
PSense: Automatic Sensitivity Analysis for

Probabilistic Programs

Zixin Huang(�), Zhenbang Wang, and Sasa Misailovic

University of Illinois at Urbana-Champaign, IL 61801, USA
{zixinh2,zw11,misailo}@illinois.edu

Abstract. PSense is a novel system for sensitivity analysis of proba-
bilistic programs. It computes the impact that a noise in the values of
the parameters of the prior distributions and the data have on the pro-
gram’s result. PSense relates the program executions with and without
noise using a developer-provided sensitivity metric. PSense calculates the
impact as a set of symbolic functions of each noise variable and supports
various non-linear sensitivity metrics. Our evaluation on 66 programs
from the literature and five common sensitivity metrics demonstrates
the effectiveness of PSense.

1 Introduction

Probabilistic programing offers a promise of user-friendly and efficient proba-
bilistic inference. Recently, researchers proposed various probabilistic languages
and frameworks, e.g., [12, 11, 27, 19, 10, 24]. A typical probabilistic program has
the following structure: a developer first specifies the initial assumptions about
the random variables as prior distributions. Then the developer specifies the
model by writing the code that relates these variables selecting those whose
values have been observed. Finally, the developer specifies the query that asks
how this evidence changes the distribution of some of the unobserved (latent)
variables, i.e., their posterior distribution.

In many applications, both the choices of the prior parameters and the ob-
served data points are uncertain, i.e., the used values may diverge from the true
ones. Understanding the sensitivity of the posterior distributions to the per-
turbations of the input parameters is one of the key questions in probabilistic
modeling. Mapping the sources of sensitivity can help the developer in debugging
the probabilistic program and updating it to improve its robustness.

Sensitivity analysis has a rich history in engineering and statistics [15, 22] and
has also been previously studied in the context of probabilistic models in machine
learning [7, 25, 5, 17]. While useful, these techniques are typically sampling-based
(providing only sensitivity estimates) or work for a limited subset of discrete
models. However, sensitivity in probabilistic programming has not been stud-
ied extensively. Recently, Barthe et al. proposed a logic for reasoning about the
expected sensitivity of probabilistic programs [4]. While sound, this approach
requires a developer to prove properties using a proof assistant, supports only
expectation distance and presets results for only a few examples. Like similar
techniques for deterministic programs [8], its reliance on linearity of noise prop-
agation may result in coarse over-approximations of non-linear operations.

Key Challenges. Key challenges for an effective probabilistic sensitivity anal-
ysis include (1) automation that aims to maintain both soundness and precision
and (2) ability to work with non-linear programs and sensitivity metrics. Solv-
ing these challenges can help with understanding and improving robustness of
probabilistic programs.

Our Work. PSense is a system for automatic sensitivity analysis of probabilistic
programs. For each parameter in a probabilistic program, the analysis answers
the question: if the parameter/data value is changed by some value ε, how much
does the posterior distribution change? The analysis is fully symbolic and exact:
it produces the distance expression that is valid for all legal values of ε. It uses a
developer-specified sensitivity metric that quantifies the change in the posterior
distributions between the programs with and without the noise. In this paper
we present analysis with five classical metrics from statistics: two versions of
expectation distance, Kolmogorov-Smirnov statistic, Total variation distance,
and Kullback-Leibler divergence.

PSense can also answer sensitivity-related optimization queries. First, it can
compute the numerical value of the maximum posterior distance given that ε is
in some range. More interestingly, for a given acceptable threshold of difference
between the posterior distributions, PSense can compute the maximum and
minimum values of ε that satisfy the threshold.

PSense operates on imperative probabilistic programs with mixed discrete
and continuous random variables, written in the PSI language [10]. PSI also
comes with a powerful symbolic solver for exact probabilistic inference. One
of the key insights behind PSense’s design is that the sensitivity analysis can
directly leverage PSI’s inference. However, we also identified that PSI’s anal-
ysis alone is not sufficient: (1) the expressions for distribution distance can-
not be easily simplified by PSI’s solver and (2) PSI does not support opti-
mization queries. We therefore formulated these (non-linear and non-convex)
queries and solved symbolically with Mathematica computer algebra system [2].
PSense workflow demonstrates the synergistic usage of symbolic solvers, guided
by the domain-specific information. PSense is open-source software, available at
http://psense.info.

In addition to the exact sensitivity analysis, PSense also supports an approx-
imate analysis via a sampling-based backend. PSense translates the sensitivity
analysis queries into WebPPL programs. WebPPL [13] is a probabilistic language
with support for approximate MCMC inference. This way, PSense implements
a common empirical approach for estimating sensitivity in probabilistic models.

