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Abstract

Many video streaming applications require low-latency

processing on resource-constrained devices. To meet the

latency and resource constraints, developers must often

approximate filter computations. A key challenge to suc-

cessfully tuning approximations is finding the optimal

configuration suited for content characteristics, which

are changing across and within the input videos. Search-

ing through the entire search space for every frame in

the video stream is infeasible, while tuning the pipeline

off-line, on a set of training videos, yields suboptimal

results.

We present VIDEOCHEF, a system for approximate

optimization of video pipelines. VIDEOCHEF finds the

optimal configurations of approximate filters at runtime,

by leveraging the previously proposed concept canary

inputs (using small inputs to tune the accuracy of the

computations and transferring the approximate config-

urations to full inputs). VIDEOCHEF is the first sys-

tem to show that canary inputs can be used for com-

plex streaming applications. The two key innovations of

VIDEOCHEF are (1) an accurate error mapping from the

approximate processing with downsampled inputs to that

with full inputs and (2) a directed search that balances the

cost of each search step with the estimated reduction in

the run time.

We evaluate our approach on 106 videos obtained

from YouTube, on a set of 9 video processing pipelines

(in total having 10 distinct filters). Our results show sig-

nificant performance improvement over the baseline and

the previous approach that uses canary inputs. We also

perform a user study that shows that the videos produced

by VIDEOCHEF are often acceptable to human subjects.

1 Introduction

Video processing has brought many emerging appli-

cations such as augmented reality, virtual reality, and

motion tracking. These applications implement com-

plex video pipelines for video editing, scene understand-

ing, object recognition and object classification [14, 49].

They often consume significant computational resources,

but also require short response time and low energy con-

sumption. Often, the applications need to run on the local

machines instead of the cloud, due to latency [14], band-

width [50], or privacy constraints [46].

To enable low-latency and low-energy video process-

ing, we leverage the the fact that most stages in the video

pipeline are inherently approximate because human per-

ception is tolerant to moderate differences in images and

many end goals of video processing require only esti-

mates (e.g., detecting object movement or counting the

number of objects in a scene [5]). Many domain-specific

algorithms have exposed algorithmic knobs, that can e.g.,

subsample the input images or replace expensive com-

putations with lower-accuracy but faster alternatives [45,

40, 13, 25]. To complement domain-specific approxima-

tions, researchers have proposed various generic system-

level techniques that expose additional knobs for opti-

mizing performance and energy of applications while

trading-off accuracy of the results. The techniques span

compilers [38, 27, 41, 7, 34], systems [3, 15, 18, 17, 28],

and architectures [30, 26, 35, 34, 8].

Content-dependent Approximation. A fundamental

challenge of uncovering the full power of both generic

and domain specific approximations is finding the con-

figurations of these approximations that provide max-

imum savings, while providing acceptable results for

each given input. This challenge has two main parts.

First, the optimal approximation setting is dependent

on the content of the video, not just on the algorithms

being used in the processing pipeline. Often individual

videos, or parts of the same video should have different

approximation settings, requiring the program to make

the decisions at runtime. Second, the optimization needs

to explore a large number of approximate configurations

before selecting the optimal one for the given input, re-



quiring the optimizer to construct off-line models. Sys-

tems like Green [3] and Paraprox [34] dynamically adapt

the computation using runtime checks of the intermedi-

ate results, while Capri [42] selects approximation level

from the input features at the program start. However,

the systems rely on extensive off-line training to map the

approximation levels to accuracy and performance.

To relax the dependency on off-line training, Lauren-

zano et al. [24] propose Input Responsive Approxima-

tion (IRA) for runtime recalibration with no offline train-

ing. IRA creates canary inputs, smaller representations

of the full inputs (obtained via subsampling), and then re-

runs the computation on the canary input with different

approximation settings, until it finds the most efficient

setting that maintains the accuracy requirement (on the

canary). While the concept is promising, the application

of IRA to video processing pipelines is limited:

• IRA has been applied to individual computational ker-

nels (in contrast to full pipelines). It is unclear how

to capture the interactions between the stages of the

pipeline, how often to calibrate, and what are the opti-

mal canary sizes.

• IRA uses the approximation settings derived from the

canary input to the full input, assuming that the errors

for the full and correlated inputs will be similar. How-

ever, the assumption is often incorrect (98% of cases,

Figure 2) and leads to missed speedup opportunities.

• IRA’s greedy search may introduce additional over-

heads and may not find good approximation settings

efficiently because it has no notion of what are the ap-

propriate points in the stream to search.

Our Solution: VIDEOCHEF. We present VIDEOCHEF,

a fast and efficient processing pipeline for stream-

ing videos. VIDEOCHEF can optimize the perfor-

mance subject to accuracy constraints for the system-

level and domain-specific approximations of all kernels

in the video processing pipeline. Figure 1 presents

VIDEOCHEF’s end-to-end workflow:

• Like IRA, VIDEOCHEF uses small-sized canary in-

put to guide the the on-line search for approximation

setting. However, unlike IRA, VIDEOCHEF is tai-

lored for optimization of the whole video processing

pipelines, not just individual kernels.

• In contrast to IRA, VIDEOCHEF presents a finely tun-

able prediction model for mapping the error from the

canary input to that with the original input. This pre-

diction model is trained offline and hence does not

generate any additional runtime overhead. At the same

time, it is much more lightweight than the full off-line

training employed by other approaches.

• At runtime, VIDEOCHEF performs an efficient search

through the space of approximation settings and en-
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Figure 1: End-to-end flow of approximate video processing with

VIDEOCHEF. The video processing pipeline comprises multiple fil-

ters, which can be approximated to save computation at the expense

of tolerable video quality. The offline and the online components of

VIDEOCHEF work together to determine the best approximation set-

ting for each approximable filter block.

sures that the cost of the search does not overwhelm

the benefit of approximating the computation.

