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ABSTRACT

Probabilistic programming systems (PP systems) allow developers

to model stochastic phenomena and perform efficient inference on

the models. The number and adoption of probabilistic programming

systems is growing significantly. However, there is no prior study

of bugs in these systems and no methodology for systematically

testing PP systems. Yet, testing PP systems is highly non-trivial,

especially when they perform approximate inference.

In this paper, we characterize 118 previously reported bugs in

three open-source PP systemsÐEdward, Pyro and StanÐand pro-

pose ProbFuzz, an extensible system for testing PP systems. Prob-

Fuzz allows a developer to specify templates of probabilistic models,

from which it generates concrete probabilistic programs and data

for testing. ProbFuzz uses language-specific translators to generate

these concrete programs, which use the APIs of each PP system.

ProbFuzz finds potential bugs by checking the output from running

the generated programs against several oracles, including an accu-

racy checker. Using ProbFuzz, we found 67 previously unknown

bugs in recent versions of these PP systems. Developers already

accepted 51 bug fixes that we submitted to the three PP systems,

and their underlying systems, PyTorch and TensorFlow.
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1 INTRODUCTION

Probabilistic programming has recently emerged as a promising

approach for helping programmers to easily implement Bayesian

inference problems and automate efficient execution of inference

tasks. Both research and industry have proposed various probabilis-

tic programming systems, e.g., Church [40], Stan [35], and many
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others [8, 16, 36, 46, 61, 71, 119]. These systems automate various

parts of common inference tasks and support many approximate in-

ference algorithms from machine learning and statistics, including

deterministic variational inference and randomized Markov Chain

Monte Carlo (MCMC) simulation. Systems like Edward [31, 118]

and Pyro [84] embed probabilistic inference within the general deep

learning infrastructures, e.g., PyTorch [85] and TensorFlow [116].

A probabilistic programming system (PP system) typically con-

sists of a language, a compiler, and inference procedures. A pro-

grammer writes a program in a probabilistic programming lan-

guage, which extends a standard programming language by adding

constructs for (1) random choice, such as sampling from common

distributions, (2) conditioning on data, such as observation state-

ments, and (3) probabilistic queries, such as obtaining a posterior

distribution or an expected value of a program variable [41]. Next,

a PP system compiles the probabilistic program to an efficient in-

ference procedure, by adapting well-known inference algorithms.

Finally, the programmers run the compiled program on a set of data

points to compute the query result.

Probabilistic programming systems provide many benefits to

programmers who are non-experts in probability and statistics,

but ensuring the correctness of probabilistic programs is notori-

ously difficult [44, 90]. The inherent uncertainty and complexity of

probabilistic inference (which is #P-hard, even with just discrete

variables [17]) make most practical inference algorithms numeri-

cally intensive and approximate. Therefore, a testing approach for

PP systems must account for both numerical errors and errors due

to the approximate nature of inference algorithms.

Current approaches for testing PP systems are typically manual

and ad-hoc. Although recent research looked into analysis of PP

systems [1, 90], none of the proposed approaches can analyze all

stages of modern PP systems. Understanding previously known

bugs in PP systems and finding effective approaches to improve the

systems’ reliability remain open research questions.

1.1 Bugs in Probabilistic Programming Systems

To motivate the design of tools for systematic testing of PP systems,

we characterized the kinds of bugs that are common in existing

open-source systems. To the best of our knowledge, this is the

first systematic study of bugs in PP systems. We studied three

systems: Edward [31, 117, 118], Pyro [84], and Stan [10, 35, 51, 95].

They are written in multiple programming languages, are hosted

on GitHub, have been adopted by both industry and researchers,

are actively developed, and implement many language features

and inference algorithms that are common to most PP systems. In

total, we categorized 118 of 856 commits about bugs as being PP

systems-related, and describe them in more detail.

Many of the identified bugs required domain-specific knowledge

to detect, debug, and fix. Moreover, testing PP systems often re-

quires reasoning about result accuracy (in contrast to the standard
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1 x = [1.0, 2.0, ...]

2 y = [7.0, 14.0, ...]

3 w = Gamma (97.5, 86.2)

4 p = Beta (44.0, 44.0)

5 observe(

6 Normal (w · x, p ), y )

7 posterior(w )

(a) Probabilistic Program (b) Stan Result (c) Edward Result (d) Pyro Result (e) BUGS Result

Figure 2: Example Program and the Posterior Distributions Computed by Various Systems

2 ILLUSTRATIVE EXAMPLE

Figure 2a shows an illustrative example of a potentially bug-revealing

probabilistic program generated by ProbFuzz. The program, shown

in ProbFuzz’s intermediate language, defines two data-sets of con-

stants, x and y. Each yi is seven times the value of x i . The program

first assigns prior distributions to the variables w and p. Then, it

conditions the linear modelw · x + p on the observations of y. The

probabilistic query on line 7 seeks the posterior distributionw .

Probabilistic inference is a procedure for computing the change

in the distribution of variables based on the observations of data.

Most inference algorithms today are approximate, with the two

dominant approaches being Markov Chain Monte Carlo simulation,

which re-executes the computation with many random samples

(and is implemented in, e.g., Stan and Edward) and variational in-

ference, which approximates the posterior distribution deterministi-

cally, by substituting it with computationally simpler distributions

(and is implemented in, e.g., Edward and Pyro).

Figures 2b-2e show the posterior distributions computed by Stan,

Edward, Pyro, and another probabilistic inference system called

BUGS (which is a precursor of Stan, and shares most of its syntax).

The X-axis presents the numerical values and the Y-axis presents

its probability density function. Given the data x and y, we expect

the mean of the posterior of w to be equal to 7.0. The posterior

distributions computed by three systems are similar, and centered

at 7.0. However, Stan’s distribution has a different shape, and its

mean is close to 1.0. We discuss the reasons behind this accuracy

problem in Section 6.2.

ProbFuzz generates the program in Figure 2a, and many similar

programs, with different prior distributions, distribution param-

eters, and data. ProbFuzz then compiles the programs down to

each PP system, generating specialized API calls or DSL programs.

The translation is non-trivial, and cumbersome for a human, but

can be easily specified in ProbFuzz. Next, ProbFuzz runs generated

programs, automatically compares the output from different PP

systems, and computes accuracy metrics (Section 4.4). Finally, a de-

veloper can inspect ProbFuzz results and investigate any potential

bugs. We discuss ProbFuzz in Section 4.