Results. We evaluated PSense on a set of 66 probabilistic programs from the
literature. We ran the sensitivity analysis for five metrics and 357 parameters
per metric. Both the programs and the metrics are challenging: the programs
have both discrete and continuous variables and many metrics are non-linear.
The results show that (1) PSense, applied on all sensitivity metrics, successfully
computed the exact sensitivity for the majority of analyzed parameters and
data points, with a typical analysis being well under a minute; (2) PSense’s
optimization is also effective in computing the maximum noise that keeps the

posterior difference below an acceptable threshold; (3) PSense’s exact symbolic
analysis is often significantly more precise than the sampling-based approach.
Jointly, these results demonstrate that symbolic analysis is a solid foundation
for automatic and precise sensitivity analysis.

Contributions. The paper makes the following contributions:

⋆ System for Automated Sensitivity: To the best of our knowledge, PSense
is the first automated system for exact symbolic analysis of sensitivity in
probabilistic programs.

⋆ Symbolic Analysis and Optimization: We present PSense’s global sen-
sitivity analysis, which solves queries exactly, by building on the capabilities
of PSI and Mathematica symbolic engines. We also present how to formulate
and solve sensitivity-related optimization queries.

⋆ Evaluation: We evaluated PSense on 66 probabilistic programs from the
literature, with a total of 357 parameter analyses. The experiments show
the effectiveness and efficiency of PSense in analyzing sensitivity and solving
optimization problems for various sensitivity metrics. We also show that
PSense’s symbolic analysis is often significantly more precise than sampling.

2 Examples

We demonstrate the capabilities of PSense through two representative examples.
The first example shows the analysis of a simple discrete program. The second
shows the analysis of stochastic gradient descent algorithm.

2.1 Sensitivity Analysis of Discrete Programs

def main(){

A:=flip(0.5);

B:=flip(0.5);

C:=flip(0.5);

D:=A+B+C;

observe(D>=2);

return A;

}

Fig. 1. Example

Figure 1 presents a program that flips three coins. Each
coin toss is a “head” (1) or a “tail” (0). The first three
statements simulate tossing three independent coins.
The variable D sums up the outcomes. While the value
of D is not known, the developer includes the condition
that at least two heads were observed (but not for which
coins). We want to know the posterior probability that
the coin toss A resulted in a “head”, given this evidence.

Problem Definition. The program has three con-
stant parameters for the Bernoulli distributions assigned to A, B, and C. Different
values of the parameters will give different posterior distributions. We are inter-
ested in the question: what happens to the posterior distribution if we perturb
the parameter of the prior distribution?

To estimate the change in the output distribution, we can add noise to each
of our prior flip(0.5). In particular, PSense interprets the first statement as
A:=flip(0.5+eps), where the variable eps represents this noise. The noise may
have any legal value, such that the flip probability is between 0.0 and 1.0.

Sensitivity Results. PSense first computes the posterior distribution of the
variable A, which is a function of the noise variable eps. Then it compares it to
the distribution of the program without noise using a sensitivity metrics. PSense
can compute several built-in metrics of sensitivity, defined in Section 3.

For instance, the Expectation distance has been defined in [4] as the absolute
difference between E[maineps] and E[main] the expectations of the program’s out-
put distributions with and without noise: DExp =| E[maineps]− E[main] |. After
changing the parameter of the first flip statement, PSense produces the sym-
bolic expression of this distance: (3*Abs[eps])/(4*(1+eps)). It also calculates
the range of legal values for eps, which is [−0.5, 0.5]. PSense can successfully
obtain the symbolic expressions for all other metrics and parameters.

Other Queries. PSense can perform several additional analyses:

– It can find the maximum value of the Expectation distance with respect to
the noise eps within e.g., ±10% of the original parameter value. PSense for-
mulates and solves an optimization problem, which in this case returns that
the maximum value of the Expectation distance is approximately 0.0395,
when eps is −0.05. One can similarly obtain the maximum absolute eps

subject to the bound on the sensitivity metric.

– It analyzes whether the distance grows linearly as the noise eps increases.
Interestingly, even for this a simple example, the Expectation distance is not
linear, because eps appeared in the denominator. This is due to the rescaling
of the posterior caused by the observe statement. In the version of the
program without the observe statement, the Expectation distance is linear.

2.2 Sensitivity Analysis of Stochastic Gradient Descent

def main(){

x := [1.4,1.8,3.3,4.3,4.8,6.0,

7.5,8.1,9.0,10.2];

y := [2.2,4.0,6.1,8.6,10.2,12.4,

15.1,15.8,18.4,20.0];

w1 := 0;

w2 := uniform(0, 1);

a := 0.01;

for t in [0..8){

i := t;

xi := x[i];

yi := y[i];

w1 = w1-a*2*(w1+w2*xi-yi);

w2 = w2-a*2*(xi*(w1+w2*xi-yi));

}

return w2;

}

Fig. 2. Sample SGD Program

We now turn to a more complicated exam-
ple, which implements a stochastic gradi-
ent descent (SGD) algorithm, in Figure 2.
It is derived from the algorithm analyzed
in [4], applied to the linear regression sce-
nario (as in [1]).