We evaluate VIDEOCHEF with three error models and

two search strategies, applied to a corpus of 106 YouTube

videos from 8 content categories, which span the range

of video features (e.g., color and motion). We analyze

10 filters arranged in 9 pipelines of size 3. We find that

VIDEOCHEF is able to reach within 20% of the theo-

retical best performance possible and outperforms IRA’s

performance by 14.6% averaged across all videos and

saves on an average 39.1% over the exact computation

given a relatively restrict quality requirement. While

given a more loose quality requirement, VIDEOCHEF is

able to reach within 26.62% of the theorectical best one

and also achieve higher performance gain – 53.4% and

61.5% over IRA and exact computation, respectively.

While we have framed this discussion in terms of

video processing, the novel contributions outlined be-

low apply to other low-latency streaming applications,

with the fundamental requirement that the characteristics

change to some extent from one segment of the stream to

another, for instance, online video gaming, augmented

reality and virtual reality applications.

Contributions. We make the following contributions:

• We present VIDEOCHEF, a system for perfor-

mance and accuracy optimization of video streaming

pipelines. It consists of off-line and on-line compo-

nents, that together adapt the application’s approxima-

tion level to the desired output quality.

• We build a predictive model to accurately estimate the

quality degradation in the full output from the error

generated when using the canary input. This enables

more aggressive approximation setting to the approxi-

mation algorithm that has tunable knobs.
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• We propose an efficient and incremental search tech-

nique for the optimal approximation setting that takes

hints from the video encoding parameters to reduce

the overhead of the search process.

• We demonstrate the benefits of VIDEOCHEF through

(1) quantitiative evaluation on various real-world

video contents and filters and (2) a user study.

2 Background and Motivation

Error Metric: At a high-level, a video is composed of

a sequence of image frames. To quantify the error in

the output or the processed video due to approximation,

we measure the Peak Signal-to-Noise Ratio (PSNR) of

the output video. PSNR is the average of the PSNRs

of the individual frames in the output video. Suppose

that a video consists of K frames where each frame has

M×N pixels. Let Yk(i, j) be the value of the pixel at (i, j)
position on the k-th frame of the processed video without

any use of approximation, and Zk(i, j) be the value of the

pixel when approximation was applied. Then, the PSNR

of the approximate output is computed as follows:

PSNR =
1

K

K−1

∑
k=0

20× log10
MaxValue

√

MSE(Zk,Yk)
, (1)

where MaxValue is the maximum possible pixel value

present in the frame, and MSE(Zk,Yk) is the mean square

error between Zk and Yk, i.e., ∑i ∑ j(Zk(i, j)−Yk(i, j))2,

as a result of approximation. Thus, lower the PSNR, the

higher the error in the output video.

Isn’t the problem solved by IRA and Capri? IRA (In-

put Responsive Approximation) [24] and Capri [42] at-

tempted to address the problem of selecting optimal ap-

proximation level for individual inputs.

IRA [24] solely relies on canary inputs to search for

best approximation settings. Thus, it implicitly assumes

that the magnitude of error corresponding to a particu-

lar approximation setting on the canary inputs is iden-

tical to the error with the same approximation settings

on the full-sized inputs. But, Figure 2 shows our experi-

ment with 424 real images and 216 different approxima-

tion settings. We found that for the same approximation

settings, the PSNR of the full-sized inputs can be sig-

nificantly different from the PSNR of the canary inputs.

Most of the points (about 98%) are above the diagonal,

indicating that the error on the full input is lower than that

with the canary input for the same approximation level.

We attribute the difference in the approximation to

the higher variations between neighboring pixel values

for canary inputs. Therefore, for the same approxima-

tion settings, the approximate processing on canary in-

puts gives lower PSNR. We found that on an average,

the PSNR of a full-sized output is 5.36 dB higher than

Figure 2: The PSNR of full-sized output versus the PSNR of ca-

nary output, for the I-frames of 106 videos on one of our application

Boxblur-Vignette-Dilation video filter pipeline. The PSNR of full out-

put is higher for over 98% approximation settings and 45.1% of the

approximation settings lie in such a zone that is ignored by IRA ap-

proach but actually satisfies the quality requirement.

the PSNR of canary output. Therefore, IRA misses an

opportunity for more aggressive optimization that can fit

within the user-specified quality threshold.

Capri [42] rigorously addresses the problem of se-

lecting the best approximation settings to minimize the

computational cost, while meeting the error bound. But

Capri also fails in the video processing setting because it

does not recalibrate itself with the stream and thus cannot

change its approximation settings when the characteris-

tics of the stream change. Further, it (1) relies on prior

enumeration of all possible inputs, which is impossible in

this target domain, and (2) performs the selection of ap-

proximation settings completely offline, which reduces

the cost of the optimization but makes it non-responsive

to changes in the input data.

3 Solution Overview

Figure 1 shows the end-to-end workflow of streaming

video processing, with approximation.

Approximation. Under normal processing, a video de-

coder converts the video into its constituent frames. Then

a sequence of “filters” (synonymously, processing steps

or pipeline stages) is applied to each frame. Examples

include blurring filter (e.g., at the TSA airport check-

point scanners) and edge detection filter (e.g., for count-

ing people in a scene). Finally, the transformed frames

are optionally put together by a video encoder. To make

such processing fast and resource efficient, VIDEOCHEF

intelligently uses selective approximation (Section 3.1)

during the computation of the filters. The user sets the

quality constraint on the output video quality. An ex-

ample specification is that the PSNR of the output video

should be above 30 dB.

