VIDEOCHEF: Efficient Approximation for
Streaming Video Processing Pipelines

Ran Xu?, Jinkyu Koo%, Rakesh Kumar?, Peter Bai%, Subrata MitraP
Sasa Misailovic?, Saurabh Bagchi®
o Purdue University, B: Adobe Research, y: University of Illinois

Abstract

Many video streaming applications require low-latency
processing on resource-constrained devices. To meet the
latency and resource constraints, developers must often
approximate filter computations. A key challenge to suc-
cessfully tuning approximations is finding the optimal
configuration suited for content characteristics, which
are changing across and within the input videos. Search-
ing through the entire search space for every frame in
the video stream is infeasible, while tuning the pipeline
off-line, on a set of training videos, yields suboptimal
results.

We present VIDEOCHEF, a system for approximate
optimization of video pipelines. VIDEOCHEF finds the
optimal configurations of approximate filters at runtime,
by leveraging the previously proposed concept canary
inputs (using small inputs to tune the accuracy of the
computations and transferring the approximate config-
urations to full inputs). VIDEOCHEF is the first sys-
tem to show that canary inputs can be used for com-
plex streaming applications. The two key innovations of
VIDEOCHEF are (1) an accurate error mapping from the
approximate processing with downsampled inputs to that
with full inputs and (2) a directed search that balances the
cost of each search step with the estimated reduction in
the run time.

We evaluate our approach on 106 videos obtained
from YouTube, on a set of 9 video processing pipelines
(in total having 10 distinct filters). Our results show sig-
nificant performance improvement over the baseline and
the previous approach that uses canary inputs. We also
perform a user study that shows that the videos produced
by VIDEOCHEF are often acceptable to human subjects.

1 Introduction

Video processing has brought many emerging appli-
cations such as augmented reality, virtual reality, and

motion tracking. These applications implement com-
plex video pipelines for video editing, scene understand-
ing, object recognition and object classification [14, 49].
They often consume significant computational resources,
but also require short response time and low energy con-
sumption. Often, the applications need to run on the local
machines instead of the cloud, due to latency [14], band-
width [50], or privacy constraints [46].

To enable low-latency and low-energy video process-
ing, we leverage the the fact that most stages in the video
pipeline are inherently approximate because human per-
ception is tolerant to moderate differences in images and
many end goals of video processing require only esti-
mates (e.g., detecting object movement or counting the
number of objects in a scene [5]). Many domain-specific
algorithms have exposed algorithmic knobs, that cane.g.,
subsample the input images or replace expensive com-
putations with lower-accuracy but faster alternatives [45,
40, 13, 25]. To complement domain-specific approxima-
tions, researchers have proposed various generic system-
level techniques that expose additional knobs for opti-
mizing performance and energy of applications while
trading-off accuracy of the results. The techniques span
compilers [38, 27, 41, 7, 34], systems [3, 15, 18, 17, 28],
and architectures [30, 26, 35, 34, 8].
Content-dependent Approximation. A fundamental
challenge of uncovering the full power of both generic
and domain specific approximations is finding the con-
figurations of these approximations that provide max-
imum savings, while providing acceptable results for
each given input. This challenge has two main parts.

First, the optimal approximation setting is dependent
on the content of the video, not just on the algorithms
being used in the processing pipeline. Often individual
videos, or parts of the same video should have different
approximation settings, requiring the program to make
the decisions at runtime. Second, the optimization needs
to explore a large number of approximate configurations
before selecting the optimal one for the given input, re-

quiring the optimizer to construct off-line models. Sys-
tems like Green [3] and Paraprox [34] dynamically adapt
the computation using runtime checks of the intermedi-
ate results, while Capri [42] selects approximation level
from the input features at the program start. However,
the systems rely on extensive off-line training to map the
approximation levels to accuracy and performance.

To relax the dependency on off-line training, Lauren-
zano et al. [24] propose Input Responsive Approxima-
tion (IRA) for runtime recalibration with no offline train-
ing. IRA creates canary inputs, smaller representations
of the full inputs (obtained via subsampling), and then re-
runs the computation on the canary input with different
approximation settings, until it finds the most efficient
setting that maintains the accuracy requirement (on the
canary). While the concept is promising, the application
of IRA to video processing pipelines is limited:

e IRA has been applied to individual computational ker-
nels (in contrast to full pipelines). It is unclear how
to capture the interactions between the stages of the
pipeline, how often to calibrate, and what are the opti-
mal canary sizes.

o IRA uses the approximation settings derived from the
canary input to the full input, assuming that the errors
for the full and correlated inputs will be similar. How-
ever, the assumption is often incorrect (98% of cases,
Figure 2) and leads to missed speedup opportunities.

e [RA’s greedy search may introduce additional over-
heads and may not find good approximation settings
efficiently because it has no notion of what are the ap-
propriate points in the stream to search.

QOur Solution: VIDEOCHEF. We present VIDEOCHEF,
a fast and efficient processing pipeline for stream-
ing videos. VIDEOCHEF can optimize the perfor-
mance subject to accuracy constraints for the system-
level and domain-specific approximations of all kernels
in the video processing pipeline. Figure 1 presents
VIDEOCHEF’s end-to-end workflow:

e Like IRA, VIDEOCHEF uses small-sized canary in-
put to guide the the on-line search for approximation
setting. However, unlike IRA, VIDEOCHEF is tai-
lored for optimization of the whole video processing
pipelines, not just individual kernels.

e In contrast to IRA, VIDEOCHEF presents a finely tun-
able prediction model for mapping the error from the
canary input to that with the original input. This pre-
diction model is trained offline and hence does not
generate any additional runtime overhead. At the same
time, it is much more lightweight than the full off-line
training employed by other approaches.

e At runtime, VIDEOCHEF performs an efficient search
through the space of approximation settings and en-

Video Pipeline of filters (shaded blocks are
approximable filters)

Streaming
Processing Workflow

Error with

Representative
Image Frame

Apply to Video
Processing
Pipeline (P)

Search through Space of

- " o] 1 A| ti
Ropromatien Setings OPUma|Approsimaton

For Non-Key Frames
Apply to Video
Processing

N J Pipeline (P)
Memoized Optimal
Approximation Settings

Figure 1: End-to-end flow of approximate video processing with
VIDEOCHEF. The video processing pipeline comprises multiple fil-
ters, which can be approximated to save computation at the expense
of tolerable video quality. The offline and the online components of
VIDEOCHEF work together to determine the best approximation set-
ting for each approximable filter block.

sures that the cost of the search does not overwhelm
the benefit of approximating the computation.

We evaluate VIDEOCHEF with three error models and
two search strategies, applied to a corpus of 106 YouTube
videos from 8 content categories, which span the range
of video features (e.g., color and motion). We analyze
10 filters arranged in 9 pipelines of size 3. We find that
VIDEOCHEF is able to reach within 20% of the theo-
retical best performance possible and outperforms IRA’s
performance by 14.6% averaged across all videos and
saves on an average 39.1% over the exact computation
given a relatively restrict quality requirement. While
given a more loose quality requirement, VIDEOCHEF is
able to reach within 26.62% of the theorectical best one
and also achieve higher performance gain — 53.4% and
61.5% over IRA and exact computation, respectively.