The variables x and y are two arrays
that store the observed data. We fit a sim-
ple linear regression model yi = w1+w2xi.
We first set the parameters w1 and w2 to
some initial values. Then we use the gra-
dient descent algorithm to adjust the pa-
rameters in order to minimize the error of
the current fit. To make the model sim-
pler, we set w1 to a concrete initial value
and assume w2 follows the uniform distri-
bution. We set the learning rate a to 0.01.
In each iteration we adjust the value of w1

and w2 so that the square error in the prediction moves against the gradient and

n ∈ Z

r ∈ R

x ∈ Var

a ∈ ArrVar

bop ∈ {+,−, ∗, /, }̂ lop ∈ {&&, | |} cop ∈ {==, 6=, <,>,≤,≥}

Dist ∈ {Bernoulli, Gaussian, Uniform,. . . }
p ∈ Prog → Func+

f ∈ Func → def Id(V ar∗) {Stmt; return Var∗}

se ∈ Expr → n | r | x | ?x | a[Expr] | Dist(Expr+) | f(Expr∗) |
Expr bop Expr | Expr cop Expr | Expr lop Expr

s ∈ Stmt → x := Expr | a := array(Expr) | x = Expr | a[Expr] = Expr |

observe Expr | assert Expr | skip | Stmt; Stmt |

if Expr {Stmt} else {Stmt} | for x in [Expr..Expr) {Stmt}

Fig. 5. PSI Language Syntax [10]

3.1 Language

Figure 5 presents the syntax of PSI programs. Overall, it is a simple impera-
tive language with scalar and array variables, conditionals, bounded for-loops
(each loop can be unrolled as a sequence of conditional statements) and func-
tion calls. The language supports various discrete and continuous distributions.
To sample from a distribution, a user assigns the distribution expression to a
variable. The observe statement conditions on the expressions of random vari-
ables. PSense supports the following distributions: Bernoulli, Uniform, Binomial,
Geometric, Poisson (discrete), Normal, Uniform, Exponential, Beta, Gamma,
Laplace, Cauchy, Pareto, Student’s t, Weibull, and Rayleigh (continuous).

PSI has the ability to symbolically analyze probabilistic programs with un-
certain variables. They may take any value and do not have a specified distribu-
tion. Uncertain variables in PSI are specified as arguments of the main function.
PSense uses uncertain variables to represent noise.

3.2 Sensitivity Metrics

To compare the distributions, PSense uses a developer-selected metric. PSense
currently supports several standard metrics for continuous and discrete distri-
butions. Let P be a cumulative distribution function over the support Ω. For
probabilistic programs, we denote the distribution represented by the noisy pro-
gram as Pmaineps = P [main | eps] and the distribution represented by the original
program (without noise) as Pmain = P [main | eps = 0]. We present the metrics
for discrete distributions:

∗ (ED1) Expectation distance: DED1 = |EX∼main[X] − EY∼maineps[Y]|, which
was defined in [4].

∗ (ED2) Expectation distance (alternative): DED2 = E [|X − Y |], where X ∼
main, Y ∼ maineps; It is a more natural definition of distance, generalizing
absolute distance, but harder to compute (as it is not easy to decompose).

∗ (KS) Kolmogorov-Smirnov statistic: DKS = supω∈Ω |Pmain(ω)−Pmaineps(ω)|.

∗ (TVD) Total variation distance: DTVD = 1
2

∑
ω∈Ω |Pmain(ω)− Pmaineps(ω)|.

∗ (KL) Kullback-Leibler divergence: DKL =
∑

ω∈Ω Pmaineps(ω) log
Pmaineps(ω)
Pmain(ω) .

The metrics for continuous distributions are defined analogously, replacing
sums with the corresponding integrals. The metrics provide several computa-
tional challenges, such as (1) integrations in ED2, TVD, and KL, (2) mathemat-
ical optimization in KS, and (3) non-linearity in ED2, KS, and KL.

3.3 PSense Symbolic Analysis

Algorithm 1 presents the pseudo-code of PSense’s analysis algorithm. The sym-
bolic analysis goes through several stages and synergistically leverages the ca-
pabilities of PSI and Mathematica. We describe each stage below.

Algorithm 1 PSense Algorithm

INPUT : Program Π, Sensitivity Metric M
OUTPUT : Sensitivity Table T : Param→ Expr ×Bool

1: procedure PSense

2: P ← IdentifyParams(Π)
3: d← PSI(Π)
4: for p ∈ P do

5: Π ′ ← transformProgram(Π, p)
6: dε ← PSI(Π ′)
7: s← distrSupport(dε)
8: ∆0 ←M(d, dε)
9: ∆← MathematicaSimplify(∆0, s)
10: if (doApproximate ∧ hasIntegral(∆)) then
11: ∆← approximateIntegral(∆, s)
12: end if

13: l← isLinear(∆, s)
14: T [p]← (∆, l)
15: end for

16: return T
17: end procedure

Identifying Noisy Parameters. PSense’s front end identifies all parameters
that are used inside the distribution expressions (such as flip(0.5) in the first
example) and observations (such as observe(D>=2) in the same example). For
each of these parameters, PSense generates a probabilistic program that ex-
presses uncertainty about the value of the parameter. PSense leverages the un-
certain variables, such as eps, to generate legal PSI programs with noise.