3 BUG CHARACTERIZATION STUDY

We characterized existing bugs in three open-source PP systems:

Stan [10, 35, 51, 95], Edward [31, 117, 118] and Pyro [84]. Table 1

shows some statistics about the PP systems. The three PP systems

support various approximate probabilistic inference algorithms.

Methodology.Wemanually searched for bug fixes among commits

in the GitHub repositories of the PP systems in our study. We use

commits to get a larger data set than we could get when starting

from GitHub issues [2, 86]. Given the active development of these

PP systems, many bugs are fixed without first being reported as

łissuesž, and most closed issues involve one or more commits.

We obtained all commits in the three PP systems that contained

the keywords, bug|inference|error|fix|nan|exception|overflow|

underflow|infinity|infinite|precision|unstable|instability|r

inging|unbounded|roundoff|truncation|rounding|diverge|cancel

lation|cancel|accuracy|accurate. This resulted in 1837 commits.

We then filtered out commits that are not specific to the domain

of PP systems or probabilistic inference, and could occur in any

software domain. First, we filtered out commits containing the fol-

lowing keywords: typo|docstring|notes|example|examples|tuto

rial|print|doc|Document|messaging|test|messages|manual|doxyg

en|cpplint|Jenkins|submodule|header. Next, we split the remain-

ing 856 commits between two student coauthors, each of whom

read descriptions and reasoned about modified code. Each coauthor

marked a commit as an inference-related code fix, general code fix,

a refactoring, or a duplicate. We filtered out refactoring, duplicates

(e.g., covered by incremental commits fixing the same bug or related

commits from multiple branches), merge commits with many files

changed, and commits that changed only non-source files.

We were left with 455 commits that fix code, out of which our

manual inspection identified 118 commits that are directly related

to the domain of probabilistic inference. The remaining are general

coding problems e.g., I/O errors, API misuses, and documentation

problems. Two coauthors inspected these 455 commits. They com-

pared notes and classified bugs as inference-related only if they

agreed on the final classification, therefore making a conservative

determination about the domain-specific nature of each bug. Simi-

lar to a previous work on analyzing numerical bugs [19], we put

inference-related bugs into four categories. Our bug categories are

algorithmic/accuracy, dimension/boundary-values, numerical, and

language/translation. We made a second pass through the 118 bugs

that satisfy the selection criteria and categorized them based on

error sources and bug manifestations. When possible, we matched

each commit to its related GitHub issue.

Table 1: Project Statistics

Edward Pyro Stan

First commit date Feb 10 ’16 Jun 15 ’17 Sep 30 ’11

No. of contributors 74 26 61

No. of commits 1780 853 13083

Latest commit studied 992ce08 8db8972 14981a3

Lines of code 12035 11609 57770

Prog. language Python Python C++

Infrastructure Tensorflow PyTorch Own
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Table 2: Breakdown of Commits

Category Edward Pyro Stan
∑

Algorithmic/accuracy 9 10 16 35

Dimension/boundary 11 14 13 38

Numerical 1 1 17 19

Language/translation 5 7 14 26∑
26 32 60 118

3.1 Characterizing Bugs in PP Systems

Table 2 shows the distribution of the categorized commits. Column

łCategoryž shows category names. The second to fourth columns

show the number of commits per category in each PP system. Fi-

nally, column
∑

presents the sum of the commits in each bug

category.

Algorithmic/accuracy bugs. This category contains bugs due to

incorrect implementation of inference algorithms and other related

bugs in the implementations of probability distributions and statis-

tical procedures. They manifest as inaccurate, although plausible

(and therefore hard to catch) results of inference. These bugs af-

fected a variety of inference algorithms and implementations of

probability distributions in all three PP systems. In Edward, the bugs

affected three inference algorithms and two built-in distributions

(Bernoulli and Uniform). In Pyro, the bugs affected three inference

algorithms and the Cauchy distribution. In Stan, the bugs affected

two inference algorithms, one distribution (Bernoulli Logit) and

two auxiliary functions.

These bugs can be further subdivided into logical errors, mathe-

matical errors, and one regression error. Examples of logical bugs in-

clude re-normalizing already normalized data [28], łdouble-countingž

the values of specific variables [81], and using only the first ele-

ment instead of a whole collection to fill a tensor [75]. Examples

of mathematical errors include incomplete formulae (e.g., missing

terms [26, 77]) and wrong formulae (e.g., [30]). Finally, a regression

in Stan led to lower statistical efficiency [103].

Dimension/boundary-value bugs. These bugs occur when func-

tions do not properly handle the dimensions of input data (a scalar,

vector, matrix, or cube), the ranges of input data, and the ranges

of distribution parameters. They manifest as exceptions or spe-

cial numerical values, e.g., NaN or Inf, in the output (in the case of

boundary-value bugs). The examples of dimension bugs include

those where the functions assumed a particular dimension of input

data (e.g., scalars [25]) and crash if data with different dimension is

passed as input, or assumed a wrong dimension of output which

caused crashes in the function’s clients (e.g., [83]). One bug resulted

from using only one ordering of a list (a vector) to compute entropy,

instead of using all possible orderings (a matrix) [21].

Missing boundary condition checks often happen in implemen-

tations of various probability distributions, e.g., not checking for

boundary values of a parameter leading to NaN [82]. Such bugs typ-

ically manifest substantially late during inference, e.g., computing

log of zero resulting in NaN [80]. We also observed some off-by-one

errors (e.g. in [99, 106]), where if conditions used < instead of ≤.

General numerical bugs. These bugs are found in general math-

ematical functions, and may manifest as an inaccurate result or a

special value (NaN or Inf). Most of these bugs are in Stan, which

implements its own mathematical back-end, in contrast to Edward

and Pyro, which use external back-ends (TensorFlow and PyTorch,

respectively). Example numerical bugs that we identified include im-

proper handling of Inf (e.g., [23, 78]) or NaN (including when these

special values propagate to the output [104]), initializing Integer

values to NaN, overflow errors, and convergence bugs.

Language/translation bugs. These bugs occur due to wrong use

of features in the programming language in which the PP system is

written. They canmanifest as failed builds, runtime errors, or wrong

results. These can be errors in the interface (e.g., [98], returning a

real instead of an array as expected from the API specification), er-

rors in the back-end or changes in their implementations (e.g., [30]),

errors that break compilation or error reporting (e.g., [105]), and

errors in using functionality. One functionality usage error involved

calling a stateful inference function, making different runs of the

same probabilistic program producing widely different results [22].