While we have framed this discussion in terms of
video processing, the novel contributions outlined be-
low apply to other low-latency streaming applications,
with the fundamental requirement that the characteristics
change to some extent from one segment of the stream to
another, for instance, online video gaming, augmented
reality and virtual reality applications.

Contributions. We make the following contributions:

e We present VIDEOCHEF, a system for perfor-
mance and accuracy optimization of video streaming
pipelines. It consists of off-line and on-line compo-
nents, that together adapt the application’s approxima-
tion level to the desired output quality.

e We build a predictive model to accurately estimate the
quality degradation in the full output from the error
generated when using the canary input. This enables
more aggressive approximation setting to the approxi-
mation algorithm that has tunable knobs.

e We propose an efficient and incremental search tech-
nique for the optimal approximation setting that takes
hints from the video encoding parameters to reduce
the overhead of the search process.

o We demonstrate the benefits of VIDEOCHEF through
(1) quantitiative evaluation on various real-world
video contents and filters and (2) a user study.

2 Background and Motivation

Error Metric: At a high-level, a video is composed of
a sequence of image frames. To quantify the error in
the output or the processed video due to approximation,
we measure the Peak Signal-to-Noise Ratio (PSNR) of
the output video. PSNR is the average of the PSNRs
of the individual frames in the output video. Suppose
that a video consists of K frames where each frame has
M x N pixels. Let Y (i, j) be the value of the pixel at (i, j)
position on the k-th frame of the processed video without
any use of approximation, and Z; (i, j) be the value of the
pixel when approximation was applied. Then, the PSNR
of the approximate output is computed as follows:

1 K-l MaxVal
PSNR — — Z 20 x log10M7)
K & MSE (Z;, Yx)

where MaxValue is the maximum possible pixel value
present in the frame, and MSE (Z;, Yy) is the mean square
error between Z and Y, i.e., ¥, ¥;(Z(i, j) — Ye(i,),
as a result of approximation. Thus, lower the PSNR, the
higher the error in the output video.

Isn’t the problem solved by IRA and Capri? IRA (In-
put Responsive Approximation) [24] and Capri [42] at-
tempted to address the problem of selecting optimal ap-
proximation level for individual inputs.

IRA [24] solely relies on canary inputs to search for
best approximation settings. Thus, it implicitly assumes
that the magnitude of error corresponding to a particu-
lar approximation setting on the canary inputs is iden-
tical to the error with the same approximation settings
on the full-sized inputs. But, Figure 2 shows our experi-
ment with 424 real images and 216 different approxima-
tion settings. We found that for the same approximation
settings, the PSNR of the full-sized inputs can be sig-
nificantly different from the PSNR of the canary inputs.
Most of the points (about 98%) are above the diagonal,
indicating that the error on the full input is lower than that
with the canary input for the same approximation level.

We attribute the difference in the approximation to
the higher variations between neighboring pixel values
for canary inputs. Therefore, for the same approxima-
tion settings, the approximate processing on canary in-
puts gives lower PSNR. We found that on an average,
the PSNR of a full-sized output is 5.36 dB higher than

50 The mystaken
quality requirement

This zone should be |
considered while not. y
45.1% approximation

parameter missed

S
[V

N
o

35

PSNR of full-sized output

S This zone violates the quality
1 threshold, but may be overlooked

: 1
20 25 30 35 40 45 50
PSNR of canary output

Figure 2: The PSNR of full-sized output versus the PSNR of ca-
nary output, for the I-frames of 106 videos on one of our application
Boxblur-Vignette-Dilation video filter pipeline. The PSNR of full out-
put is higher for over 98% approximation settings and 45.1% of the
approximation settings lie in such a zone that is ignored by IRA ap-
proach but actually satisfies the quality requirement.

the PSNR of canary output. Therefore, IRA misses an
opportunity for more aggressive optimization that can fit
within the user-specified quality threshold.

Capri [42] rigorously addresses the problem of se-
lecting the best approximation settings to minimize the
computational cost, while meeting the error bound. But
Capri also fails in the video processing setting because it
does not recalibrate itself with the stream and thus cannot
change its approximation settings when the characteris-
tics of the stream change. Further, it (1) relies on prior
enumeration of all possible inputs, which is impossible in
this target domain, and (2) performs the selection of ap-
proximation settings completely offline, which reduces
the cost of the optimization but makes it non-responsive
to changes in the input data.

3 Solution Overview

Figure 1 shows the end-to-end workflow of streaming
video processing, with approximation.

Approximation. Under normal processing, a video de-
coder converts the video into its constituent frames. Then
a sequence of “filters” (synonymously, processing steps
or pipeline stages) is applied to each frame. Examples
include blurring filter (e.g., at the TSA airport check-
point scanners) and edge detection filter (e.g., for count-
ing people in a scene). Finally, the transformed frames
are optionally put together by a video encoder. To make
such processing fast and resource efficient, VIDEOCHEF
intelligently uses selective approximation (Section 3.1)
during the computation of the filters. The user sets the
quality constraint on the output video quality. An ex-
ample specification is that the PSNR of the output video
should be above 30 dB.

Accuracy Calibration with Canary Inputs. For
each representative frame (called “key frame” here),
VIDEOCHEF determines a canary input (Section 3.2),

which summarizes the full frame such that the dissim-
ilarity between the full and the canary frame remains
below a threshold. With the canary input, VIDEOCHEF
occasionally recalibrates the approximation levels of the
filters. It determines when to call the search algorithm
using domain specific knowledge about the frames and
scenes (Section 3.3). For this, we extract hints from
the video decoder which lets VIDEOCHEF determine the
key frames. This amortizes the cost of the search across
many frames of the video, with 80-120 frames being a
typical range for MPEG-4 videos. In the absence of such
a video decoder, we have a variant, which triggers the
search upon a scene change detection.

Online Search for Optimal Tradeoffs. VIDEOCHEF
searches for the approximation setting of each filter that
gives the lowest execution time subject to a threshold for
the output quality (Section 3.4). Since the search for ap-
proximation is done with the canary input, the error of
approximate computation is different from the error of
the computation on the full input. VIDEOCHEF intro-
duces a method to accurately map between these two
errors (Section 3.5). In performing this estimation, we
consider multiple variants of VIDEOCHEF, depending on
what features are available to the predictor, such as, some
categorization of the video frame according to its image
properties. Through this procedure, we aim to maximally
leverage the approximation potential in the application
and give flexible approximation choices.

3.1 Approximation techniques

The computations involved in filtering operations can be
approximated by VIDEOCHEF in various ways as long
as each of the underlying approximation techniques ex-
poses knobs that can be tuned to control the approxi-
mation levels (ALs). For example, in the three pop-
ular program transformation-based approximation tech-
niques, the variable approx_level is a tuning knob
that controls the levels of approximation. A higher value
implies more aggressive approximation, leading most of-
ten to higher speedup but also higher error. These trans-
formations are performed automatically by a compiler
(LLVM in our case).