Computing Posterior Distribution with Noise. For each program with
uncertain variables, PSI computes symbolic distribution expressions (both prob-
ability mass/density and cumulative distribution functions) parameterized by
the uncertain variables. PSI can work with programs that have discrete or con-
tinuous distributions. Many of PSI’s simplification and integration rules can op-
erate on programs with uncertain variables and produce posterior distributions
that fully solve integrals/summations. In the analysis of while loops (which are

unrolled up to some constant, after which a status assertion will fail), the de-
pendence of the iteration count on eps will be reflected through the probability
of failure, which will also be a function of eps.

Both PSense and PSI analyses keep track of the legal parameter values for the
distribution parameters. Based on this, PSense can then automatically determine
the legal bounds of the noise variables. For instance, for flip(0.7+eps), the
computed distribution expression will specify that the variable eps should be
between −0.7 and 0.3 (because the parameter of Bernoulli is between 0 and 1).

Computing Sensitivity Metrics. In general, one can define the computation
of the sensitivity as a product program that has two calls to main with and
without noise, however we optimize the analysis to skip the computation of
the posterior for the original program (without noise), since we can obtain it
by substituting eps with zero. After computing the distribution expression for
one program with PSI, PSense calls Mathematica to compute and simplify the
expression of the sensitivity metric. Some metrics, such as KS and ED2 may
take advantage of the support Ω of the distribution, to successfully simplify the
expression. PSense implements a support computation as Mathematica code.

To address these challenges, we combine the solving mechanisms from Math-
ematica and PSI. Our experience is that Mathematica has a more powerful
simplification engine (when it scales) and has capabilities to perform symbolic
and numerical optimization and interpolation, which are out of the scope of PSI.

To support the symbolic analysis and provide an additional context to the
user, we implemented several procedures that check for various properties of the
functions of the noise variable eps:

– Linearity Check: We have two linearity checks. The exact version checks
the standard property from calculus, that the derivative of the function is a
non-zero constant with respect to eps. An alternative approximate version
searches for the upper and lower linear coefficients that tightly bound the
function (as tangents that touch it). If the distance between these lines is
within a specified tolerance, PSense reports approximate linearity.

– Convexity/Concavity Check: For this check, we also implement the test
in Mathematica based on the standard definition from calculus: a function
of a variable eps is convex (resp. concave) if the second derivative is non-
negative (resp. negative) for all legal values of eps. To establish this property,
we set the appropriate inequalities and query Mathematica to find counterex-
amples. PSense returns if the expression is in any of these categories.

– Distribution support: A distribution support is a set of values for which
the distribution mass/density function is non-zero. Knowing support is crit-
ical for efficient computation of sums and integrals that appear in the dis-
tance expressions, especially for optimization problems and for the optional
approximate integration. Surprisingly, solving for support in Mathematica
is not straightforward. Among several alternatives, we found that the most
effective one was the built-in function FunctionDomain[f], which returns

the interval on which the function f is defined. To use it, we redefine the
query to check the domain of a fractional function that is defined only when
dist[eps] is non-negative.

– Numerical Integration: The analysis of continuous distributions may pro-
duce complicated (potentially multidimensional) integrals. Since not all inte-
grals have a closed-form, PSense implements numerical approximation that
evaluates integrals that PSI/Mathematica could not solve. The numerical
integration can be optionally selected by the user. The approximation cre-
ates a hypercube of the parameter values and samples the values of eps

and the other variables at the regular boundaries. It uses the distribution
support computed by PSense’s analysis and relies on the user to set up the
lower/upper integration bounds.

Properties. Soundness of the technique follows from the soundness of the un-
derlying solvers: given the legal intervals for the uncertain variables, both PSI
and Mathematica do sound simplification of mathematical expressions; In addi-
tion, PSense’s analyses for determining distribution support, linearity and con-
vexity are derived from the standard mathematical definitions. The time com-
plexity of the analysis is determined by the underlying inference (which is #P
for discrete programs) and algebraic simplifications.

Global vs. Local Sensitivity. In the present analysis, the value of eps is
bound only by the legality range and can assume any value. This therefore
enables us to conduct a global sensitivity analysis, which asks a question, whether
some property about the distribution holds for all values of eps. This is in
contrast to a local sensitivity analysis, which assumes that eps is a constant
small perturbation around an input x0, e.g., x0 − 0.1 and x0 + 0.1. Computing
the local analysis follows directly from the result of the global analysis.

Our approach can, in principle, also analyze multiple uncertain variables in
parallel (multi-parameter sensitivity analysis). While PSense algorithm would
apply to this setting, we note that when selecting all variables as noisy, the
current solvers would not be able to apply effective simplification on such ex-
pressions (unless most of noise variables are 0).