3.2 Discussion

We highlight several important observations from our characteri-

zation study, which motivate our approach for testing PP systems:

Observation 1: Domain knowledge is required to detect, an-

alyze, and fix bugs.Most of the inspected Algorithmic/accuracy

and Dimension/boundary-value bugs, and some Numerical bugs

require knowledge of theory of probability or inference. Bugs in the

Dimension/boundary-value category are similar to general bugs

that occur when one does not satisfy the specification of a method.

However, without specification-related assertions (which require

domain-specific knowledge, and are tedious to write) in the code,

such bugs occur in the PP systems, resulting in NaN or silent errors.

Observation 2: Algorithmic bugs require detailed reasoning

about accuracy. For many of the inference and accuracy bugs,

the developers report (in)accuracy of the results and compare the

results either to known (expected) values or against another tool

(e.g., Edward or Pyro against Stan). For algorithmic errors, existing

numerical analyses [57, 87] are typically not applicable. Identifying

errors and their causes requires probabilistic reasoning, detailed

error reports and discussions with PP system developers in order

to diagnose the error (e.g., [107]).

Observation 3: Testing PP systems requires careful genera-

tion of both programs and valid data. Reproducing many of the

bugs that we manually inspected required both a probabilistic pro-

gram and the data to run it on. The GitHub issues related to the com-

mits that we inspected had both programs (or program fragments)

and data necessary to reproduce the bug. Such data is sampled from

probability distributions and is required for setting up priors and

posteriors, distribution parameters, and as inputs for inference. This

is different from compiler testing [3, 13, 14, 53, 112, 122, 123], where

it is sufficient to simply generate programs that take no inputs and

encode arbitrary scalar values of variables.

Observation 4: Many errors are revealed by small programs.

Most GitHub issues related to the commits that we inspected had

small reproducible programs. The observation that many bugs can

be found by small programs is well-known [48], and has been used

extensively in conventional testing.While standard compiler testing

(e.g., CSmith [122]) often generates large programs to maximize

bug-finding capability, small programs seem sufficient for successful

detection and debugging in the PP system domain.
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4 PROBFUZZ

ProbFuzz takes as inputs the template of the probabilistic model,

the number of programs to generate and the systems to test. The

developer writes the templates of probabilistic models in an inter-

mediate probabilistic language with holes, which represent missing

distributions, parameters, or data (Section 4.1).

Figure 3 presents the pseudo code of the ProbFuzz algorithm.

The Generator generates probabilistic models by completing holes

in the template with concrete distributions, parameters and data

(Section 4.2), resulting in a program in an intermediate language.

The Translator then translates the probabilistic program from the

intermediate language into a program that uses the API of the

target PP system (Section 4.3). Next, ProbFuzz runs the programs,

collects output, and its Program Checker computes metrics and

checks for symptoms that may reveal potentially buggy programs

(Section 4.4). Finally, ProbFuzz reports any warnings issued by the

Program Checker to the developer.

4.1 Template and Intermediate Language

ProbFuzz represents the templates and the generated programs

in an intermediate language (IR). Figure 4a presents the syntax

of the IR language of ProbFuzz. The key aspect of the template

is a hole, denoted as ł??ž. It represents a missing distribution or

parameter. The distributions and parameters are completed with

concrete values (from respective setsDists andConsts) by replacing

the hole.

A template consists of four sections, which specify data, prior

distributions, model that relates posterior and prior distributions,

and the query. The data section presents the input and the output

data set(s). A data vector is a typed (multidimensional) array, which

is instantiated by ProbFuzz, or a specific list of numerical constants.

The Prior section specifies the prior distributions of the program

variables. A prior distribution can be an instance of a distribution

or a hole. Similarly, one or more parameters of the distribution can

be either expressions or holes. The expressions are typical, with

arithmetic and comparison operators. The language is similar to

the loop-free fragment of the Prob language from [41].

TheModel section conditions the random variables to the specific

observations. The observe clause states that the observations of

the model specified as the first parameter are found in the vector

denoted as the second parameter (as is a standard interpretation in

most probabilistic languages). The models can also be composed

using conditionals. Finally, the Query instructs the probabilistic

language to return the marginal posterior distributions for the

specified variables, or their expected values.

Examples. Figure 4b presents a template from our experiments

and Figure 4c presents an example program that has the holes

completed. The template is for a linear regression model, which has

two sets of observations x and y (both are one-dimensional vectors

of length 10). The prior parameters are weight w , bias b, and the

noise p, with unknown distributions. The template conditions an

unspecified distribution with two parameters (the first is the linear

expressionw · x + b, the second is p) on the data from the vector y.

Distribution Specification. For each distribution, ProbFuzz spec-

ifies its properties, including the names and ranges of parameters

and the range of the distribution support. Knowing the properties

of the distributions allows ProbFuzz to complete the template with

the concrete values of parameters.

To illustrate, the specification of the Normal distribution is:

"name" : "Normal",

"type" : "Continuous",

"support" : "Float"

"args" : [ { "name" : "mu", "type" : "float"},

{ "name" : "sigma", "type" : "float+" } ],

It specifies that the distribution is continuous and its support (the

range of values that can be sampled from the distribution) is not

constrained. It has two parameters, the mean mu is an arbitrary

floating-point value, while the standard deviation sigma must be

positive. The support and parameters of the distribution can be

bounded. For instance, in the case of Gamma distribution, the sup-

port is only positive real numbers, and in the case of Bernoulli, the

support is {0,1}.

4.2 Generator

The Generator generates a concrete program and data from the

provided template. A concrete program consists of complete IR and

data. In a concrete program, all ł??ž symbols have been replaced by

the corresponding distribution expressions or constant expressions

(as in Figure 4c). The user-defined program templates plus domain

knowledge about distributions and data ranges enable Generator

to achieve more targeted fuzzing.

The Generator has two components, the distribution selector,

which matches the distribution expressions with holes (ł??ž) in the

template and the data selector, which produces the concrete values

of the parameters of the distributions and computes the values of the

data points. For each generated program, the Generator performs

the following steps:

• Complete the distribution of the model. For the model ex-

pression, the distribution selector finds all the distributions that

can match the pattern (e.g., have two parameters) and uniformly

at random selects one of those distributions to fill in the hole.

Once fixed, this distribution provides the legal values for the

data to generate (based on the distribution support) and the

constraints on the parameters. This bounds the set of allowed

distributions of the priors in the template. For instance, if we

select the Normal distribution for the linear regression template

(Figure 4b), the model constrains the distribution of the variance

p to have positive support.