Loop perforation: In loop perforation [41, 27], the
computation is reduced by skipping some iterations, as
shown below.

for (i = 0; i <n; i =1 + approx_level)
result = compute_result ();

Loop truncation: In loop truncation [41, 27], the last
few iterations of the computation are dropped as shown
in the following example:

for (i = 0; i < (n — approx_level); i++)
result = compute_result ();

Loop memoization: In this technique [7, 34], for some
iterations in a loop we compute the result and cache it.
For other iterations we use the previously cached results.
for (i = 0; i < n; i++)
if (i % approx_level == 0)

cached._result = result = compute_result();
else result = cached_result;

3.2 Canary Inputs

To reduce the search overhead for finding the best ap-
proximation level within each frame of the video, we
generate canary inputs for the frame following the work
in [24]. A good canary input should meet two require-
ments: (1) it should be close enough to the original input
so that the AL found by the canary is the same as the
AL computed from the original; (2) it should be small
enough that the search process using the canary input is
efficient. We first define the dissimilarity metric to com-
pare the canary sample video and the full-sized video and
then show how to choose the appropriate canary input.

Metrics of Dissimilarity. We define two metrics of dis-
similarity. Let a full-sized video have K frames and
M x N pixels in each frame, and each pixel has the prop-
erty X(i,). A canary video has K frames with m x n
pixels, and the same property Y (i, j). The property could
be one component in the YUV colorspace of an image,
where the Y component determines the brightness of the
color (known as “luminance”) while the U and V com-
ponents determine the color itself (known as “chroma”)
and each ranges from O to 255. The “dissimilarity metric
for mean” (SMM), is defined as follows (following [24]):

1 1

K—1M—1N—

mFull= ——— X(i,7) 2)
M xNxK l;) ;];)

mSmall = —— Y(i,J)) 3)
mxnxK = =5 5

|mSmall — mFull|
T wEal @
When a pixel has a vector of values, such as the YUV
colorspace which has 3 values for the 3 components, then
the SMM metric is combined across the different ele-
ments of the vector. The combination could be a simple
average or a weighted average; we use the latter due to
the higher weightage of the Y-channel in the YUV col-
orspace. Similarly, we define the “dissimilarity metric of
standard deviation” (SMSD) to capture the dissimilarity
in the Standard Deviation between the full input and the
canary input.

Generating Candidate Canary Videos. Given a frame
of the video from which to generate the canary video, we
resize the frame to a fraction 1/N of its original size to
create the canary video. Typical sizes that we find useful
in our target domain are 1/16, 1/32, 1/64, 1/128, 1/256

SMM =

of the original size. Since the frame is a 2-D matrix of
pixels, to resize it to 1/N of its original size, we shrink
the width and height each to 1/v/N of the full size by
sub-sampling 1 pixel out of every /N pixels.

Reducing an input size causes at least proportional re-
duction in the amount of work inside the filter. Many
filters that are finding increasing use are super-linear,
where the benefit of using a small canary frame is even
more significant. Two popular examples are determining
optical flow to measure motion [4] and morphological fil-
ter [10], where the value of each pixel in the output image
is based on a comparison of the corresponding pixel in
the input image with its neighbors. We compute the sim-
ilarity between the full-sized video frame and the canary
video frame according to the metrics SMM and SMSD.
We set the maximum dissimilarity metric we can tolerate
as a threshold parameter—we find 10% is a practically
useful threshold for both SMM and SMSD. Among all
the qualified canary inputs, we select the smallest one as
our final choice.

3.3 Identifying Key Video Frames

Searching for the best AL for each approximable pro-
gram block is computationally expensive. Conceptu-
ally, we would want to repeat the search when the char-
acteristic of the video changes significantly so that the
optimal approximation setting is expected to be differ-
ent. In practical terms, we want to perform such change
point detection without having to parse the content of the
video. Video encoders already provide hints when the
content of the scene has changed significantly.

We make the observation that videos have temporal

locality, and many frames in the same group will have
the same approximation setting. Therefore, we can per-
form a single search once per the group of frames, once
we identify the group. We leverage domain-specific
knowledge about videos to automatically select the group
boundaries in two ways:
Scene Change Detector. Our first observation is to re-
calibrate the approximation at the beginning of different
scenes. This approach is general and works for any video
format. There are mainly 2 classes of scene change de-
tectors, namely, pixel-based and histogram-based. The
pixel-based methods are highly sensitive to camera and
object motion. Histogram-based methods are good for
detecting abrupt scene changes. To keep our overhead
low (since the detection algorithm runs on every frame),
we limit ourselves to detecting only abrupt scene changes
and use canary frames for this detection.

We implement a histogram-based scene change detec-
tor using only the Y-channel of frames [20]. We experi-
mentally found the Y-channel information was sufficient
to detect abrupt scene changes and we were more con-
cerned about overhead of scene change detector than its

accuracy. The algorithm detects a scene change when-
ever the sum of the absolute difference across all the bins
of histograms of two consecutive frames is greater than
some predefined threshold (20% of the total pixels in our
evaluation).

I-frame Selection for MPEG videos. The second so-
lution takes advantage of I-frames, present in the popu-
lar H.264 encoder (which the MPEG-4 and many other
video formats follow). It defines three main types of
frames: I—, P—, and B — frames [21]. An I-frame
uses intra-prediction meaning the predicted pixels within
this frame are formed using only samples from the same
frame. The P- and the B-frames use inter-prediction
meaning the predicted pixel within this frame depends
on samples from the same frame as well as samples from
other frames around it (the distinction between P- and B-
frames is not relevant for our discussion).

When to insert an I-frame (also called a “reference
frame”) depends on the exact coding scheme being used,
but in all such coding schemes that we are aware of, a
big difference in the frame triggers the insertion of a new
I-frame, since inter-coding will give almost as long a
code as intra-coding. Further, because an I-frame does
not have dependencies on other frames, this makes it
easier to reconstruct and perform the (exact or approx-
imate) computation. We see empirically that for a wide
range of videos used in our evaluation, the average spac-
ing between adjacent I-frames is 137 frames. Although
specific to only some video formats, it results in a low
sampling rate and consequently the low search overhead,
while triggering search at a suitable granularity.

3.4 Search with Canary Inputs

An approximable program block exposes one or more
approximation knobs. The approx_level variable
mentioned with the loop-based approximation tech-
niques in Section 3.1 is an example of such a knob. In
our notation, we use AL 1 to denote the exact computa-
tion. The higher the AL is, the less accurate the com-
putation is and the higher the speedup is. Now for a
pipeline of cascaded filters, each having one or more
approximation knobs we have a vector of approxima-
tion settings per frame. We define a setting in the pro-
cessing pipeline as the combination of ALs for each of
the approximable program blocks in the video process-
ing pipeline. For example, with an n-stage processing
pipeline and each stage being approximable and hav-
ing exactly one approximation knob, the setting will be
A= {a1,a2,--- ,a,}, where a; denotes the AL of knob i.