3.4 Sampling-Based Sensitivity Algorithm

We also implemented a sampling backend as an approximate alternative to the
exact symbolic analysis. For a concrete numerical value of noise (e.g., 1%, 5%,
or 10% of the original value), the sampling backend translates the program
with and without noise to WebPPL, a popular probabilistic language with an
approximate MCMC backend and runs its inference. The translation between
PSI and WebPPL is mostly straightforward, except for the loops, which are
translated as recursions. The translated program calls the two functions, main
and maineps, which are the translated functions, and eps is a constant:

var sensitivity = function() {

var eps = 0.01;

var r1 = main();

var r2 = maineps(eps);

return sensitivity_metric(r1, r2);

}

var dist = Infer({method: ’MCMC’, samples: 1000}, sensitivity);

While the sampling-based sensitivity analysis will typically work for a wider
variety of probabilistic programs than the symbolic analysis, it has at least three
important limitations: (1) it may produce imprecise results, especially when eps

is small and therefore a user cannot rely on it soundness, and (2) it works only
for concrete values of eps, and cannot express global properties (for all eps),
and (3) it cannot be used in the optimization queries we describe next.

4 Optimization

PSense can leverage the results from the symbolic analysis to formulate and
solve sensitivity-related optimization problems.

Maximum Acceptable Perturbation. This optimization problem seeks the
answer to the question: What is the maximum absolute noise of the input such
that the distance between the output distributions does not exceed a provided
constant? A user provides an acceptable threshold τ on the distribution distance
of their choice. We then leverage PSense analysis (Section 3) to get the symbolic
expression for the distribution distance ∆(ε) for a noise variable ε. We define
the optimization problem as follows:

Maximize: | ε |
Constraints: 0 ≤ ∆(ε) ≤ τ

LegalityChecks(ε)
Variable: ε ∈ Domain

The optimization problem maximizes the absolute value of ε subject to the
constraint given by the distance expression. In general, a distance expression ∆

may have multiple branches (expressed as Boole functions). In such cases, we
break ∆ into non-overlapping branch components and make sure all of them
are within the bound τ . We also support a non-symmetric optimization problem
that independently maximizes ε and −ε to get more precise bounds.

As already mentioned, PSense keeps track of the legal values of the distribu-
tion parameters for each standard distribution. These checks typically have the
form a ≤ ε ≤ b. It is possible for a variable to have multiple such (sub)intervals,
which we add all to the optimization problem. Finally, ε’s domain may be either
reals or integers. While most parameters are real (e.g., for Bernoulli and Gaus-
sian), integer noise exists in distributions such as uniform for integers (upper
and lower bounds) or negative binomial (first parameter).

The optimization problem is univariate, but the constraint on ∆ can be non-
linear. We use Mathematica’s function Maximize[], which symbolically solves
optimization problems, producing the infinite-precision value for ε. In addition,

PSense runs an auxiliary convexity check, which can indicate whether the found
optimum is global one (if the function is convex, then a local maximum is also
the global maximum).

Optimization for Local Sensitivity. We can similarly formulate the local-
sensitivity query:What is the maximum distance between the output distributions
when the input noise is within an interval [x0 − σ, x0 + σ]? (x0 is the original
value, and the constant σ is a radius of the ball around it). The optimization
problem is formulated similarly as the previous one. The optimization objective
is to maximize ∆(ε), subject to the constraint ε ∈ [−σ, σ] and legality checks for
ε. If∆(ε) has multiple terms, we solve for each and combine. For this problem, we
also use Mathematica’s Maximize[] to compute the (exact) symbolic solution.

5 Evaluation

Our evaluation focuses on the following research questions:

⋆ RQ1: Is PSense effective in computing the sensitivity of the parameters of
prior distributions?

⋆ RQ2: Is PSense effective in computing the sensitivity of the observations?
⋆ RQ3: How does the precision of PSense symbolic approach compare to a
sampling-based sensitivity analysis?

⋆ RQ4: Is PSense effective in finding maximum allowed parameter sensitivity
subject to the bound on the final noise?

Table 1. Benchmark Statistics

#Progs 66
#Params 357

#Priors/Prog
min: 1
avg: 4.6
max: 16

#Observe/Prog
min: 0
avg: 0.77
max: 10

#LOC
min: 3
avg: 16.8
max: 76

Benchmarks. We evaluated PSense on three
sets of programs: (1) 21 benchmark programs
from the PSI paper [10], (2) a subset of the pro-
grams from the book Probabilistic Models of Cog-
nition [14] that we translated into PSI, and (3)
three code examples from [4]: SGD that we spe-
cialized for regression, one-dimensional popula-
tion dynamics, and path coupling.

Table 1 presents the statistics of the bench-
mark programs. In addition to the total number
of programs and the constant parameters that
can be changed, it also presents the number of
statements that specify prior distributions per
benchmark, the number of observation statements, and the number of lines of
code. Note that even when a probabilistic program has only a few lines of code,
they still represent complicated probabilistic models that can be challenging for
automated analyses.