• Complete the distributions of the priors. Based on the con-

straints from themodel, the distribution selector randomly selects

a distribution whose support satisfies the range of values admis-

sible by the model’s parameter. To propagate the information

about distributions, we implement a simple dependence analysis

with interval analysis to keep track of the ranges. For instance, in

Figure 4 the distribution selector may choose Exponential as the

distribution of the prior for p, but not Normal (since its support

is all floating-point values, but p can have only positive values).

• Complete the distribution parameters. Data selector picks

the numerical values of the parameters of the distributions with

holes using a method that randomly chooses between two strate-

gies. The first strategy randomly selects a value within the range

of the parameter, as denoted in the distribution specification. A

developer may express preference for larger or smaller values
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INPUTS: Program count n, Template t ,
PP systems under test S

OUTPUT: Likely bug-revealing programs report P

function ProbFuzz(n, t, S )
P ← ∅
for i = 1 to n do
progIR, data← Generator(t )
Results← ∅
for s ∈ S do

progs ← Translators (progIR, data)
statuss , outs ← ExecuteProgram(s, progs , data)
Results← Results ∪ {(statuss , outs ) }

end for
warnings← ProgramChecker(Results)
if warnings , None then
P ← P ∪ {warnings}

end if
end for
return P

end function

Figure 3: ProbFuzz Algorithm

x ∈ Vars

c ∈ Consts ∪ {−∞, ∞}

aop ∈ {+, −, ∗, / }

bop ∈ {=, >, ... }

Dist ∈ { Normal, Uniform, Beta, ...}

Type ::= Int | Float | Range<c, c> | Type[c]

Data ::= x : Type | x := [c+] | x := Expr

Expr ::= c | x | Expr aop Expr | Expr bop Expr

Param ::= ?? | Expr

Prior ::= x := ?? | x := Dist(Param+)

Model ::= observe(Dist(Expr+), x )

| observe(??(Expr+), x ) | x = Expr

| if (Expr) then Model else Model

Query ::= posterior(x+) | expectation(x+)

Template ::= Data+ Prior+ Model+ Query

(a) Grammar for Probabilistic Program Templates

x : Float[10]

y := c1 ∗ x + c2
w =??

b =??

p =??

observe(??(w · x + b, p ), y )

posterior(w, b, p )

(b) Linear Regression

Template

x := [1.0, ...]

y := [2.0, ...]

w = Gamma(0.3, 5.2)

b = Normal(0.3, 2.1)

p = Exponential(1.2)

observe(Normal(w · x + b, p ), y )

posterior(w, b, p )

(c) Linear Regression Example

Figure 4: Grammar and Example for ProbFuzz Input Templates

to be inserted here. The second strategy randomly picks values

that are close to the boundary values of the parameter ranges;

these values may be either legal or illegal and can stress-test the

sensitivity of PP systems to boundary conditions and numerical

instabilities. The developer can provide a probability that prefers

one strategy over the other. For instance, in Figure 4c, data selec-

tor picks the values 0.3 and 5.2 as the parameters of the Gamma

distribution in the prior ofw . Similarly, it could try generating

programs where the second parameter of Gamma (which should

be positive) is 0.0 or -1.0 to test the capability of the PP system

to identify wrong values.

• Generate the inputs/outputs. Data selector uses the input

range and formulas provided by the developer to compute ex-

pected outputs. It then randomly generates the desired number

of elements in the input vectors and computes the values in the

output vectors.

4.3 Translator

Translator produces a legal program in the language of the target PP

system. The inputs to the Translator are the concrete program and

data produced by Generator. Each PP system has its own Translator.

In addition, Translator takes a configuration file with the list of in-

ference algorithms and a mapping of distributions to corresponding

PP system-specific API calls.

Translator in Edward. First, the Inference Selector chooses an

inference algorithm that the PP system supports, based on the

concrete specification. Second, the Translator replaces distribution

names in the input programs with the corresponding API call in

Edward, and creates one AST node each for the input data (x ), the

model in the program, and the selected inference. Third, several AST

nodes are created for the following: (1) one node for the posteriors

or each prior, depending on the inference algorithm to be run,

(2) a node for a placeholder for x , and (3) (optional) one node for

the proposals for each prior, which is needed for some inference

algorithms, e.g., the Metropolis-Hastings (MH) sampling algorithm.

Fourth, a dict node is created which connects the node for each

prior to its respective proposal and posterior nodes, and a dict node

is created which connects nodes for the data placeholder and the

output data, y. Fifth, the dict nodes from the last step are merged

with the node for inference. Sixth, the data node, the model node

and the inference node are combined together as the final AST.

Finally, this AST is converted into a Python program.

Translator in Pyro. The first two steps in the Translator are the

same as for Edward: select inference algorithm, replace distributions

with corresponding API calls and make AST nodes for x , the model

and the selected inference. The third step is to create a function

node for a Pyro model, a combination of posterior nodes for each

prior which are then connected to the data node. Then a function

node for a Pyro guide is created with a posterior node for each prior.

Next, if the selected inference algorithm is a variational algorithm,

an optimization algorithm is chosen together with its parameters

based on the concrete specification, and a node is created. Finally,

a node for running the inference is created. The generated AST is

converted to a Python program.

Translator in Stan. Stan’s Translator does not create ASTs. Rather,

eachmodel is translated line by line to Stan code stored in model.stan

file, with data stored in data.json file. Finally, a file, driver.py is

generated and used to run the Stan model.

4.4 Program Checker

The task of the Program Checker is to decide whether output from

running the generated programs may be indicative of bugs in the PP

system on which the program was run. For Edward and Pyro, the

generated Python programs are run directly. The driver.py script

is run for Stan. Program Checker performs a battery of checks,

inspired by the bugs from our characterization study (Section 3):

• Crash checks: they find problems with unexpected termination

or assertion failures. Crash checks will output programs which

crash as likely bug revealing, since all programs generated by

ProbFuzz are syntactically and semantically valid.

• NaN and overflow checks: they will report programs that nei-

ther crash nor produce exceptions, but contain NaN as output val-

ues; as observed in Section 3, they are often related to numerical
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and boundary checking problems. Programs which produce NaN

as output values are potentially bug revealing because it means

that the PP system allowed invalid computations to łsucceedž,

instead of warning the developers.

• Performance checks: they report if one PP system converges

much slower than other PP system.

• Differential testing with exact result: these checkers aim to

identify accuracy bugs by comparing the results of approximate

inference with the exact result. The exact result can be obtained

in two ways: (1) using optional data generators , or (2) using exact

inference engine. For exact inference, we translate programs to

PSI [33]. Exact inference (when it scales) removes approximation

and numerical errors, modulo bugs in the exact inference tool.