Accuracy Calibration with Canary Inputs. For

each representative frame (called “key frame” here),

VIDEOCHEF determines a canary input (Section 3.2),
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which summarizes the full frame such that the dissim-

ilarity between the full and the canary frame remains

below a threshold. With the canary input, VIDEOCHEF

occasionally recalibrates the approximation levels of the

filters. It determines when to call the search algorithm

using domain specific knowledge about the frames and

scenes (Section 3.3). For this, we extract hints from

the video decoder which lets VIDEOCHEF determine the

key frames. This amortizes the cost of the search across

many frames of the video, with 80-120 frames being a

typical range for MPEG-4 videos. In the absence of such

a video decoder, we have a variant, which triggers the

search upon a scene change detection.

Online Search for Optimal Tradeoffs. VIDEOCHEF

searches for the approximation setting of each filter that

gives the lowest execution time subject to a threshold for

the output quality (Section 3.4). Since the search for ap-

proximation is done with the canary input, the error of

approximate computation is different from the error of

the computation on the full input. VIDEOCHEF intro-

duces a method to accurately map between these two

errors (Section 3.5). In performing this estimation, we

consider multiple variants of VIDEOCHEF, depending on

what features are available to the predictor, such as, some

categorization of the video frame according to its image

properties. Through this procedure, we aim to maximally

leverage the approximation potential in the application

and give flexible approximation choices.

3.1 Approximation techniques

The computations involved in filtering operations can be

approximated by VIDEOCHEF in various ways as long

as each of the underlying approximation techniques ex-

poses knobs that can be tuned to control the approxi-

mation levels (ALs). For example, in the three pop-

ular program transformation-based approximation tech-

niques, the variable approx level is a tuning knob

that controls the levels of approximation. A higher value

implies more aggressive approximation, leading most of-

ten to higher speedup but also higher error. These trans-

formations are performed automatically by a compiler

(LLVM in our case).

Loop perforation: In loop perforation [41, 27], the

computation is reduced by skipping some iterations, as

shown below.

f o r ( i = 0 ; i < n ; i = i + a p p r o x l e v e l )

r e s u l t = c o m p u t e r e s u l t ( ) ;

Loop truncation: In loop truncation [41, 27], the last

few iterations of the computation are dropped as shown

in the following example:

f o r ( i = 0 ; i < ( n − a p p r o x l e v e l ) ; i ++)

r e s u l t = c o m p u t e r e s u l t ( ) ;

Loop memoization: In this technique [7, 34], for some

iterations in a loop we compute the result and cache it.

For other iterations we use the previously cached results.

f o r ( i = 0 ; i < n ; i ++)

i f ( i % a p p r o x l e v e l == 0)

c a c h e d r e s u l t = r e s u l t = c o m p u t e r e s u l t ( ) ;

e l s e r e s u l t = c a c h e d r e s u l t ;

3.2 Canary Inputs

To reduce the search overhead for finding the best ap-

proximation level within each frame of the video, we

generate canary inputs for the frame following the work

in [24]. A good canary input should meet two require-

ments: (1) it should be close enough to the original input

so that the AL found by the canary is the same as the

AL computed from the original; (2) it should be small

enough that the search process using the canary input is

efficient. We first define the dissimilarity metric to com-

pare the canary sample video and the full-sized video and

then show how to choose the appropriate canary input.

Metrics of Dissimilarity. We define two metrics of dis-

similarity. Let a full-sized video have K frames and

M×N pixels in each frame, and each pixel has the prop-

erty X(i, j). A canary video has K frames with m× n

pixels, and the same property Y (i, j). The property could

be one component in the YUV colorspace of an image,

where the Y component determines the brightness of the

color (known as “luminance”) while the U and V com-

ponents determine the color itself (known as “chroma”)

and each ranges from 0 to 255. The “dissimilarity metric

for mean” (SMM), is defined as follows (following [24]):

mFull =
1

M×N ×K

K−1

∑
i=0

M−1

∑
i=0

N−1

∑
j=0

X(i, j) (2)

mSmall =
1

m×n×K

K−1

∑
i=0

m−1

∑
i=0

n−1

∑
j=0

Y (i, j) (3)

SMM =
|mSmall −mFull|

mFull
(4)

When a pixel has a vector of values, such as the YUV

colorspace which has 3 values for the 3 components, then

the SMM metric is combined across the different ele-

ments of the vector. The combination could be a simple

average or a weighted average; we use the latter due to

the higher weightage of the Y-channel in the YUV col-

orspace. Similarly, we define the “dissimilarity metric of

standard deviation” (SMSD) to capture the dissimilarity

in the Standard Deviation between the full input and the

canary input.

Generating Candidate Canary Videos. Given a frame

of the video from which to generate the canary video, we

resize the frame to a fraction 1/N of its original size to

create the canary video. Typical sizes that we find useful

in our target domain are 1/16, 1/32, 1/64, 1/128, 1/256
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of the original size. Since the frame is a 2-D matrix of

pixels, to resize it to 1/N of its original size, we shrink

the width and height each to 1/
√

N of the full size by

sub-sampling 1 pixel out of every
√

N pixels.

Reducing an input size causes at least proportional re-

duction in the amount of work inside the filter. Many

filters that are finding increasing use are super-linear,

where the benefit of using a small canary frame is even

more significant. Two popular examples are determining

optical flow to measure motion [4] and morphological fil-

ter [10], where the value of each pixel in the output image

is based on a comparison of the corresponding pixel in

the input image with its neighbors. We compute the sim-

ilarity between the full-sized video frame and the canary

video frame according to the metrics SMM and SMSD.

We set the maximum dissimilarity metric we can tolerate

as a threshold parameter—we find 10% is a practically

useful threshold for both SMM and SMSD. Among all

the qualified canary inputs, we select the smallest one as

our final choice.