Setup. We analyzed the programs with five sensitivity metrics defined in Sec-
tion 3.2. We set the timeout for computing the individual metric to 10 minutes.
We performed the experiments on Xeon CPU E5-2687W (3.00GHz) with 64GB
RAM, running Ubuntu 16.04.

Table 2. Sensitivity to Perturbation of Priors

Discrete Continuous

Metric OK Fail T/O N/A Time(s) OK Fail T/O N/A Time(s)

ED1 94 44 5 25 4.47±2.08 49 30 39 20 9.84±2.62

ED2 136 1 6 25 18.7±6.82 39 0 79 20 115±30.0

KS 142 2 24 0 27.1±7.90 38 19 81 0 81.3±23.6

TVD 127 7 34 0 19.1±6.58 55∗ 16 67 0 87.9±26.9

KL 128 17 23 0 23.1±6.18 32∗ 17 89 0 114±28.0

5.1 Sensitivity to Perturbation of Priors

We computed the sensitivity of the result to the change in each prior parame-
ter. Table 2 presents the counts of the outcomes of parameter sensitivity, sep-
arately for discrete and continuous/mixed programs. The first column presents
the metrics from Section 3.2. Column “OK” counts the cases for which PSense
successfully computed the symbolic noise expression (we denote ∗ if we applied
approximate integration). Column “Fail” counts the cases for which PSense was
unable to compute the result automatically; we discuss the reasons below. Col-
umn “T/O” counts the cases that did not complete within the timeout. Column
“N/A” counts cases for which the metrics cannot be applied (e.g., when the pro-
gram returns a tuple). Finally, Column “Time” presents the average time and
standard deviation of the analysis runs.

The results show that PSense can be effective in producing sensitivity in-
formation for many benchmark programs. For discrete programs, we analyze
all programs fully symbolically and provide exact difference expressions. In ad-
dition, for all these programs, we were able to compute the linearity and the
maximum input noise that corresponds to the pre-specified output noise in the
case of KS distribution distance. For continuous programs, PSense can compute
the expectation and KS distances exactly, but for TVD and KL, the majority of
the integrals do not have the closed form, and therefore we instructed PSense to
compute the approximate integrals.

Some of the PSense analyses failed to produce the results. We manually in-
spected these programs. For expectation distance, all failures are due to expecta-
tion expressions that have multiple cases. For instance, one case when eps >= 0

and another when eps < 0. We currently do not support the sensitivity of such
composite expressions, but plan to do so in the future. For KS distance, the fail-
ures were due to the internal exceptions in PSI (problems computing results) or
in Mathematica’s Maximize (returns “Indeterminate”). For TVD/KL, the fail-
ures happen when PSense cannot find the distribution support. For continuous
distributions, Mathematica’s numerical integration (NIntegrate) can result in 0
in the denominator or raise an “Infinity, or Indeterminate” exception. In some
cases, we cannot apply the computation – e.g., expectation distances ED1 and
ED2 are not defined when the program returns a tuple.

The execution time consists of three components: (1) the time to do PSI
analysis, (2) the time to determine the distribution support, and (3) the time
to compute the sensitivity metric. Out of those, our current computation of the

Table 3. Sensitivity to Perturbations of Observed Data

Discrete Continuous

Metric OK Fail T/O N/A Time(s) OK Fail T/O N/A Time(s)

ED1 6 19 1 6 0.45±0.31 6 5 6 2 5.07±3.20

ED2 25 0 1 6 7.58±7.15 8 0 9 2 39.4±23.6

KS 28 0 4 0 4.27±2.46 9 1 9 0 3.22±2.60

TVD 28 0 4 0 3.61±1.94 11∗ 1 7 0 56.5±35.6

KL 9 20 3 0 22.7±16.1 3∗ 1 15 0 1.34±0.83

distribution support takes about 20s (for most programs), while the computa-
tion of the sensitivity metric takes between 4s (ED2) and 20s (KL). Continuous
distributions typically take more time, since the analysis needs to solve compli-
cated integrals or optimizations (e.g., ED2, KS), in contrast to the discrete cases,
which only have finite sums. For continuous TVD and KL, the time of approxi-
mate integration is proportional to the number of points for which the integrals
are numerically computed. Finally, complex integrals cause more timeouts for
continuous programs.

5.2 Sensitivity to Perturbations of Observed Data

Similarly, we ran PSense to add a noise variable to the expressions within each
observation statement. Table 3 presents the counts of observation sensitivity
analyses (one for each observe statement) and their outcomes, separately for
discrete and continuous/mixed programs. The columns have the same meaning
as for Table 2. We identify the same trends for the ability of PSense to analyze
sensitivity as in the case of the prior distributions in Section 5.1 for the majority
of metrics. The exceptions are ED1 and KL (discrete cases), where the sensitiv-
ity expressions are more likely to be discontinuous or nonlinear because noise
variables in observations result in more complicated constraints.