This approach works when the generated programs are small.

• Differential testing with approximate results: these check-

ers aim to identify accuracy bugs by comparing the differences in

the results produced by (1) different tools and (2) different algo-

rithms within a single tool or even different versions of the same

algorithm (e.g. [107]), and (3) different interfaces to the same in-

ference algorithm. Result comparison across tools or algorithms

is useful for accuracy and numerical bugs. Comparisons across

different interfaces of the same PP system (e.g., RStan, PyStan)

can primarily help find language/translation bugs. The Program

Checker issues a warning about a program fromwhich the results

of one approximate-inference PP system differs significantly from

all other approximate-inference PP systems and the other sys-

tems produce similar outputs, or if the outputs of all approximate

inference differ from the expected output.

Accuracy Comparisons. Analysis of accuracy is a key challenge

in testing PP systems. The computations have various sources of

noise: some inference algorithms are randomized (e.g., MCMC),

while others make algorithmic approximations (e.g., variational in-

ference). In both cases, there may be rounding errors or overflows.

To quantify the magnitude of errors, ProbFuzz allows a developer

to specify custom comparison metrics. In this paper, we compute

an accuracy metric based on relative error of the mean. Symmetric

Mean Absolute Percentage Error [114] computes the distance be-

tween the means of the posterior distributions computed by two

systems (or comparing the result from one system to the exact

result). It is computed as:

SMAPE (x1, . . . ,xn ,y1, . . . ,yn ) =
1

n

n∑

i=1

�
�xi − yi

�
�

|xi | + |yi |

The arguments x1, . . . ,xn are the means produced by the first sys-

tem and y1, . . . ,yn are the means produced by the second system.

In contrast to the usual relative error, which divides the difference

by the value from one of the systems, SMAPE does not prefer the

result of any of the systems, and is always guaranteed to produce a

result in the range [0, 1].

A program may have an accuracy bug if the value of the metric

is above a threshold (which effectively acts as a knob for how many

programs to inspect). If so, ProbFuzz reports the generated program

as revealing a potential accuracy bug. When more than 2 systems

are involved, we do a pairwise comparison. If only one of the PP

systems shows a significant deviation from the others, ProbFuzz

reports that system as likely faulty.

5 QUANTITATIVE EVALUATION

We describe the research questions that we answer, our experimen-

tal setup and the quantitative aspects of the results in this paper.

We answer the following research questions:

RQ1 How many new bugs per category does ProbFuzz find?

RQ2 How many categories of existing bugs does ProbFuzz find?

RQ3 How sensitive is the accuracymetric to the threshold choice?

RQ4 How does ProbFuzz compare with conventional fuzzing?

Experimental Setup. For our experiments, we used four templates.

We discussed linear regression template in Section 4.1. Other tem-

plates include simple posterior template, which samples from a single

distribution, with a prior for each of its parameters and conditions

on data, conditional template, which chooses between two models

based on the if expression, and multiple linear regression template

with a weight vector for the prior instead of scalar as in linear re-

gression and conditioned on 2-dimensional data sets. We also varied

the data vector sizes. We generated 1000 programs per template for

each tool. We group the programs based on the determination that

Program Checker makes, and then randomly sample a subset of

programs in each class for manual inspection. To find performance

bugs, we randomly sampled for manual inspection the programs

that did not run to completion in the default time-out limit of 3

mins. For accuracy bugs we used the accuracy metric discussed

in Section 4.4 to select wrong programs to manually inspect. The

threshold for SMAPE that we used in selecting the programs for our

manual inspection was 0.1. We ran all experiments on an Intel

Xeon 3.60GHZ machine with 6 cores and 32GB RAM.

5.1 RQ1: New Bugs Discovered by ProbFuzz

Table 3 shows the number per category of the new bugs found

during our evaluation of ProbFuzz. Columns (except
∑
) are the PP

systems in our study, while the rows (except
∑

) are the various

categories for which found some bugs that we found. Bug cate-

gories were described in Section 3. We counted as bugs either as

the number of distinct code locations where we made a fix in pull

requests, or one bug for each issue that we submitted to the devel-

opers without a corresponding pull request. Note that, by counting

each (yet-to-be-fixed) submitted issue as one bug, we are under

counting the number of bugs in the code, and the actual number of

bugs that ProbFuzz found in our experiments is likely higher.

We submitted 15 issues (each one counts as one bug), and 7 pull

requests which fixed 51 bugs in the code. The results show that

the dimension/boundary-value bugs are the most common among

the bugs that we found. We provide more details in Section 6.1

about how prone the PP systems are to dimension/boundary-value

bugs. Among the PP systems, we found the least number of bugs in

Stan, followed by Edward and then Pyro. Interestingly, this matches

the maturity of the PP systems. We also discuss in Section 6.1 one

step that Stan developers have taken over the years to reduce the

amount of bugs in this category.

One key benefit that ProbFuzz provides in the testing of PP

system is the ability to find accuracy bugs, and not just bugs that

lead to crashes or invalid values (e.g., NaN or Inf) in the output.

Accuracy bugs are much more tricky to find and debug; coming up
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Table 3: New Bugs per Category Discovered by ProbFuzz

Category Edward Pyro Stan
∑

Algorithmic/accuracy 2 1 2 5

Dimension/boundary 13 41 0 54

Numerical 0 0 3 3

Language/translation 1 3 1 5∑
16 45 6 67

with oracles that catch them is quite involved and requires domain

knowledge. As shown in Table 3, we found 5 potential accuracy

bugs in all three PP systems during our manual inspection.

We reported all the bugs in Table 3 to the developers of each

PP system. So far, developers have accepted 51, rejected 8, 7 are

still pending and 1 was already fixed before we could submit it; 30

accepted bugs were in a single pull request to PyTorch.

5.2 RQ2: Old Bugs Rediscovered by ProbFuzz

This experiment checks whether ProbFuzz can catch a variety of

previously fixed bugs that we identified during our characterization

study (Section 3). For each PP system, we attempted to reproduce

at least one bug per category, such that they cover all categories

of interest (Algorithmic/accuracy, Dimension/boundary-value, and

Numerical). We did not target Language/Translation bugs, which

are specific to each PP system and targeting them requires more in-

volved back-ends. We first checked if these bugs may be reproduced

by re-running the tests that failed due to the bug or programs in the

corresponding GitHub issue. We stopped if we could no longer run

the tests/programs. We did not try to reproduce bugs that cannot be

exercised by our four templates. Since some older versions of the PP

systems use different syntax and API to specifymodels or have since

undergone major changes, we had to create four additional versions

of Translator (for bugs [24, 25, 81, 104]). In addition, we found the

versions of the infrastructure (PyTorch and TensorFlow)whichwere

in use in the older versions. For accuracy and numerical bugs, we

manually reasoned whether the difference was caused by the bug.