3.3 Identifying Key Video Frames

Searching for the best AL for each approximable pro-

gram block is computationally expensive. Conceptu-

ally, we would want to repeat the search when the char-

acteristic of the video changes significantly so that the

optimal approximation setting is expected to be differ-

ent. In practical terms, we want to perform such change

point detection without having to parse the content of the

video. Video encoders already provide hints when the

content of the scene has changed significantly.

We make the observation that videos have temporal

locality, and many frames in the same group will have

the same approximation setting. Therefore, we can per-

form a single search once per the group of frames, once

we identify the group. We leverage domain-specific

knowledge about videos to automatically select the group

boundaries in two ways:

Scene Change Detector. Our first observation is to re-

calibrate the approximation at the beginning of different

scenes. This approach is general and works for any video

format. There are mainly 2 classes of scene change de-

tectors, namely, pixel-based and histogram-based. The

pixel-based methods are highly sensitive to camera and

object motion. Histogram-based methods are good for

detecting abrupt scene changes. To keep our overhead

low (since the detection algorithm runs on every frame),

we limit ourselves to detecting only abrupt scene changes

and use canary frames for this detection.

We implement a histogram-based scene change detec-

tor using only the Y-channel of frames [20]. We experi-

mentally found the Y-channel information was sufficient

to detect abrupt scene changes and we were more con-

cerned about overhead of scene change detector than its

accuracy. The algorithm detects a scene change when-

ever the sum of the absolute difference across all the bins

of histograms of two consecutive frames is greater than

some predefined threshold (20% of the total pixels in our

evaluation).

I-frame Selection for MPEG videos. The second so-

lution takes advantage of I-frames, present in the popu-

lar H.264 encoder (which the MPEG-4 and many other

video formats follow). It defines three main types of

frames: I−, P−, and B − f rames [21]. An I-frame

uses intra-prediction meaning the predicted pixels within

this frame are formed using only samples from the same

frame. The P- and the B-frames use inter-prediction

meaning the predicted pixel within this frame depends

on samples from the same frame as well as samples from

other frames around it (the distinction between P- and B-

frames is not relevant for our discussion).

When to insert an I-frame (also called a “reference

frame”) depends on the exact coding scheme being used,

but in all such coding schemes that we are aware of, a

big difference in the frame triggers the insertion of a new

I-frame, since inter-coding will give almost as long a

code as intra-coding. Further, because an I-frame does

not have dependencies on other frames, this makes it

easier to reconstruct and perform the (exact or approx-

imate) computation. We see empirically that for a wide

range of videos used in our evaluation, the average spac-

ing between adjacent I-frames is 137 frames. Although

specific to only some video formats, it results in a low

sampling rate and consequently the low search overhead,

while triggering search at a suitable granularity.

3.4 Search with Canary Inputs

An approximable program block exposes one or more

approximation knobs. The approx level variable

mentioned with the loop-based approximation tech-

niques in Section 3.1 is an example of such a knob. In

our notation, we use AL 1 to denote the exact computa-

tion. The higher the AL is, the less accurate the com-

putation is and the higher the speedup is. Now for a

pipeline of cascaded filters, each having one or more

approximation knobs we have a vector of approxima-

tion settings per frame. We define a setting in the pro-

cessing pipeline as the combination of ALs for each of

the approximable program blocks in the video process-

ing pipeline. For example, with an n-stage processing

pipeline and each stage being approximable and hav-

ing exactly one approximation knob, the setting will be
~A = {a1,a2, · · · ,an}, where ai denotes the AL of knob i.

To find the best approximation setting, we follow a

searching algorithm outlined as follows:

1. Start searching at a particular setting, typically

(1,1, · · · ,1), corresponding to no approximation.
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2. Select a group of candidate settings by the Candi-

date Selection Algorithm. The selection algorithm

simply selects the next set of settings to try out in the

search process. The greedy algorithm works as fol-

lows: given the current setting ~A(0), we assume that

we can reach the best AL by looking at each step 1 AL

further in each approximable block. So the candidates

are { ~A(i)}, with i = 1 · · ·n, for n approximable blocks

and ~A( j) = {a
(0)
1 , · · ·a(0)j−1,a

(0)
j +1,a

(0)
j+1, · · · ,a

(0)
n }.

3. Decide whether to continue search, i.e., whether it

is worthwhile to try any of these candidate settings.

We use the Approximation Payoff Estimation Algo-

rithm (Section 3.4.1). If not, return the current set-

ting. This algorithm estimates whether the saving due

to the more aggressive approximation can compensate

for the time of the additional search step.

4. Try each worthwhile candidate setting from the set

computed by the previous step. Use the ALs in candi-

date settings to run approximate computation on ca-

nary video and compute the error metric for each can-

didate setting. Then map the error metric to that with

the full sized outputs.

5. Check for exit or iterate – if error metrics of all the

full video outputs exceed the error boundary, return

the current setting. Otherwise, the candidate setting

which gives the lowest error becomes the next setting,

go to (2) and iterate.

3.4.1 Approximation Payoff Estimation Algorithm

The goal of this algorithm is to estimate the benefit of

executing the application with the new AL searched for

versus the cost of searching with the new AL, all for the

key frame under question. Let the current setting be rep-

resented by ~A(0) = {a
(0)
1 ,a

(0)
2 , · · · ,a(0)n }. Recollect that

this is the set of ALs for each of the approximable blocks

in the application. Let the execution time of the applica-

tion at setting ~A(i) and with canary downsampling Cd be

given by g(A(i),Cd), where Cd = 1 denotes the execution

time with the full input.