5.3 Solving Optimization Problem

We also present the results of solving the optimization problem, which seeks
the maximum absolute value of the noise variable, subject to the bound on the
program’s final distance. We set the maximum acceptable program threshold to
10% of the true distance. We analyzed only the programs for which PSense (Sec-
tions 5.1 and 5.2) gave an “OK” status. We only optimized the exact symbolic
expressions, therefore skipping TVD and KL distances for continuous programs.

Table 3 presents the counts of problems that were successfully solved. The
columns of the table have the same meaning as in the previous sections. The
results show that many of the problems can be successfully (and exactly) solved
by the Mathematica backend that PSense calls. For the several cases that failed
to produce the result, Mathematica was not able to generate initial points that
satisfy the inequality or the solution failed to converge, typically for programs
with discrete variables, which resolve to plateaus in optimization. Only a small
fraction of analyses experienced timeout, indicating that the current symbolic
techniques are effective in solving a variety of problems.

Table 4. PSense Results for Solving Optimization Problems

Discrete Continuous

Metric OK Fail T/O N/A Time(s) OK Fail T/O N/A Time(s)

ED1 99 0 1 31 3.11±1.81 54 0 1 22 7.26±2.25

ED2 160 1 0 31 14.7±5.43 42 3 2 22 94.7±25.0

KS 138 23 9 0 163±12.4 25 7 15 0 105±29.6

TVD 148 7 0 0 5.72±2.51 - - - - -

KL 113 21 3 0 13.4±4.46 - - - - -

Table 5. Symbolic vs. Sampling Algorithm for Expectation Distances

Metric Total Diff. (>1-stderr) Diff. (>2-stderr) Time Symbolic Time Sampling

ED1 86 57 (66%) 35 (41%) 0.45±0.027 0.29±0.002

ED2 78 62 (79%) 44 (56%) 0.21±0.003 0.29±0.002

5.4 Comparison with Sampling Sensitivity Analysis

Finally, we compared the results and the execution times of PSense compared to
estimating sensitivity using the sampling (WebPPL-based) backend. We set the
value of the noise variable to 10% of the original value and run 1000 simulations.
Since the sampling backend has to operate only on the concrete values of noise
variables, we evaluated symbolic analysis too with the specific noise value. We
selected only the programs for which PSI returned that Pr[error] (probability
of error state) is zero. For each analysis run, we checked if there exists a significant
difference between the exact symbolic sensitivity and approximate sensitivity
from the simulation by running a statistical t-test with one (p = 0.32) and two
standard errors (p = 0.05).

Table 5 presents the comparison. Column “Total” presents the total number
of sensitivity analyses run. Column “Different” presents the number of sim-
ulation runs that were significantly different from the exact result, according
to the t-test. This backend therefore complements PSense’s symbolic analysis.
Columns “Time Symbolic” and “Time Sampling” present the average execu-
tion times in seconds for the two analyses. Since both analyses operate with a
particular numerical value for the noise variable, the run time is much shorter
than for the previous analyses that considered the symbolic noise variable.
The results show that for a substantial fraction (41% of ED1 analyses and
57% of ED2 analyses), sampling produced a sensitivity estimate that is more
than two standard errors away from the exact sensitivity. The trend is even
more visible with one standard error distance (66% and 79% of the analyses
have a significantly different result). Both indicate that sampling-based analysis
is imprecise (for a similar execution time).

6 Related Work

Probabilistic Programming Systems. Recent years have seen a significant
interest in probabilistic programming languages [11, 27, 20, 12, 10, 19]. A devel-

oper who wants to check the sensitivity of their models needs to manually modify
the programs for every parameter, and since most languages support only ap-
proximate inference, the analysis is only valid for concrete values or distribution
of noise. In comparison, the goal of PSense is to fully automate the sensitivity
analysis and present exact results via symbolic analysis.

Researchers have also looked into various static analyses that compute safe
upper bounds of the probabilities of assertions in the program executions, e.g., [23,
3, 9, 26, 16, 21]. We anticipate that the future advances in static analysis and
appropriate abstractions, as well as principled combinations of analysis with
sampling [20] will improve the scalability of PSense and related analyses.

Comparison with PSI and Mathematica. While PSense leverages PSI’s
core analysis, PSI alone cannot identify locations of noise variables, compute the
distance, run optimization for computing KS distance and other optimization
and linearity/continuity queries. PSI’s engine cannot solve various integrals aris-
ing from TVD and KL. On the other hand, Mathematica is limited when simpli-
fying arbitrary program state expressions [10]. PSense builds on and reformulates
the problems hard for PSI as more efficiently computable Mathematica queries
and computes hints, e.g., distribution supports, to make the analysis feasible.