Table 4 shows the numbers and links to bugs that we success-

fully reproduced with ProbFuzz. For each of these bugs, ProbFuzz

generated a program and the data to exercise it. Each cell contains

the bug count in each category per PP system. In addition, each

cell contains the exact reference to the commit with the bug fix.

The results show that ProbFuzz successfully found bugs in eight

out of nine categories of interest. Out of these bugs, six ([24, 25,

76, 79, 97, 100]) were found using the simple posterior template,

three using the linear regression template [27, 81, 104] and one us-

ing multiple linear regression template [101]. Overall, these results

demonstrate that ProbFuzz could have caught a variety of existing

bugs, had it been available prior to the discovery of those bugs. Com-

parison of Tables 3 and 4 shows that ProbFuzz was able to reproduce

existing bugs in categories where we did not find any new bug on

recent versions of the PP systems (e.g, Stan-Dimension/boundary).

Also, ProbFuzz reproduced the only previously known numerical

bugs in Edward and Pyro from our characterization study.

5.3 RQ3: Sensitivity of Accuracy Threshold

The number of programs to inspect depends on the threshold set for

the accuracy metric. Figure 5 presents the sensitivity of the number

Table 4: Old Bugs per Category Rediscovered by ProbFuzz

Category Edward Pyro Stan
∑

Algorithmic/accuracy 1 [27] 1 [81] 0 2

Dimension/boundary 1 [25] 1 [76] 2 [97, 101] 4

Numerical 1 [24] 1 [79] 2 [100, 104] 4

Language/translation n/a n/a n/a n/a∑
3 3 4 10

of programs reported to potentially reveal accuracy problems as a

function of the bound on the SMAPE metric for the linear regression

template. The X-axis presents the threshold. The Y-axis presents

the fraction of the programs whose accuracy metric (compared to

the reference solution) is above the threshold. For the computation,

we removed (1) the programs that crashed, (2) the programs that

resulted in NaN, and (3) the programs that timed out.

The results show that the threshold value can serve as a knob for

the fraction of the programs to return. For instance, if the threshold

is 0.8, then the number of programs with large accuracy loss is

less than 10% for Pyro and Stan, and around 14% for Edward. Stan

shows an interesting trend of having many programs that have

small accuracy loss of the mean, while Edward and Pyro have more

programs that have larger accuracy differences.
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Figure 5: Sensitivity of Accuracy Metric

5.4 RQ4: Benefit of Domain Knowledge

We compared our results with an łuninformedž fuzzer that does

not utilize domain knowledge about distributions and legal ranges.

Table 5 shows the detailed comparison for 1000 generated programs

per tool per template. Each cell contains the percentage of gener-

ated programs that produced results without crashing, numerical

errors, or timeout for Uninformed (’U’) or Informed (’I’) fuzzer. On

average, less than 21% (Stan 6.35%, Edward 49.07%, Pyro 5.82%)

of programs generated by the uninformed fuzzer produce useful

results, compared to over 84% (Stan 89.35%, Edward 80.3%, Pyro

83.2%) with ProbFuzz. As such, uninformed approach can be fit for

boundary-condition bugs, e.g., when a system fails to recognize a

program with wrong values, but it will not be efficient for bugs that

can be revealed by only well-formed probabilistic programs.

Table 5: Comparison of Informed vs Uninformed Fuzzing

Template Stan Edward Pyro

U I U I U I

Simple 16.6 93.4 52.5 80.2 14.0 87.2

LR 6.6 94.3 43.3 80.7 5.2 79.7

MLR 1.2 79.6 43.8 81.2 4.1 83.3

Conditional 1.0 99.0 56.7 79.1 0.0 82.6
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6 QUALITATIVE ANALYSIS

During our development and evaluation of ProbFuzz, we encoun-

tered several potential bugs in PP systems for which we created

fixes and submitted pull requests to the developers. We made fixes

in Edward, Pyro, Stan, and also contributed patches to the underly-

ing frameworks, PyTorch and TensorFlow. We present interesting

cases, lessons learned, and developer responses.

6.1 Dimension/Boundary Bugs are Common

Dimension/boundary-value bugs accounted for 54 previously un-

known bugs, and 38 bugs in our characterization study. In Pyro,

we found 41 bugs in this category. One of these bugs in Pyro would

lead to a crash whenever the input data is of size 1; another bug

caused an overflow in the Adam Optimizer. We also found simi-

lar, previously unknown Dimension/boundary-value bugs in Ed-

ward: four bugs were also due to failure to check that parameter

values are in the correct range. Interestingly, ProbFuzz did not

find any previously unknown dimension/boundary-value bugs in

Stan, despite the fact that our characterization study revealed eight

dimension/boundary-value bugs that were previously reported in

Stan. We attributed this to Stan’s relative maturity, compared with

Pyro and Edward. Indeed, since March 2014, Stan developers have

added a milestone to every major release with the title, łmake sure

all distributions throw exceptions at undefined boundariesž [9].

LessonLearned:The similarity of dimension/boundary-value bugs

found across PP systems suggests that that these bugs are commonly

introduced by the developers of the PP systems that we studied.

Going forward, developers should continuously test their proba-

bilistic codes for this kind of problems. Automated testing, such as

ProbFuzz, can be quite effective for these problems.

6.2 Accuracy Problems are Hard to Analyze

Accuracy problems can be difficult to identify and debug, and they

can have serious consequences. Section 2 presented one such prob-

lem. While this problem was present in Stan, it is interesting that

Stan’s precursor, BUGS, which shares most of its modeling syntax

and principles, computes the correct result. For a non-expert, it is of-

ten hard to figure out the reasons behind this discrepancy. Next, we

provide some insights into how we analyzed this particular case.

We observed that the error is reproduced for any value of the

parameters of Beta distribution, which is the prior for p. Stan pro-

duced warning messages stating that the random variable used for

computing the beta logpdf in a particular step is negative but was

expected to be positive. The Stan manual describes such messages

as follows: Warning messages arise in circumstances from which the

underlying program can continue to operate [108]. Stan often con-

verges to the correct result despite such warnings, but in this case,

it did not. When such warnings persist, Stan developers suggest

łinvestigating the arithmetic stability of the Stan programž [108].