This algorithm works in a breadth-first fashion and at-

tempts to prune some of the paths where exploring higher

degrees of approximation for a particular knob cannot

speedup the execution further and may lead to slowdown

due to associated overheads. From the current setting

of ~A(0), let the next possible settings of exploration be
~A(1), ~A(2), · · · , ~A(N). For example, with greedy search,

with n approximable blocks, there will be n possible next

settings. The maximum possible benefit by exploring all

the candidate next settings is calculated as:

B =
N

max
i=1

[g(A(0),1)−g(A(i),1)] (5)

This benefit B simply means the maximum reduction in

execution time across all the possible candidate settings,

when run with the full input. However, to realize this

gain, we have to pay the cost of searching, which can be

expressed in terms of the overhead as follows:

O =
N

∑
i=1

g(A(i),Cd) (6)

This overhead O is simply the cost of executing the appli-

cation with the next step ALs, but with the canary input

(and hence the downsampling ratio Cd). The decision for

VIDEOCHEF becomes simple: if B > O, then continue

the search, else stop and return the current setting.

3.5 Error mapping model

We have to develop an error mapping model to character-

ize the relation between error in the canary output and er-

ror in the full output, for the same approximation levels.

This is important because we have seen empirically (Fig-

ure 2) that the canary errors are higher than full frame er-

rors for most points. We propose three different mapping

models to use according to different amounts of knowl-

edge in the model.

3.5.1 Model-C

Suppose we know the error metric of a canary output C.

The error metric of a full-sized output F is estimated by

a quadratic regression model as follows,

F = w0 +w1 ×C+w2 ×C2 (7)

Offline, we calculate the ground truth of the pairs (C,F)
for every possible AL ~A and for all the videos in the train-

ing set. In practice, we find that sub-sampling the space

of possible ALs still provides accurate enough training,

with a sub-sampling rate of 10% being adequate. Let us

say that the error bound specified by the user is EB. Then

clearly we want F < EB. However, due to the possible

inaccuracy of the error mapping model, we want to ex-

plore a larger space so that we are not missing out on

opportunities for approximating. Therefore, while train-

ing the model, Model-C, we explore all the points where

F ≤EB+∆ , where ∆ is a user configurable parameter for

how far outside the tolerable region we want to explore

in the model. Then we solve the unknown coefficients

w0,w1, and w2 in the model. We find empirically that for

a large set of videos, this model reaches its limits with

the quadratic regression function.

3.5.2 Model-CA

Now, suppose VIDEOCHEF has additional knowledge of

what ALs were in effect. Given the error metric of a
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canary output C, which is computed approximately with

ALs ~A = {a1,a2, · · · ,an}, we construct the input vector
~I = (1,C,~A). The first element of this vector is the con-

stant 1 and allows for a constant term in our equation

for F . Then the error metric of a full-sized output F is

estimated by a regression model as follows,

F =~I ·w (8)

where w is a (n+ 2)× 1 coefficient matrix. The goal of

the training is to estimate the matrix w. The elements of

the matrix w provide the weights to multiply the different

input components—the error in canary output (C), and

the different ALs. We use similar training method offline

as for Model-C.

3.5.3 Model-CAD

Many of approximation techniques on image processing

reduce computation load by skipping a fraction of rows

of images. Thus, the difference over rows is often related

with approximation quality. Inspired by this characteris-

tic, we consider a new feature vector ~D = (d1,d2,d3),
where each of dk’s represents a feature extracted from

one of Y, U, and V channels of an image. The feature dk

is referred to as a row-difference feature and is defined

as the mean of absolute difference in pixel values of the

same column between consecutive rows in each channel.

Averaging over rows and columns, we use only one rep-

resentative number as dk for each channel.

Considering an input vector ~I = (1,C,~A,~D), the error

metric of a full-sized output F is estimated by a linear

regression model as:

F =~I ·w, (9)

where w is a (n+5)×1 coefficient matrix. In the exper-

iment results, we will see that Model-CAD outperforms

the other models.

3.5.4 Non-linear models.

We have also tested complex non-linear models to pre-

dict F , using artificial neural networks with all pixel in-

formation as input. However, considering the run-time

complexity, we could not observe any significant bene-

fit of the non-linear models over the linear models men-

tioned earlier. Thus, we do not report their results in the

evaluation.

4 Implementation and Dataset

We use loop perforation and memoization [41, 27] to ap-

proximately filter the frames in the video. The imple-

mentation of VIDEOCHEF is comprised of an offline and

an online component. The offline component uses a set

of training videos (50% of videos described under the

dataset below) and creates models for the error mapping

and for the cost and the benefit of each step of the search.

This last model is actually implemented as a lookup ta-

ble, due to the space being only piece-wise continuous.

During runtime, VIDEOCHEF queries these models, us-

ing linear interpolation if needed, and performs an effi-

cient search to identify the optimal ALs and runs each of

the three filters in any pipeline with their optimal values.

VIDEOCHEF API. Our compiler pass identifies the ap-

proximable blocks using program annotations and then

performs the relevant transformations to insert the ap-

proximation knobs to be tuned (such as approx level

in Sec. 3.1). The user can then use the following API

calls to enable VIDEOCHEF in the video pipeline:

• setCalibrationFrequency(f=”I-frame”) : This will

set how frequently VIDEOCHEF will search for the

best approximation settings. The default value is

VIDEOCHEF will trigger a search for every I-frame. If

f =”x”, then VIDEOCHEF will search every x-th frame.

• setQualityThreshold(b=”30”) : This will set the

(lower) PSNR threshold that the approximated

pipeline must deliver. Default is 30 dB. VIDEOCHEF

exposes to the user approximate versions of many fil-

ters from the FFmpeg library, with names like de-

flate approx. The developer of VIDEOCHEF can reg-

ister a callback with the video decoder using the call

void notifyIFrame(void *).