To find the best approximation setting, we follow a
searching algorithm outlined as follows:

1. Start searching at a particular setting, typically
(1,1,--+,1), corresponding to no approximation.

2. Select a group of candidate settings by the Candi-
date Selection Algorithm. The selection algorithm
simply selects the next set of settings to try out in the
search process. The greedy algorithm works as fol-

lows: given the current setting A(?), we assume that
we can reach the best AL by looking at each step 1 AL
further in each approximable block. So the candidates

are {A?i)}, with i = 1---n, for n approximable blocks

and AV) = {ago), = ~a5.0_)1,a§-0) + l,aﬁ)l,~~~ ,aﬁ,o)}.

3. Decide whether to continue search, i.e., whether it
is worthwhile to try any of these candidate settings.
We use the Approximation Payoff Estimation Algo-
rithm (Section 3.4.1). If not, return the current set-
ting. This algorithm estimates whether the saving due
to the more aggressive approximation can compensate

for the time of the additional search step.

4. Try each worthwhile candidate setting from the set
computed by the previous step. Use the ALs in candi-
date settings to run approximate computation on ca-
nary video and compute the error metric for each can-
didate setting. Then map the error metric to that with
the full sized outputs.

5. Check for exit or iterate — if error metrics of all the
full video outputs exceed the error boundary, return
the current setting. Otherwise, the candidate setting
which gives the lowest error becomes the next setting,
go to (2) and iterate.

3.4.1 Approximation Payoff Estimation Algorithm

The goal of this algorithm is to estimate the benefit of
executing the application with the new AL searched for
versus the cost of searching with the new AL, all for the
key frame under question. Let the current setting be rep-
resented by A(0) = {ago),ag», e ,ag,())}. Recollect that
this is the set of ALs for each of the approximable blocks
in the application. Let the execution time of the applica-

-

tion at setting A() and with canary downsampling C, be
given by g(A),C,), where C; = 1 denotes the execution
time with the full input.

This algorithm works in a breadth-first fashion and at-
tempts to prune some of the paths where exploring higher
degrees of approximation for a particular knob cannot
speedup the execution further and may lead to slowdown
due to associated overheads. From the current setting

—

of A, let the next possible settings of exploration be
AW A?) ... AWN) For example, with greedy search,
with n approximable blocks, there will be n possible next
settings. The maximum possible benefit by exploring all
the candidate next settings is calculated as:

B=niax[g(A©, 1) —g(4?, 1)) ®)

i=1

This benefit B simply means the maximum reduction in
execution time across all the possible candidate settings,
when run with the full input. However, to realize this
gain, we have to pay the cost of searching, which can be
expressed in terms of the overhead as follows:

0= s(a".C) ©)
i=1
This overhead O is simply the cost of executing the appli-
cation with the next step ALs, but with the canary input
(and hence the downsampling ratio C;). The decision for
VIDEOCHEF becomes simple: if B > O, then continue
the search, else stop and return the current setting.

3.5 Error mapping model

We have to develop an error mapping model to character-
ize the relation between error in the canary output and er-
ror in the full output, for the same approximation levels.
This is important because we have seen empirically (Fig-
ure 2) that the canary errors are higher than full frame er-
rors for most points. We propose three different mapping
models to use according to different amounts of knowl-
edge in the model.

3.5.1 Model-C

Suppose we know the error metric of a canary output C.
The error metric of a full-sized output F is estimated by
a quadratic regression model as follows,

F:WO+W1XC+W2><C2 (7

Offline, we calculate the ground truth of the pairs (C, F)
for every possible AL A and for all the videos in the train-
ing set. In practice, we find that sub-sampling the space
of possible ALs still provides accurate enough training,
with a sub-sampling rate of 10% being adequate. Let us
say that the error bound specified by the user is Ep. Then
clearly we want F' < Ep. However, due to the possible
inaccuracy of the error mapping model, we want to ex-
plore a larger space so that we are not missing out on
opportunities for approximating. Therefore, while train-
ing the model, Model-C, we explore all the points where
F <Ep+A, where Ais auser configurable parameter for
how far outside the tolerable region we want to explore
in the model. Then we solve the unknown coefficients
wo, w1, and wy in the model. We find empirically that for
a large set of videos, this model reaches its limits with
the quadratic regression function.

3.5.2 Model-CA

Now, suppose VIDEOCHEF has additional knowledge of
what ALs were in effect. Given the error metric of a

canary output C, which is computed approximately with
ALs A = {ay,as,--- ,a,}, we construct the input vector
T=(1,C,A). The first element of this vector is the con-
stant 1 and allows for a constant term in our equation
for F. Then the error metric of a full-sized output F' is
estimated by a regression model as follows,

F=I-w (8)

where w is a (n+2) x 1 coefficient matrix. The goal of
the training is to estimate the matrix w. The elements of
the matrix w provide the weights to multiply the different
input components—the error in canary output (C), and
the different ALs. We use similar training method offline
as for Model-C.

3.5.3 Model-CAD

Many of approximation techniques on image processing
reduce computation load by skipping a fraction of rows
of images. Thus, the difference over rows is often related
with approximation quality. Inspired by this characteris-
tic, we consider a new feature vector D= (dy,da,d3),
where each of d;’s represents a feature extracted from
one of Y, U, and V channels of an image. The feature dj,
is referred to as a row-difference feature and is defined
as the mean of absolute difference in pixel values of the
same column between consecutive rows in each channel.
Averaging over rows and columns, we use only one rep-
resentative number as dj for each channel.

Considering an input vector I = (1,C ,K,D), the error
metric of a full-sized output F' is estimated by a linear
regression model as:

F=I-w, ©)

where w is a (n+5) x 1 coefficient matrix. In the exper-
iment results, we will see that Model-CAD outperforms
the other models.

3.5.4 Non-linear models.

We have also tested complex non-linear models to pre-
dict F, using artificial neural networks with all pixel in-
formation as input. However, considering the run-time
complexity, we could not observe any significant bene-
fit of the non-linear models over the linear models men-
tioned earlier. Thus, we do not report their results in the
evaluation.

4 Implementation and Dataset

We use loop perforation and memoization [41, 27] to ap-
proximately filter the frames in the video. The imple-
mentation of VIDEOCHEF is comprised of an offline and

an online component. The offline component uses a set
of training videos (50% of videos described under the
dataset below) and creates models for the error mapping
and for the cost and the benefit of each step of the search.
This last model is actually implemented as a lookup ta-
ble, due to the space being only piece-wise continuous.
During runtime, VIDEOCHEF queries these models, us-
ing linear interpolation if needed, and performs an effi-
cient search to identify the optimal ALs and runs each of
the three filters in any pipeline with their optimal values.
VIDEOCHEF API. Our compiler pass identifies the ap-
proximable blocks using program annotations and then
performs the relevant transformations to insert the ap-
proximation knobs to be tuned (such as approx_level
in Sec. 3.1). The user can then use the following API
calls to enable VIDEOCHEF in the video pipeline:

e setCalibrationFrequency(f="I1-frame”) : This will
set how frequently VIDEOCHEF will search for the
best approximation settings. The default value is
VIDEOCHEF will trigger a search for every I-frame. If
f="x", then VIDEOCHEF will search every x-th frame.

o setQualityThreshold(b="30") : This will set the
(lower) PSNR threshold that the approximated
pipeline must deliver. Default is 30 dB. VIDEOCHEF
exposes to the user approximate versions of many fil-
ters from the FFmpeg library, with names like de-
flate_approx. The developer of VIDEOCHEF can reg-
ister a callback with the video decoder using the call
void notifylFrame(void *).