Sensitivity Analyses. Sensitivity techniques from machine learning [6, 7, 25,
5, 17] are typically numeric and mainly analyze local sensitivity. For instance,
Darwiche and Chan present a framework for testing individual discrete-only pa-
rameters of Belief networks [6] and later present how to extend the analysis for
multiple parameters and capture their interactions [7]. Like [6], PSense focuses
on individual parameters, but can analyze both discrete and continuous distribu-
tions. Recently, Llerena et al. [18] present an analysis of perturbed Markov Deci-
sion Processes, but only analyze models of systems and do not analyze program
code. Barthe et al. presented a logic for reasoning about probabilistic program
sensitivity [4]. Unlike PSense, it is manual, requiring a developer to prove prop-
erties using a proof assistant, but it supports overapproximation. In contrast,
PSense is fully automated and computes various non-linear sensitivity metrics.

7 Conclusion

We presented PSense, a system for automatic sensitivity analysis of probabilistic
programs to the perturbations in the prior parameters and data. PSense leverages
symbolic algebra techniques to compute the exact sensitivity expressions and
solve optimization queries. The evaluation on 66 programs and 357 parameters
shows that PSense can compute the exact sensitivity expressions for many exist-
ing problems. PSense demonstrates that symbolic analysis can be a solid foun-
dation for automatic and precise sensitivity analysis of probabilistic programs.

Acknowledgements. We thank the anonymous reviewers for the useful com-
ments on the previous versions of this work. This research was supported in part
by NSF Grants No. CCF 17-03637 and CCF 16-29431.

References

1. Wikipedia: SGD. https://en.wikipedia.org/wiki/Stochastic gradient descent.
2. Mathematica, 2015. https://www.wolfram.com/mathematica/.
3. A. Albarghouthi, L. D’Antoni, S. Drews, and A. Nori. Fairsquare: probabilistic

verification of program fairness. In OOPSLA, 2017.
4. G. Barthe, T. Espitau, B. Grégoire, J. Hsu, and P. Strub. Proving expected sen-

sitivity of probabilistic programs. In POPL, 2018.
5. E. Borgonovo and E. Plischke. Sensitivity analysis: a review of recent advances.

European Journal of Operational Research, 248(3):869–887, 2016.
6. H. Chan and A. Darwiche. When do numbers really matter? Journal of artificial

intelligence research, 17:265–287, 2002.
7. H. Chan and A. Darwiche. Sensitivity analysis in bayesian networks: From single

to multiple parameters. In UAI, 2004.
8. S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving programs

robust. In FSE, 2011.
9. A. Filieri, C. Păsăreanu, and W. Visser. Reliability analysis in symbolic pathfinder.

In ICSE, 2013.
10. T. Gehr, S. Misailovic, and M. Vechev. PSI: Exact symbolic inference for proba-

bilistic programs. In CAV, 2016.
11. A. Gelman, D. Lee, and J. Guo. Stan: A probabilistic programming language for

bayesian inference and optimization. J. Educational and Behavioral Stats., 2015.
12. N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum. Church:

A language for generative models. In UAI, 2008.
13. N. Goodman and A. Stuhlmüller. The design and implementation of probabilistic

programming languages, 2014.
14. N. Goodman and J. Tenenbaum. Probabilistic Models of Cognition. probmods.org.
15. P. Gustafson, C. Srinivasan, and L. Wasserman. Local sensitivity analysis.

Bayesian statistics, 5:197–210, 1996.
16. S. Holtzen, T. Millstein, and G. Broeck. Probabilistic program abstractions. In

UAI, 2017.
17. B. Iooss and A. Saltelli. Introduction to sensitivity analysis. Handbook of Uncer-

tainty Quantification, pages 1–20, 2016.
18. Y. Llerena, G. Su, and D. Rosenblum. Probabilistic model checking of perturbed

mdps with applications to cloud computing. In FSE, 2017.
19. V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order probabilistic

programming platform with programmable inference. ArXiv 1404.0099, 2014.
20. P. Narayanan, J. Carette, W. Romano, C. Shan, and R. Zinkov. Probabilistic

inference by program transformation in hakaru. In FLOPS, 2016.
21. F. Olmedo, B. Kaminski, J. Katoen, and C. Matheja. Reasoning about recursive

probabilistic programs. In LICS, 2016.
22. A. Saltelli et al. Global sensitivity analysis: the primer. 2008.
23. S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic

programs: inferringwhole programproperties fromfinitelmany paths. In PLDI’13.
24. D. Tran, A. Kucukelbir, A. Dieng, M. Rudolph, D. Liang, and D. Blei. Edward: a

library for probabilistic modeling, inference, and criticism. arXiv:1610.09787, 2016.
25. L. van der Gaag, S. Renooij, and V. Coupé. Sensitivity analysis of probabilistic

networks. Advances in probabilistic graphical models, pages 103–124, 2007.
26. D. Wang, J. Hoffmann, and T. Reps. PMAF: an algebraic framework for static

analysis of probabilistic programs. In PLDI, 2018.
27. F. Wood, J. van de Meent, and V. Mansinghka. A new approach to probabilistic

programming inference. In AISTATS, 2014.