Video Dataset. We used 106 YouTube MPEG-4 videos

for our evaluation. We used libvideo, a lightweight

.NET library [23], to download the videos. The videos

were collected from 8 different categories to cover a

spectrum of different motion and color artifacts in the

frames: Lectures, Ads, Car Races, Entertainment, Movie

trailers, Nature, News, and Sports. At the first step, a sin-

gle seed video was downloaded from each category, then

we downloaded all YouTube’s recommendations to the

seed video, which turned out to belong to the same cate-

gory as that of the seed video. Once the set of videos was

collected, we randomly sub-sampled a 20 second clip

from each video, being motivated by a desire to bound

the experiment time. For each category, we collected

approximately 25 videos and filtered out those with low

resolution (since the quality threshold was likely already

breached with the original video).

5 Evaluation

We describe our benchmarks first and then the

four experiments to evaluate the macro properties of

VIDEOCHEF and then its various components.
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Table 1: Summary of the analyzed pipelines. We denote the approximation applied to each filter: Loop Perforation (LP) or Memoization (M)

Name Description, labeled with Approx. type Approximation Type Approximation Levels

DEB Deflate(LP)-Emboss(LP)-Boxblur(M) Loop perforation(LP) & Memoization(M) 1-6, 1-6, 1-6

DVE Deflate(LP)-Vignette(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6

BVI Boxblur(M)-Vignette(LP)-Inflate(LP) Loop perforation & Memoization 1-6, 1-6, 1-6

UIV Unsharp(LP)-Inflate(LP)-Vignette(LP) Loop perforation 1-6, 1-6, 1-6

DUE Dilation(LP)-Unsharp(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6

BVD Boxblur(M)-Vignette(LP)-Dilation(LP) Loop perforation & Memoization 1-6, 1-6, 1-6

UEE Unsharp(LP)-Erosion(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6

EUB Erosion(LP)-Unsharp(LP)-Boxblur(M) Loop perforation & Memoization 1-6, 1-6, 1-6

BUC Boxblur(M)-Unsharp(LP)-Colorbalance(LP) Loop perforation & Memoization 1-6, 1-6, 1-6

Benchmarks. We construct our benchmark by includ-

ing different video processing pipelines. Each video pro-

cessing pipeline consists of 3 consecutive filters, which

are selected from a pool of 10 video filters from the FFm-

peg library. These filters are modified to support approx-

imation with tuning knobs. To execute on these filter

pipelines, one needs to provide a video input and a qual-

ity threshold. Finally, the output is also a video, together

with a quality metric with respect to each frame. We have

a total of 9 different filter pipelines.

Quality Metric. We use PSNR (Eq. 1) as the qual-

ity metric for the videos produced by the approximate

pipelines. We present the results for two acceptable

PSNR thresholds. The threshold of 30 dB is considered a

typical lower bound for lossy image and video compres-

sion [48, 16]. The threshold of 20 dB is considered the

lower bound for lossy wireless transmission [44].

Evaluation Metrics. We define improvement as de-

crease in execution time, expressed as a percentage of

the competitive protocol. We define the speedup of our

approach as Speedup = Speed of our protocol
Speed of compared protocol

−1

Setup. We split the input videos into three groups: train-

ing, validation and test, with a share of 50%, 25%, and

25% of the videoset. The experiments are done on an x86

server with a six-core Intel(R) Xeon CPU, 16 GB RAM,

and Ubuntu Linux kernel 4.4. We used FFmpeg libarary

version 3.0 (compiled with gcc 5.4.0).

5.1 Performance and Quality Comparison

for End-to-End Workflow

Figure 3 presents the results of the end-to-end workflow

for the nine different video processing pipelines over all

videos from the test set. Each plot presents the speedup

relative to the exact pipeline for the following configura-

tions (from left to right):

• Exact computation, with default parameters.

• Best static approximation, created by setting the AL

that is just over the error threshold for all the frames

in training videos.

• IRA extended with a simple searching policy that has a

fixed interval of 10 frames. This number is chosen ac-

cording to SAGE [35], which gives an analytic bound

for a video processing setting.

• VIDEOCHEF version A – with I-frames detection.

• VIDEOCHEF version B – with scene change detection.

• Oracle version uses exhaustive search but does not in-

cur search overhead. This sets the upper bound of the

performance.

For both VIDEOCHEF versions, we used the CAD er-

ror model with 3dB margin, as the result of the analysis

in Section 5.3.

Performance for 30db Threshold. Figure 3(a) shows

that VIDEOCHEF version A reduces the execution time

by 39.1% over exact computation and is within 20% of

the Oracle. It outperforms both static approximation and

IRA, by respectively 29.9% and 14.6% in the aggregate.

The advantage exists for all the video filter pipelines with

the greatest savings relative to IRA being in Unsharp-

Inflate-Vignette (UIV) pipeline. We are 39.2%, 36.8%

and 29.5% better than exact computation, static approx-

imation, and IRA, respectively. The search overhead for

VIDEOCHEF (both versions A and B) is small – the yel-

low portions of the bars are almost not visible – and yet it

finds more aggressive approximations than the competi-

tive approaches (static or IRA) (the blue portions of the

bars are shorter). The IRA approach, due to its assump-

tion that the error in the canary output is identical to the

error in the full output, cannot use aggressive ALs and

thus cannot achieve the full speedup available through

approximation. Within the two variants of VIDEOCHEF,

scene change detector (version B) is slower than an I-

frame lookup (version A).

Performance for 20db Threshold. We also evalu-

ate on VIDEOCHEF on a different quality thesholds

20dB. Given a larger error budget, Figure 3 shows that

VIDEOCHEF is able to achieve more performace gain

over exact computation (1.6x speedup). We also outper-

form static approximation and IRA by 53.4% and 23.1%

and within 26.6% from the Oracle results. Notice that the

pipelines where we achieve the maximum performance

gain over IRA changes from UIV to DVE.