Video Dataset. We used 106 YouTube MPEG-4 videos
for our evaluation. We used 1ibvideo, a lightweight
NET library [23], to download the videos. The videos
were collected from 8 different categories to cover a
spectrum of different motion and color artifacts in the
frames: Lectures, Ads, Car Races, Entertainment, Movie
trailers, Nature, News, and Sports. At the first step, a sin-
gle seed video was downloaded from each category, then
we downloaded all YouTube’s recommendations to the
seed video, which turned out to belong to the same cate-
gory as that of the seed video. Once the set of videos was
collected, we randomly sub-sampled a 20 second clip
from each video, being motivated by a desire to bound
the experiment time. For each category, we collected
approximately 25 videos and filtered out those with low
resolution (since the quality threshold was likely already
breached with the original video).

5 Evaluation

We describe our benchmarks first and then the
four experiments to evaluate the macro properties of
VIDEOCHEF and then its various components.

Table 1: Summary of the analyzed pipelines. We denote the approximation applied to each filter: Loop Perforation (LP) or Memoization (M)

Name Description, labeled with Approx. type Approximation Type Approximation Levels
DEB Deflate(LP)-Emboss(LP)-Boxblur(M) Loop perforation(LP) & Memoization(M) 1-6, 1-6, 1-6
DVE Deflate(LP)-Vignette(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
BVI Boxblur(M)-Vignette(LP)-Inflate(LP) Loop perforation & Memoization 1-6, 1-6, 1-6
ulv Unsharp(LP)-Inflate(LP)-Vignette(LP) Loop perforation 1-6, 1-6, 1-6
DUE Dilation(LP)-Unsharp(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
BVD Boxblur(M)-Vignette(LP)-Dilation(LP) Loop perforation & Memoization 1-6, 1-6, 1-6
UEE Unsharp(LP)-Erosion(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
EUB Erosion(LP)-Unsharp(LP)-Boxblur(M) Loop perforation & Memoization 1-6, 1-6, 1-6
BUC Boxblur(M)-Unsharp(LP)-Colorbalance(LP) Loop perforation & Memoization 1-6, 1-6, 1-6

Benchmarks. We construct our benchmark by includ-
ing different video processing pipelines. Each video pro-
cessing pipeline consists of 3 consecutive filters, which
are selected from a pool of 10 video filters from the FFm-
peg library. These filters are modified to support approx-
imation with tuning knobs. To execute on these filter
pipelines, one needs to provide a video input and a qual-
ity threshold. Finally, the output is also a video, together
with a quality metric with respect to each frame. We have
a total of 9 different filter pipelines.

Quality Metric. We use PSNR (Eq. 1) as the qual-
ity metric for the videos produced by the approximate
pipelines. We present the results for two acceptable
PSNR thresholds. The threshold of 30 dB is considered a
typical lower bound for lossy image and video compres-
sion [48, 16]. The threshold of 20 dB is considered the
lower bound for lossy wireless transmission [44].
Evaluation Metrics. We define improvement as de-
crease in execution time, expressed as a percentage of
the competitive protocol. We define the speedup of our
approach as Speedup = Speigejﬁc(gnf:;rz;l);igécol B

Setup. We split the input videos into three groups: train-
ing, validation and test, with a share of 50%, 25%, and
25% of the videoset. The experiments are done on an x86
server with a six-core Intel(R) Xeon CPU, 16 GB RAM,
and Ubuntu Linux kernel 4.4. We used FFmpeg libarary
version 3.0 (compiled with gcc 5.4.0).

5.1 Performance and Quality Comparison
for End-to-End Workflow

Figure 3 presents the results of the end-to-end workflow
for the nine different video processing pipelines over all
videos from the test set. Each plot presents the speedup
relative to the exact pipeline for the following configura-
tions (from left to right):

e Exact computation, with default parameters.

e Best static approximation, created by setting the AL
that is just over the error threshold for all the frames
in training videos.

o [RA extended with a simple searching policy that has a
fixed interval of 10 frames. This number is chosen ac-
cording to SAGE [35], which gives an analytic bound
for a video processing setting.

e VIDEOCHEF version A — with [-frames detection.
e VIDEOCHEEF version B — with scene change detection.

e Oracle version uses exhaustive search but does not in-
cur search overhead. This sets the upper bound of the
performance.

For both VIDEOCHEF versions, we used the CAD er-
ror model with 3dB margin, as the result of the analysis
in Section 5.3.

Performance for 30db Threshold. Figure 3(a) shows
that VIDEOCHEF version A reduces the execution time
by 39.1% over exact computation and is within 20% of
the Oracle. It outperforms both static approximation and
IRA, by respectively 29.9% and 14.6% in the aggregate.
The advantage exists for all the video filter pipelines with
the greatest savings relative to IRA being in Unsharp-
Inflate-Vignette (UIV) pipeline. We are 39.2%, 36.8%
and 29.5% better than exact computation, static approx-
imation, and IRA, respectively. The search overhead for
VIDEOCHEF (both versions A and B) is small — the yel-
low portions of the bars are almost not visible — and yet it
finds more aggressive approximations than the competi-
tive approaches (static or IRA) (the blue portions of the
bars are shorter). The IRA approach, due to its assump-
tion that the error in the canary output is identical to the
error in the full output, cannot use aggressive ALs and
thus cannot achieve the full speedup available through
approximation. Within the two variants of VIDEOCHEF,
scene change detector (version B) is slower than an I-
frame lookup (version A).

Performance for 20db Threshold. We also evalu-
ate on VIDEOCHEF on a different quality thesholds
20dB. Given a larger error budget, Figure 3 shows that
VIDEOCHEF is able to achieve more performace gain
over exact computation (1.6x speedup). We also outper-
form static approximation and IRA by 53.4% and 23.1%
and within 26.6% from the Oracle results. Notice that the
pipelines where we achieve the maximum performance
gain over IRA changes from UIV to DVE.

Quality for 30db Threshold. Figure 4(a) shows that
IRA and static approximation both achieve much higher
quality than what the user specified (30 dB), an unde-
sirable outcome here since this comes at the expense of
higher execution time. VIDEOCHEF on the other hand

I Execution on full-sized input[! Searchmg overhead

From left to right: Exact, Static Approx., IRA, VideoChef-A, |deoChef B and Oracle
1

DEB DVE BVI UV DUE BVD UEE EUB BUC Al
Pipelines

(a) Quality threshold = 30dB

task clock time
o

M Execution on full-sized input[__ISearching overhead

From left to right: Exact, Static Approx., IRA, VideoChef-A, VideoChef-B and Oracle

1
0 o A o A e

DEB DVE BVI UIV DUE BVD UEE EUB BUC All
Pipelines

(b) Quality threshold = 20dB

task clock time

Figure 3: Mean execution times over all frames of all videos. Geometric means of the speedups are on the right.