One way to address the accuracy problem is to change the model.

Stan developers often recommend to manually bound the vari-

ables that have finite support [109]. For p in Figure 2a, we can

set the bounds as follows: real⟨lower=0, upper=1⟩ p; This makes

Stan produce the correct output: 7.0. The origin of the problem

lies in the way Stan does sampling. For any sampling statement

of the form: p∼ beta(a,b), Stan computes the log probability as:

target += beta_lpdf(p | a,b) and updates the log density (logpdf) of

the model. Beta distribution has a support of (0, 1). If p is assigned

a value outside this range, it causes logpdf to be undefined, which

affects convergence. When the bounds are manually bound, Stan

ensures that the parameter is in the valid range.

Such properties that are important for inference are not enforced.

Stan’s development has been influenced by łFolk Theoremž [96],

which implies that in case of a wrong inference, the problem can

be overcome by changing the model, and moreover the inference

algorithms should not be made to work for various uncommon

extreme program/data cases [96]. However, the łFolk Theoremž

assumes that a developer has an intuition about the correct result,

which may often not be the case as the PP systems are becoming

mainstream. To help developers overcome such challenges, PP sys-

tems should provide additional information about the problems

in the interaction between the model and the system. Recently,

Stan developers proposed a łpedantic modež, as a way to diagnose

various errors and bad modeling practices before running the in-

ference [110], including range checks. We find this an interesting

direction that can demonstrate the power of both probabilistic rea-

soning and static analysis, similar to lightweight static analyses in

the traditional software development, e.g., [6].

Lesson Learned: Debugging accuracy problems requires not only

domain knowledge but also a reasonable understanding of the PP

system under test. The warning messages often provide hints if

there is something wrong with the model. But the messages might

not be informative enough to guide the user in fixing themodel. This

parallels the observations from compiler research on the importance

of informativewarnings for subsequent developer action [4, 5, 112].

Going forward, we note a promising application of static analysis

to provide explicit hints about the model and its interaction with

the inference algorithm without having to run the program. Like in

compilers, they could provide łuseful warnings to alert developers to

potentially problematic code fragmentsž and łsuggestions to eliminate

the warningž [112] in the probabilistic setting. Tools like ProbFuzz

have the potential to empirically discover the kinds of models that

do not work well with a specific inference algorithm and inform

such static analysis.

6.3 Fixing Bugs in PP systems is Non-Trivial

We found out that fixing the bugs, even the relatively straightfor-

ward dimension/boundary-value ones, is highly non-trivial and

often involves changes to the design of the infrastructure (e.g.,

PyTorch and TensorFlow), that PP systems are built on.

As an example of a non-trivial problem, we reported a bug to Stan

developers, which appears in some situations when the model is

provided with an empty data array. In those cases the programs fails

unexpectedly. The developers acknowledged the issue immediately,

but even after an extensive discussion, the developers still have not

been able to resolve the problem after several months.

In Edward, we submitted a pull request to ensure that the n_-

samples parameter of KLPQ inference was ≥ 0. The developers

asked for the same fix to be made in several places in the KLQP

inference: łCool! Can you also add this change to klqp.py for each

initialize() method?ž We did as requested and our pull request

was accepted and merged.
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In Pyro, we identified that many distributions used from PyTorch

do not have range checks. As we were discussing the potential fix

with the developers, a PyTorch contributor independently started

implementing their version of the fix. We discovered that the con-

tributor’s proposed fix had several bugs. Our tests that revealed bugs

in the contributor’s fix were driven by the failures that we had seen

while running ProbFuzz-generated programs. Consequently, the

contributor agreed to let us lead the fix, which has been approved

for merging to the PyTorch repository.

Lesson Learned: Bugs in PP systems are not trivial to fix. Tests

generated by ProbFuzz can help identify the causes of the prob-

lems. Moreover, automated testing can help discover incorrect

and incomplete fixes.

6.4 Fixes Extend Across System Boundaries

As we were analyzing bugs and developing fixes, we found out that

the failures that manifest in a PP system are often due to faults in

the underlying infrastructure (PyTorch and TensorFlow). Therefore,

some of the fixes we submitted were accepted by the developers

of the underlying infrastructure. The accepted changes include a

part of distribution checks in PyTorch plus many accompanying

test cases and a fix to a bound for error reporting in TensorFlow.

We submitted our initial issues to the developers of Edward and

Pyro, and they would typically direct us to propagate the fix to the

underlying infrastructure. For Edward, the developer’s response

to our request to enable detailed checking of distribution ranges

was łThat’s an interesting suggestion...potentially useful utility. Can

you raise this in TensorFlow?ž In Pyro, we submitted a pull request

which added a check to prevent division by zero errors. Multiple

Pyro developers responded and asked us to make the checks in

PyTorch, so more people in the community will benefit: łhello.

thanks for the contribution! ... a more appropriate place... would be in

pytorch... Thanks, this looks helpful...Thumbs up! I agree the PyTorch

folks would appreciate better error checking, then a larger community

could benefit from this fix.ž The fix was accepted by PyTorch.

Lesson Learned: In PP systems, the errors and fixes can often

extend across the boundaries of individual systems. ProbFuzz was

effective in identifying such bugs since it analyzed and compared

the end-to-end results of these composed systems.

7 DISCUSSION

Comparison with Traditional Testing Approaches. Inference

bugs often require probabilistic reasoning and reasoning about ac-

curacy, using, e.g., domain-specific oracles, metamorphic relations,

or multiple implementations. As such, this category of bugs can

be hard to catch using traditional testing techniques. Common

techniques, such as coverage-based testing, would have problems

becausemany of these bugs were caused by łfaults of omissionž [73].

Further, even bugs in covered code may require special values to

manifest. Mutation testing of PP system code can potentially iden-

tify some bugs that result in program crashes or special values, but

non-equivalent mutant survivals may indicate valid approxima-

tions rather than bugs [45], especially as tests in PP systems often

only check whether the result lies in a loosely defined interval.

For the other bug categories, we give examples of previously un-

known bugs that illustrate the advance of ProbFuzz over traditional

testing approaches. For example, a dimension/boundary-value bug

in Pyro manifested only when required parameters in two differ-

ent functions were simultaneously out of acceptable ranges [20].

Conventional boundary-value analysis that targets one function

at a time will not reveal this bug. As another example, in Edward,

intermediate floating-point values produced by the SGLD inference

algorithm led to NaN output when those values are łclose enoughž to

the support bound [91]. Traditional boundary-value analysis may

need to try many values near the bound to catch this bug. This bug

remains open even after two workarounds that required advanced

domain knowledge from the Edward developers.

