Mathematics 12, 3 (1972).

Pyro Commit 0f1d27e 2017. https://github.com/uber/pyro/commit/0f1d27e.
Pyro commit 3671b06 2017. https://github.com/uber/pyro/commit/3671b06.
Pyro Commit 6e26f5e 2017. https://github.com/uber/pyro/commit/6e26f5e.
Pyro Commit 7b6cf58 2017. https://github.com/uber/pyro/commit/7b6cf58.
Pyro commit 7b6cf58 2017. https://github.com/uber/pyro/commit/7b6cf58.
Pyro Commit 8c14f36 2017. https://github.com/uber/pyro/commit/8c14£36.
Pyro Commit b94f06a 2017. https://github.com/uber/pyro/commit/b94f06a.
Pyro Commit f5a51fe 2017. https://github.com/uber/pyro/commit/f5a51f.
Pyro Issue 303 2017. https://github.com/uber/pyro/issues/303.

PyroWebPage 2018. Pyro. http://pyro.ai.

PyTorchWebPage 2018. PyTorch. http://pytorch.org.

Michael Rath, Jacob Rendall, Jin LC Guo, Jane Cleland-Huang, and Patrick Mader.
2018. Traceability in the wild: automatically augmenting incomplete trace links.
In ICSE.

Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning assistant for floating-point precision. In SC.
Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013.
Static analysis for probabilistic programs: inferring whole program properties
from finitely many paths. ACM SIGPLAN Notices 48, 6 (2013).

Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016.
A survey on metamorphic testing. IEEE Transactions on software engineering 42,
9 (2016), 805-824.

Daniel Selsam, Percy Liang, and David L Dill. 2017. Developing Bug-
Free Machine Learning Systems With Formal Mathematics. arXiv preprint

Testing Probabilistic Programming Systems ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

arXiv:1706.08605 (2017). [111] Stan throws error with empty array 2018. https://github.com/stan-dev/pystan/
[91] SGLD produces Nan in output 2018. https://github.com/blei-lab/edward/issues/ issues/437.

859. [112] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyzing compiler
[92] Guogiang Shu, Yating Hsu, and David Lee. 2008. Detecting Communication warning defects. In ICSE.

Protocol Security Flaws by Formal Fuzz Testing and Machine Learning. In [113] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force

FORTE. Vulnerability Discovery. Addison-Wesley Professional.

Emin Giin Sirer and Brian N. Bershad. 1999. Using Production Grammars in
Software Testing. In DSL.

Siwakorn Srisakaokul, Zhengkai Wu, Angello Astorga, Oreoluwa Alebiosu,
and Tao Xie. 2018. Multiple-Implementation Testing of Supervised Learning
Software. In EDSMLS.

Symmetric Mean Absolute Percentage Error. Armstrong 1985. http://www.
forecastingprinciples.com/files/LRF-Ch13b.pdf.

Kunal Taneja, Nuo Li, Madhuri R. Marri, Tao Xie, and Nikolai Tillmann. 2010.
MIiTV: Multiple-implementation Testing of User-input Validators for Web Ap-
plications. In ASE.

[95] Stan 2018. http://mc-stan.org.
[96] Stan Best Practices 2018.
Stan-Best-Practices.

TensorFlowWebPage 2018. TensorFlow. https://www.tensorflow.org.
Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Mur-
phy, and David M. Blei. 2017. Deep probabilistic programming. In ICLR.

e
ey
AN

https://github.com/stan-dev/stan/wiki/

[97] Stan Commit 04fcb74 2013. https://github.com/stan-dev/stan/commit/04fcb74. [118] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
[98] Stan Commit 2fc94d4 2017. https://github.com/stan-dev/stan/commit/2fc94d4. David M. Blei. 2016. Edward: A library for probabilistic modeling, inference,
[99] Stan Commit 40¢8224 2016. https://github.com/stan-dev/stan/commit/40c8224. and criticism. arXiv (2016).
[100] Stan commit 45a82fd 2015. https://github.com/stan-dev/stan/commit/45a82fd. [119] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A new
[101] Stan Commit 5224850 2015. https://github.com/stan-dev/stan/commit/5224850. approach to probabilistic programming inference. In AISTATS.
[102] Stan Commit 5845db97 2016. https://github.com/stan-dev/stan/commit/ [120] Tao Xie, Kunal Taneja, Shreyas Kale, and Darko Marinov. 2007. Towards a
5845db9. framework for differential unit testing of object-oriented programs. In AST.
[103] Stan Commit 7a98bd2 2016. https://github.com/stan-dev/stan/commit/7a98bd2. [121] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
[104] Stan Commit 99289c85 2015. https://github.com/stan-dev/stan/commit/ Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
99289¢85. metamorphic testing. JSS 84, 4 (2011).
[105] Stan Commit ae423b2 2017. https://github.com/stan-dev/stan/commit/ae423b2. [122] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
[106] Stan Commit b8d5086 2013. https://github.com/stan-dev/stan/commit/b8d5086. standing bugs in C compilers. In PLDIL
[107] Stan Issue #2178 2017. https://github.com/stan-dev/stan/issues/2178. [123] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
[108] Stan Language Manual. Appendix D. 2018. http://mc-stan.org/users/ meration for rigorous compiler testing. In PLDL
documentation/index.html. [124] Zhi Quan Zhou, DH Huang, TH Tse, Zongyuan Yang, Haitao Huang, and TY
[109] Stan Language Manual. Chapter 3.1. 2018. http://mc-stan.org/users/ Chen. 2004. Metamorphic testing and its applications. In ISFST.

documentation/index.html.
[110] Stan Pedantic Mode 2018.
Stan-Parser-Pedantic-Mode.

https://github.com/stan-dev/stan/wiki/

	Abstract
	1 Introduction
	1.1 Bugs in Probabilistic Programming Systems
	1.2 ProbFuzz
	1.3 Results
	1.4 Contributions

	2 Illustrative Example
	3 Bug Characterization Study
	3.1 Characterizing Bugs in PP Systems
	3.2 Discussion

	4 ProbFuzz
	4.1 Template and Intermediate Language
	4.2 Generator
	4.3 Translator
	4.4 Program Checker

	5 Quantitative Evaluation
	5.1 RQ1: New Bugs Discovered by ProbFuzz
	5.2 RQ2: Old Bugs Rediscovered by ProbFuzz
	5.3 RQ3: Sensitivity of Accuracy Threshold
	5.4 RQ4: Benefit of Domain Knowledge

	6 Qualitative Analysis
	6.1 Dimension/Boundary Bugs are Common
	6.2 Accuracy Problems are Hard to Analyze
	6.3 Fixing Bugs in PP systems is Non-Trivial
	6.4 Fixes Extend Across System Boundaries

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