Quality for 30db Threshold. Figure 4(a) shows that

IRA and static approximation both achieve much higher

quality than what the user specified (30 dB), an unde-

sirable outcome here since this comes at the expense of

higher execution time. VIDEOCHEF on the other hand
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(a) Quality threshold = 30dB (b) Quality threshold = 20dB

Figure 3: Mean execution times over all frames of all videos. Geometric means of the speedups are on the right.

(a) Quality threshold = 30dB (b) Quality threshold = 20dB

Figure 4: Quality of each frame across different video filter pipelines.

tracks the Oracle quality quite closely, which in turn

meets the user requirement. It does however, drop below

the threshold on some inputs, albeit by small amounts.

This indicates that a future design feature should com-

pensate for the tendency of VIDEOCHEF to sometime

drop below the target video quality, say by adding a

penalty function when the AL brings it close to the

boundary. Further, a carefully designed margin in the

searching algorithm can reduce the violation in quality

requirement but still achieve speedup. The careful reader

would have noticed that for some pipelines, some pro-

tocol results are missing here. This happens because no

approximation is possible for some pipelines and there is

no error introduced and hence, PSNR is not defined.

We also use the percentage of frames that violate

the quality threshold to chracterize the robustness of

each protocol. The violation rate of static approxima-

tion, IRA, VIDEOCHEF version A and B are 3.27%,

0.64%, 6.6% and 4.79%. Although the two versions of

VIDEOCHEF have higher violation rates, they are still

within a typical user acceptable threshold (5%). We con-

sider the violation may due to two factors – (1) Inaccu-

rate error prediction in the key frame. (2) The quality

of non-key frames degrade and drop below the thresh-

old before a fresh key frame is identified and a search

triggered. According to our modeling in Sec 5.3, the vi-

olation due to the first factor is limited to at most 5%,

while the second error may be inevitable as long as we

do not search for every frame. Considering the trade-

off between searching overhead and better error control,

VIDEOCHEF is able to largely reduce the searching over-

head and still maintain good quality.

Quality for 20db Threshold. Figure 4(b) shows the

quality measurement of different protocols across all

the pipelines. The mean violation rate averaged across

all pipelines of static approximation, IRA, VIDEOCHEF

version A and B are 0%, 0.23%, 7.18% and 3.93%. In the

two quality threshold case, we see the advantage of scene

change detection as an add-on in VIDEOCHEF version B

to decrease the violation rate because it can accurately

detect the frame which differs largely from the previous

and trigger a required search for optimal approximation

levels.

5.2 Speedup and Video Quality versus

Approximation Levels

This experiment studies (1) how the execution time of

each filter varies with the AL setting for that filter and

(2) how the video quality varies with the AL setting. This

result is dependent on the approximation technique but

is independent of the VIDEOCHEF configuration used to

decide on the AL. We show the results with all the videos

in our dataset and 5 out of 10 representative filters in

Figure 5 (number of executed instructions) and Figure

6 (video quality). When showing the result for a specific

filter, we only execute on this filter and not the 3-stage

pipeline. Here the results have higher variability due to

the content-dependent effect. For the execution time, we

normalize by the measure for exact computation.

Execution Time. Figure 5 shows that as the AL becomes

higher, i.e., the approximation becomes more aggressive,

the execution time decreases. But the rate of decrease

slows down as the AL becomes higher and the behaviors

among the different filters in our evaluation are compa-

rable. Note that this is a box plot, but there is little varia-

tion across the different videos and hence each AL gives
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Table 2: F-1 measure of different error mapping models averaged

over all pipelines. We regard IRA as a pass through error mapping.

Models IRA C CA CAD

30dB threshold 0.8650 0.9576 0.9594 0.9686

20dB threshold 0.8007 0.9679 0.9660 0.9759

Table 3: Results of the user studies with 16 videos processed using

Oracle and VIDEOCHEF

Degree of difference Percentage

No difference 58.59%

Little difference 34.77%

Large difference 6.64%

Total difference 0

5.4 User Perception Study

To evaluate if the protocols cause any perceptual differ-

ence, we conduct a small user study with 16 participants.

Users were recruited by emailing students of certain ECE

classes. We picked 16 videos, 2 from each YouTube con-

tent category, randomly picked from our dataset. We pro-

cessed each video (a snippet of 20 seconds from each, as

in the rest of the evaluation) using the Oracle approach

and using VIDEOCHEF for pipeline DBE.

This pipeline was chosen because its result in the rest

of the evaluation is representative and it produces videos

which are still visually pleasing. In the experiment, we

showed the two versions of each of the 16 videos con-

currently, processed using the Oracle and VIDEOCHEF

tools, without letting the participant know which window

corresponded to which tool. All participants watched

the videos independently. The participants were asked

to rate the videos in four categories: Same, Little dif-

ference, Large difference, and Total difference. We gave

guidance to the participants for the four categories as dif-

ference ∈ [0%,5%),[5%,20%),[20%,50%), and ≥ 50%.

We show the results in Table 3. The percentage figure

is the percentage of the total number of videos shown,

which is 16 × 16 (number of videos × number of users).

We conclude that 58.59% of the videos got no differ-

ence rating between the Oracle and the VIDEOCHEF pro-

cessed videos, while 34.77% got a little difference rat-

ing. Although 6.64% of videos got large difference rat-

ing, none of the videos got total difference rating. This

validates that qualitatively human perception is not see-

ing significant difference in video quality due to approx-

imate processing using VIDEOCHEF.

6 Related Work

Approximate Tradeoffs in Computations and Data.

Researchers presented various techniques for changing

computations at the system level to trade accuracy for

performance, e.g., in hardware [30, 47, 12, 11, 8], run-

time sytems [3, 18], and compilers [27, 41, 2, 38, 6].