A language/translation bug in Stan led to program crashes only

on empty int arrays in the data, but not on empty real arrays [111].

Empty arrays are allowed in the data. The root-cause of the bug

was that empty int arrays were implemented to be of data type

float. Interestingly, the bug does not manifest in Stan itself, but

in Stan’s PyStan and RStan front-ends. Without the combination of

domain knowledge on valid data elements and fuzzing, it will be

difficult to catch such bugs with traditional testing techniques.

Scope. In our experiments, we used four templates, which focused

on simple probabilistic models. Simple models can help developers

understand potentially faulty executions and they were effective in

finding bugs in the PP systems, but we did not aim for completeness

of models in our evaluation. Going forward, PP system developers

may also be interested in other common models that can be rep-

resented as templates in our language (e.g., hierarchical models,

mixture models), and can be used to test various inference proce-

dures, general or specialized for different model classes. However,

ProbFuzz cannot generate arbitrary probabilistic programs, since

its template language does not support while loops. Also, ProbFuzz

is not suited for bugs that require precise analysis, e.g., [29, 102].

Threats toValidity.They include internal, external, and construct.

Internal. The results of our bug study depend on the set of PP

systems and bugs we examined. We mitigated this risk by study-

ing real bugs in three state-of-the-art PP systems. We may have

wrongly characterized existing bugs as being inference-related. To

mitigate this, two coauthors independently inspected the bugs and

(when possible) the corresponding GitHub issues. We only mark

a bug to be inference related if both coauthors eventually agree,

thus achieving a conservative estimate of the number of inference-

related bugs. We mitigate ProbFuzz implementation errors with

unit testing. As differential testing may wrongly flag a program as

potentially buggy, so we had multiple rounds of discussion among

ourselves, and finally reported potential bugs to the PP system

developers to make the final decision.

External. The results of the characterization study and ProbFuzz

may not generalize to all PP systems. Certain aspects of our ex-

perimental design help to mitigate this risk. The three PP systems

are being actively developed, well-tested, and adopted. We also

demonstrated that ProbFuzz can reproduce existing bugs in each of

the three bug categories across the PP systems.

Construct. ProbFuzz is designed to catch the categories of bugs

identified by our study and may not find arbitrary bugs in PP

systems. Discovery of these bugs is not exclusive to ProbFuzz. Other

general and emerging testing techniques can, in principle, find some

of the bugs identified in our evaluation.
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8 RELATED WORK

Verification and analysis of probabilistic programs. There are

various approaches for verification of probabilisitic programs, in-

cluding probabilistic abstract interpretation [62, 66], symbolic exe-

cution [7, 32, 34, 59], probabilistic model checking [50], and other

methods [16, 67, 70, 88]. Unlike these systems, ProbFuzz aims to

find bugs in the systems on which probabilistic programs run, and

not for debugging or analyzing probabilistic programs.

Program Generation for Compiler and System Testing. Sev-

eral techniques have been proposed for generating programs that

are used in system testing. These include techniques for generating

programs to test compilers [3, 13, 14, 52ś54, 56, 112, 122, 123] and to

test refactoring engines and symbolic execution engines [18, 37, 49].

ProbFuzz also generates programs, but does so for a different class

of systems: PP systems, which are characterized by various prob-

abilistic constraints on how to construct programs and measure

accuracy of the output (instead of binary correctness). One techni-

cal difference between ProbFuzz and earlier program-generation

approaches is that ProbFuzz can generate programs in multiple

languagesÐwe currently generate Stan and Python from ProbFuzz,

but more can be easily added. Lastly, ProbFuzz generates both pro-

grams and the data needed to run the programs, whereas all prior

techniques generate only the programs (for compiler and system

testing), or only the data (for testing programs).

Fuzzing. Researchers have previously proposed many fuzzing tech-

niques [38, 39, 47, 60, 63, 65, 72, 74, 92, 93, 113, 122]. Grammar-based

fuzzers [38, 63, 93, 122] encode knowledge about the structure of

valid programs (more generally, inputs), but have no knowledge

about the domain for which programs are typically written. The

closest fuzzing approach that we found to ProbFuzz in terms of

encoding domain knowledge is LangFuzz [47]. LangFuzz improves

grammar-based fuzzing by first generating valid programs accord-

ing to the grammar, and then mutating the programs based on

knowledge about programs that previously caused invalid behavior.

Therefore, LangFuzz incorporates domain knowledge in the form of

historical invalid behaviors. In contrast to LangFuzz, the generation

of programs by ProbFuzz already incorporates domain knowledge,

without needing to perform any mutation or consider history.

Differential andMetamorphic Testing. Differential testing [43,

64, 120], or multiple-implementation testing [15, 55, 94, 115] use

multiple implementations as oracles to find programs that can

likely reveal bugs in PP system. ProbFuzz uses such approach in

its Program Checker. Many problems in machine learning do not

have a reference result, known as the ’no oracle’ problem [68]. One

solution to this problem is metamorphic testing [11, 12, 42, 58, 68,

69, 89, 121, 124], where metamorphic relations between the inputs

and outputs of a program (or function) are leveraged to find inputs

which cause outputs to diverge. Because metamorphic relations are

hard to design, Srisakaokul et al. [94] recently proposed multiple-

implementation testing of supervised machine-learning algorithms

to find bugs. Implementations which classify differently from the

majority are considered potentially buggy. Our differential testing

of multiple inference algorithms is similar to [94].

9 CONCLUSION

We presented the first study of existing bugs in probabilistic pro-

gramming systems (PP systems), and proposed ProbFuzz for testing

for such bugs. ProbFuzz generates probabilistic programs from a

user-specified template for three PP systems: Edward, Pyro, and

Stan. Our study of historical bugs in Edward, Pyro, and Stan showed

that numerical bugs, accuracy bugs and dimensional and boundary-

value bugs form the majority of bugs. We demonstrated the ease of

extending ProbFuzz by supporting several PP system versions in

our study, and the applicability of ProbFuzz by showing that it can

find existing bugs in the aforementioned categories in all three PP

systems. ProbFuzz is already providing practical value: we reported

67 previously unknown bugs that we found by running ProbFuzz

on recent versions of the three PP systems. We created pull requests

with fixes for many of these bugs, 51 of which have been accepted

by the developers. We believe that ProbFuzz opens a new line of

research on testing probabilistic programming systems.
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