50
I

From left tr right: Static A|>pr0x.. IRA, VifleoChef-A, VideoCl ele and Oracle

DEB DVE BVI uUlv. DUE BVD UEE EUB BUC

(a) Quality threshold = 30dB

40
From left to right: Static Approx., IRA| VideoIChef»A, VideoChef-B and Oracle

DEB DVE BVI ulv. DUE BVD UEE EUB BUC

(b) Quality threshold = 20dB

Figure 4: Quality of each frame across different video filter pipelines.

tracks the Oracle quality quite closely, which in turn
meets the user requirement. It does however, drop below
the threshold on some inputs, albeit by small amounts.
This indicates that a future design feature should com-
pensate for the tendency of VIDEOCHEF to sometime
drop below the target video quality, say by adding a
penalty function when the AL brings it close to the
boundary. Further, a carefully designed margin in the
searching algorithm can reduce the violation in quality
requirement but still achieve speedup. The careful reader
would have noticed that for some pipelines, some pro-
tocol results are missing here. This happens because no
approximation is possible for some pipelines and there is
no error introduced and hence, PSNR is not defined.

We also use the percentage of frames that violate
the quality threshold to chracterize the robustness of
each protocol. The violation rate of static approxima-
tion, IRA, VIDEOCHEF version A and B are 3.27%,
0.64%, 6.6% and 4.79%. Although the two versions of
VIDEOCHEF have higher violation rates, they are still
within a typical user acceptable threshold (5%). We con-
sider the violation may due to two factors — (1) Inaccu-
rate error prediction in the key frame. (2) The quality
of non-key frames degrade and drop below the thresh-
old before a fresh key frame is identified and a search
triggered. According to our modeling in Sec 5.3, the vi-
olation due to the first factor is limited to at most 5%,
while the second error may be inevitable as long as we
do not search for every frame. Considering the trade-
off between searching overhead and better error control,
VIDEOCHEF is able to largely reduce the searching over-
head and still maintain good quality.

Quality for 20db Threshold. Figure 4(b) shows the

quality measurement of different protocols across all
the pipelines. The mean violation rate averaged across
all pipelines of static approximation, IRA, VIDEOCHEF
version A and B are 0%, 0.23%, 7.18% and 3.93%. In the
two quality threshold case, we see the advantage of scene
change detection as an add-on in VIDEOCHEF version B
to decrease the violation rate because it can accurately
detect the frame which differs largely from the previous
and trigger a required search for optimal approximation
levels.

5.2 Speedup and Video Quality versus
Approximation Levels

This experiment studies (1) how the execution time of
each filter varies with the AL setting for that filter and
(2) how the video quality varies with the AL setting. This
result is dependent on the approximation technique but
is independent of the VIDEOCHEF configuration used to
decide on the AL. We show the results with all the videos
in our dataset and 5 out of 10 representative filters in
Figure 5 (number of executed instructions) and Figure
6 (video quality). When showing the result for a specific
filter, we only execute on this filter and not the 3-stage
pipeline. Here the results have higher variability due to
the content-dependent effect. For the execution time, we
normalize by the measure for exact computation.

Execution Time. Figure 5 shows that as the AL becomes
higher, i.e., the approximation becomes more aggressive,
the execution time decreases. But the rate of decrease
slows down as the AL becomes higher and the behaviors
among the different filters in our evaluation are compa-
rable. Note that this is a box plot, but there is little varia-
tion across the different videos and hence each AL gives

Task Clock

© o o &
N w ~ o
w o w o

°
o
s}

1 2 3 45 6
Approximation Level

Task Clock

© o o &
N w ~ o
w o w o

©
<}
IS}

1 2 3 45 6
Approximation Level

1 2 3 45 6
Approximation Level

T 100/ 1.00{=
X~ X~
Fors| Lors _
O T 1 [} -
= <050 - —| o050 - - _
% x
-] ©
- — | Fox2s Fo.2s
0.00 0.00

1 2 3 45 6
Approximation Level

°
N o
v O

Task Clock
w
o

o o
N
5

o
=3
S

1 2 3 45 6
Approximation Level

(a) Deflate filter (b) Emboss filter (c) Boxblur filter (d) Histeq filter (e) Vignette filter

Figure 5: The normalized execution time for each filter as the Approximation Level (AL) is varied, across all 106 videos in our dataset. The
number of CPU cycles is normalized by the measure for exact computation. As the AL increases, the execution time decreases and this happens
consistently across all videos and filters.

60 60 60 60 60

50 501 50 _.50 _.50
g |= 5 g |T¥++% ¢ gt
Z40| =T L Z 40 = Z 40 Z 40 E'IL] & 40 E =
7 T = 3 - z g i e g b
&30 & 30- T = o] 23 &30 T % ETE &30

20 20 20 20 20

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

Approximation Level Approximation Level Approximation Level Approximation Level Approximation Level

(a) Deflate filter (b) Emboss filter

(c) Boxblur filter

(d) Histeq filter (e) Vignette filter

Figure 6: The video quality for each filter as the Approximation Level (AL) is varied, across all 106 videos in our dataset. The effect depends

on the video content and the filter being used.

very tight result. This is expected because the amount
of processing done in the filter, whether with exact or ap-
proximate computation, is not content dependent, but the
effect of the approximation is content dependent.
Quality. Figure 6 shows the effect of AL on the video
quality when the full frame is used. The quality degrades
as the approximation gets more aggressive, but the nature
of the decrease is not uniform across all the filters. Even
within each filter, the effect on quality depends on the ex-
act video frame, as implied by the vertical data spread for
any given AL. We identify two forms of unpredictability
of how AL correlates with video quality: with the content
(which video frame is being approximated) and with the
filter. Due to these two factors, we do not try to come up
with a closed form curve for doing the prediction, rather,
we do the actual computation with the canary input for
a given AL setting, compute the PSNR, and then map it
to the PSNR with the full input (Section 3.5). Contrast
this to the execution time where we create a lookup ta-
ble through training, which is content independent, and
just look it up during the online search (Section 3.4.1).
The variability due to video content in the PSNR plot
validates our rationale for doing the approximation in a
content-dependent manner. The rationale is shared with
[24], but it sets our work apart from the approximation
techniques that select the approximation configuration in
a content-independent manner.

5.3 Evaluation of Error Mapping Models

In this experiment, we evaluate the quality of the vari-
ous error mapping models in VIDEOCHEF. We trained

10

the model on the training video set. Table 2 and Fig-
ure 3 present the performance of our model on the vali-
dation videos. Figure 7 shows that even a simple model
C can greatly reduce the prediction error relative to
IRA. Also, as we increase the level of knowledge, the
model achieves higher prediction accuracy and model-
CAD performs the best due to its good use of the fea-
ture extraction from the frames. We can see that with our
CAD model, we can successfully control the error within
2dB in 80% of the cases and within 3dB in 90% of the
cases. Given these results, we set up a 3dB margin when
mapping from the canary error to the full error.