A key challenge of approximate computing is find-

ing good tradeoffs between accuracy and performance.

For this, researchers have looked at both off-line au-

totuning [27, 41, 26, 37] and on-line dynamic adapta-

tion [3, 18, 36, 22, 17]. In image processing, various

techniques exist for synthesizing approximate filter ver-

sions, e.g., using genetic programming [45, 40, 13]. Re-

cently, Lou et al. [25] present “image perforation”, an

adaptive verision of loop perforation tailored for indi-

vidual image filters. Researchers also proposed stor-

ing multimedia data in approximate memories, includ-

ing standard [38, 32], solid-state [39], and multi-level

cell memories specialized for video encodings [19]. We

consider such storage approaches complementary to our

computation-based technique for video encoding.

Input-Aware Approximation. Several techniques pro-

vide input-aware approximations to monitor output qual-

ity and control the aggressiveness of the approximation

during execution. Green [3] was an early approach that

applied dynamic quality monitoring to adjust the level

of approximation, based on a user-defined quality func-

tion. More recently, input-aware approximation identi-

fies classes of similar inputs and applies different ap-

proximations for each input class [9, 43]. Opprox [29]

learns the control-flow of the input-optimized program

and then selects in which phase to approximate as well

as how much to approximate. In contrast to our work,

all these approaches use off-line models for prediction of

input quality and do not craft the smaller inputs at run-

time. Ringenburg et. al. [33] proposed online moni-

toring mechanisms, where a random subset of approx-

imate outputs is compared with a precise output on a

sampling basis, or the output of the current execution is

predicted from past executions with similar inputs. Raha

et al. [31] present a precise analysis of accuracy for a

commonly used reduce-and-rank computational pattern.

Rumba [22] and Topaz [1] detect outliers in intermedi-

ate computation results. In contrast to IRA [24] and our

VIDEOCHEF, these approaches do not use canary inputs

to guide the optimization and monitoring and therefore

grapple with the overhead issue.

7 Conclusion

Fast and resource efficient processing of videos is re-

quired in many scenarios. We built a resource efficient

and input-aware approximate video processing pipeline

called VIDEOCHEF. VIDEOCHEF controls the approxi-

mation in each frame (using the properties of the frame)

to meet the user’s accuracy requirement. In particu-

lar, VIDEOCHEF uses a canary-input based approach for

fast searching, as proposed in prior work, but overcomes

some fundamental challenges by innovating a machine-

learning based accurate error estimation technique and

an input-aware search technique that finds best approx-

imation settings. We show that VIDEOCHEF can pro-

vide significant speedup in 9 different video processing

pipelines while satisfying user’s quality requirements.
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ford, Thierry Moreau, Joshua Yip, Luis Ceze, and

Mark Oskin. Accept: A programmer-guided com-

piler framework for practical approximate comput-

ing. University of Washington Technical Report

UW-CSE-15-01, 2015.

[38] Adrian Sampson, Werner Dietl, Emily Fortuna,

Danushen Gnanapragasam, Luis Ceze, and Dan

Grossman. Enerj: Approximate data types for

safe and general low-power computation. In PLDI,

2011.

[39] Adrian Sampson, Jacob Nelson, Karin Strauss, and

Luis Ceze. Approximate storage in solid-state

memories. ACM TOCS, 2014.

[40] KC Sharman, AIE Alcazar, and Y Li. Evolving sig-

nal processing algorithms by genetic programming.

In Genetic Algorithms in Engineering Systems: In-

novations and Applications, 1995. GALESIA. First

International Conference on (Conf. Publ. No. 414),

pages 473–480. IET, 1995.

[41] Stelios Sidiroglou-Douskos, Sasa Misailovic,

Henry Hoffmann, and Martin Rinard. Managing

performance vs. accuracy trade-offs with loop

perforation. In FSE, 2011.

[42] Xin Sui, Andrew Lenharth, Donald S Fussell, and

Keshav Pingali. Proactive control of approximate

programs. In ASPLOS, 2016.

[43] Xin Sui, Andrew Lenharth, Donald S. Fussell, and

Keshav Pingali. Proactive control of approximate

programs. In ASPLOS, 2016.

[44] Nikolaos Thomos, Nikolaos V Boulgouris, and

Michael G Strintzis. Optimized transmission of

jpeg2000 streams over wireless channels. IEEE

Transactions on image processing, 15(1):54–67,

2006.

[45] Kazuyoshi Uesaka and Masayuki Kawamata. Evo-

lutionary synthesis of digital filter structures using

13



genetic programming. IEEE Transactions on Cir-

cuits and Systems II: Analog and Digital Signal

Processing, 50(12):977–983, 2003.

[46] European Union. General data protection regula-

tion. http://www.eugdpr.org/, 2017.

[47] Swagath Venkataramani, Vinay K Chippa, Srimat T

Chakradhar, Kaushik Roy, and Anand Raghu-

nathan. Quality programmable vector processors

for approximate computing. In MICRO, 2013.

[48] Stephen T. Welstead. Fractal and Wavelet Im-

age Compression Techniques. Society of Photo-

Optical Instrumentation Engineers (SPIE), Belling-

ham, WA, USA, 1st edition, 1999.

[49] Haoyu Zhang, Ganesh Ananthanarayanan, Peter

Bodik, Matthai Philipose, Paramvir Bahl, and

Michael J Freedman. Live video analytics at scale

with approximation and delay-tolerance. In NSDI,

pages 377–392, 2017.

[50] Tan Zhang, Aakanksha Chowdhery, Paramvir Vic-

tor Bahl, Kyle Jamieson, and Suman Banerjee.

The design and implementation of a wireless video

surveillance system. In Proceedings of the 21st An-

nual International Conference on Mobile Comput-

ing and Networking, pages 426–438. ACM, 2015.

14