The results on the test videos (Section 5.1) show that

the cases when we violate the quality requirement are
within 10%.

aeeg
<2 -
o o

-IRA 0.2
~+-VideoChef(C) /
+ VideoChef(CA)
- VideoChef(CAD)|

~+-VideoChef(C)

+VideoChef(CA)

~ VideoChef(CAD)

10 0 2 4 6 8 10
Prediction Error - absolute value

(b) Test set

2 4 6 8
Prediction Error - absolute value

(a) Validation set

Figure 7: Results of the error modeling in VIDEOCHEF mapping
error in canary output to error in full output. The CAD model with
characteristics of the frame performs best, though it is only slightly
better than the CA models.

Table 2: F-1 measure of different error mapping models averaged
over all pipelines. We regard IRA as a pass through error mapping.

Models IRA C CA CAD
30dB threshold 0.8650 | 0.9576 | 0.9594 | 0.9686
20dB threshold 0.8007 | 0.9679 | 0.9660 | 0.9759

Table 3: Results of the user studies with 16 videos processed using
Oracle and VIDEOCHEF

Degree of difference Percentage
No difference 58.59%
Little difference 34.77%
Large difference 6.64%
Total difference 0

5.4 User Perception Study

To evaluate if the protocols cause any perceptual differ-
ence, we conduct a small user study with 16 participants.
Users were recruited by emailing students of certain ECE
classes. We picked 16 videos, 2 from each YouTube con-
tent category, randomly picked from our dataset. We pro-
cessed each video (a snippet of 20 seconds from each, as
in the rest of the evaluation) using the Oracle approach
and using VIDEOCHEF for pipeline DBE.

This pipeline was chosen because its result in the rest
of the evaluation is representative and it produces videos
which are still visually pleasing. In the experiment, we
showed the two versions of each of the 16 videos con-
currently, processed using the Oracle and VIDEOCHEF
tools, without letting the participant know which window
corresponded to which tool. All participants watched
the videos independently. The participants were asked
to rate the videos in four categories: Same, Little dif-
ference, Large difference, and Total difference. We gave
guidance to the participants for the four categories as dif-
ference € [0%,5%),[5%,20%),[20%,50%), and > 50%.

We show the results in Table 3. The percentage figure
is the percentage of the total number of videos shown,
which is 16 x 16 (number of videos x number of users).
We conclude that 58.59% of the videos got no differ-
ence rating between the Oracle and the VIDEOCHEF pro-
cessed videos, while 34.77% got a little difference rat-
ing. Although 6.64% of videos got large difference rat-
ing, none of the videos got total difference rating. This
validates that qualitatively human perception is not see-
ing significant difference in video quality due to approx-
imate processing using VIDEOCHEF.

6 Related Work

Approximate Tradeoffs in Computations and Data.
Researchers presented various techniques for changing
computations at the system level to trade accuracy for
performance, e.g., in hardware [30, 47, 12, 11, 8], run-
time sytems [3, 18], and compilers [27, 41, 2, 38, 6].
A key challenge of approximate computing is find-
ing good tradeoffs between accuracy and performance.
For this, researchers have looked at both off-line au-

11

totuning [27, 41, 26, 37] and on-line dynamic adapta-
tion [3, 18, 36, 22, 17]. In image processing, various
techniques exist for synthesizing approximate filter ver-
sions, e.g., using genetic programming [45, 40, 13]. Re-
cently, Lou et al. [25] present “image perforation”, an
adaptive verision of loop perforation tailored for indi-
vidual image filters. Researchers also proposed stor-
ing multimedia data in approximate memories, includ-
ing standard [38, 32], solid-state [39], and multi-level
cell memories specialized for video encodings [19]. We
consider such storage approaches complementary to our
computation-based technique for video encoding.
Input-Aware Approximation. Several techniques pro-
vide input-aware approximations to monitor output qual-
ity and control the aggressiveness of the approximation
during execution. Green [3] was an early approach that
applied dynamic quality monitoring to adjust the level
of approximation, based on a user-defined quality func-
tion. More recently, input-aware approximation identi-
fies classes of similar inputs and applies different ap-
proximations for each input class [9, 43]. Opprox [29]
learns the control-flow of the input-optimized program
and then selects in which phase to approximate as well
as how much to approximate. In contrast to our work,
all these approaches use off-line models for prediction of
input quality and do not craft the smaller inputs at run-
time. Ringenburg er. al. [33] proposed online moni-
toring mechanisms, where a random subset of approx-
imate outputs is compared with a precise output on a
sampling basis, or the output of the current execution is
predicted from past executions with similar inputs. Raha
et al. [31] present a precise analysis of accuracy for a
commonly used reduce-and-rank computational pattern.
Rumba [22] and Topaz [1] detect outliers in intermedi-
ate computation results. In contrast to IRA [24] and our
VIDEOCHEF, these approaches do not use canary inputs
to guide the optimization and monitoring and therefore
grapple with the overhead issue.

7 Conclusion

Fast and resource efficient processing of videos is re-
quired in many scenarios. We built a resource efficient
and input-aware approximate video processing pipeline
called VIDEOCHEF. VIDEOCHEF controls the approxi-
mation in each frame (using the properties of the frame)
to meet the user’s accuracy requirement. In particu-
lar, VIDEOCHEF uses a canary-input based approach for
fast searching, as proposed in prior work, but overcomes
some fundamental challenges by innovating a machine-
learning based accurate error estimation technique and
an input-aware search technique that finds best approx-
imation settings. We show that VIDEOCHEF can pro-
vide significant speedup in 9 different video processing
pipelines while satisfying user’s quality requirements.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Sara Achour and Martin C Rinard. Approximate
computation with outlier detection in topaz. In
OOPSLA, 2015.

Jason Ansel, Yee Lok Wong, Cy Chan, Marek Ol-
szewski, Alan Edelman, and Saman Amarasinghe.
Language and compiler support for auto-tuning
variable-accuracy algorithms. In CGO, 2011.

Woongki Baek and Trishul M Chilimbi. Green:
a framework for supporting energy-conscious pro-
gramming using controlled approximation. In
PLDI, 2010.

Linchao Bao, Qingxiong Yang, and Hailin Jin. Fast
edge-preserving patchmatch for large displacement
optical flow. In IEEE CVPR, pages 3534-3541,
2014.

Mark Buckler, Suren Jayasuriya, and Adrian Samp-
son. Reconfiguring the imaging pipeline for com-
puter vision. In The IEEE International Conference
on Computer Vision (ICCV), 2017.

Michael Carbin, Sasa Misailovic, and Martin C Ri-
nard. Verifying quantitative reliability for programs
that execute on unreliable hardware. In OOPSLA,
2013.

Swarat Chaudhuri, Sumit Gulwani, Roberto
Lublinerman, and Sara Navidpour. Proving pro-
grams robust. In FSE, 2011.

Vinay K Chippa, Debabrata Mohapatra, Anand
Raghunathan, Kaushik Roy, and Srimat T Chakrad-
har. Scalable effort hardware design: exploiting al-
gorithmic resilience for energy efficiency. In DAC,
2010.

Yufei Ding, Jason Ansel, Kalyan Veeramachaneni,
Xipeng Shen, Una-May O’Reilly, and Saman Ama-
rasinghe. Autotuning algorithmic choice for input
sensitivity. In PLDI, 2015.

Edward R Dougherty and Roberto A Lotufo.
Hands-on morphological image processing, vol-
ume 59. SPIE press, 2003.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze,
and Doug Burger. Architecture support for dis-
ciplined approximate programming. In ASPLOS,
2012.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze,
and Doug Burger. Neural acceleration for general-
purpose approximate programs. In MICRO. IEEE
Computer Society, 2012.

12

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Zeev Farbman, Raanan Fattal, and Dani Lischin-
ski. Convolution pyramids. ACM Trans. Graph.,
30(6):175-1, 2011.

Sadjad Fouladi, Riad S Wahby, Brennan Shack-
lett, Karthikeyan Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. Encoding, fast and
slow: Low-latency video processing using thou-
sands of tiny threads. In NSDI, pages 363-376,
2017.

fnigo Goiri, Ricardo Bianchini, Santosh Na-
garakatte, and Thu D Nguyen. Approxhadoop:
Bringing approximations to mapreduce frame-
works. In ASPLOS, 2015.

Raouf Hamzaoui and Dietmar Saupe. Fractal im-
age compression - in ”Document and Image Com-
pression”. CRC Press, 2006.

Henry Hoffmann. Jouleguard: energy guarantees
for approximate applications. In SOSP, 2015.

Henry Hoffmann, Stelios Sidiroglou, Michael
Carbin, Sasa Misailovic, Anant Agarwal, and Mar-
tin Rinard. Dynamic knobs for responsive power-
aware computing. In ASPLOS, 2011.

Djordje Jevdjic, Karin Strauss, Luis Ceze, and Hen-
rique S Malvar. Approximate storage of com-
pressed and encrypted videos. In Proceedings of the
Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 361-373. ACM, 2017.

Haitao Jiang, Abdelsalam (Sumi) Helal, Ahmed K.
Elmagarmid, and Anupam Joshi. Scene change de-
tection techniques for video database systems. Mul-
timedia Systems, 6(3):186—-195, May 1998.

Ben Juurlink, Mauricio Alvarez-Mesa, Chi Ching
Chi, Arnaldo Azevedo, Cor Meenderinck, and
Alex Ramirez. Understanding the application: An
overview of the h. 264 standard. Scalable Paral-
lel Programming Applied to H. 264/AVC Decoding,
pages 5-15, 2012.

Daya S Khudia, Babak Zamirai, Mehrzad Samadi,
and Scott Mahlke. Rumba: an online quality man-
agement system for approximate computing. In
ISCA, 2015.

James Ko.
to download youtube videos.
jamesqo/libvideo, 2016.

Libvideo: A lightweight .net library
https://github.com/

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Michael A Laurenzano, Parker Hill, Mehrzad
Samadi, Scott Mahlke, Jason Mars, and Lingjia
Tang. Input responsiveness: using canary inputs to
dynamically steer approximation. In PLDI. ACM,
2016.

Liming Lou, Paul Nguyen, Jason Lawrence, and
Connelly Barnes. Image perforation: Automati-
cally accelerating image pipelines by intelligently
skipping samples. ACM Transactions on Graphics
(TOG), 35(5):153, 2016.

Jiayuan Meng, Srimat Chakradhar, and Anand
Raghunathan. Best-effort parallel execution frame-
work for recognition and mining applications. In
Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1—
12. IEEE, 2009.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoff-
mann, and Martin Rinard. Quality of service pro-
filing. In ICSE, 2010.

Subrata Mitra, Manish K Gupta, Sasa Misailovic,
and Saurabh Bagchi. Phase-aware optimization
in approximate computing. In Proceedings of
the 2017 International Symposium on Code Gen-
eration and Optimization (CGO), pages 185-196.
IEEE Press, 2017.

Subrata Mitra, Manish K. Gupta, Sasa Misailovic,
and Saurabh Bagchi. Phase-aware optimization in
approximate computing. In CGO, 2017.

Krishna V Palem. Energy aware computing
through probabilistic switching: A study of lim-
its. IEEE Transactions on Computers, 54(9):1123—
1137, 2005.

Arnab Raha, Swagath Venkataramani, Vijay
Raghunathan, and Anand Raghunathan. Quality
configurable reduce-and-rank for energy efficient
approximate computing. In DATE, 2015.

Ashish Ranjan, Arnab Raha, Swagath Venkatara-
mani, Kaushik Roy, and Anand Raghunathan.
Aslan: Synthesis of approximate sequential cir-
cuits. In DATE, 2014.

Michael Ringenburg, Adrian Sampson, Isaac Ack-
erman, Luis Ceze, and Dan Grossman. Monitoring
and debugging the quality of results in approximate
programs. In ASPLOS, 2015.

Mehrzad Samadi, Davoud Anoushe Jamshidi,
Janghaeng Lee, and Scott Mahlke. Paraprox:
Pattern-based approximation for data parallel appli-
cations. In ASPLOS, 2014.

13

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

Mehrzad Samadi, Janghaeng Lee, D Anoushe
Jamshidi, Amir Hormati, and Scott Mahlke. Sage:
Self-tuning approximation for graphics engines. In
MICRO, 2013.

Mehrzad Samadi, Janghaeng Lee, D. Anoushe
Jamshidi, Amir Hormati, and Scott Mahlke. Sage:
Self-tuning approximation for graphics engines.
In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-46, pages 13-24, 2013.

Adrian Sampson, André Baixo, Benjamin Rans-
ford, Thierry Moreau, Joshua Yip, Luis Ceze, and
Mark Oskin. Accept: A programmer-guided com-
piler framework for practical approximate comput-
ing. University of Washington Technical Report
UW-CSE-15-01,2015.

Adrian Sampson, Werner Dietl, Emily Fortuna,
Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. Enerj: Approximate data types for
safe and general low-power computation. In PLDI,
2011.

Adrian Sampson, Jacob Nelson, Karin Strauss, and
Luis Ceze. Approximate storage in solid-state
memories. ACM TOCS, 2014.

KC Sharman, AIE Alcazar, and Y Li. Evolving sig-
nal processing algorithms by genetic programming.
In Genetic Algorithms in Engineering Systems: In-
novations and Applications, 1995. GALESIA. First
International Conference on (Conf. Publ. No. 414),
pages 473—480. IET, 1995.

Stelios Sidiroglou-Douskos, Sasa Misailovic,
Henry Hoffmann, and Martin Rinard. Managing
performance vs. accuracy trade-offs with loop
perforation. In FSE, 2011.

Xin Sui, Andrew Lenharth, Donald S Fussell, and
Keshav Pingali. Proactive control of approximate
programs. In ASPLOS, 2016.

Xin Sui, Andrew Lenharth, Donald S. Fussell, and
Keshav Pingali. Proactive control of approximate
programs. In ASPLOS, 2016.

Nikolaos Thomos, Nikolaos V Boulgouris, and
Michael G Strintzis. Optimized transmission of
jpeg2000 streams over wireless channels. IEEE
Transactions on image processing, 15(1):54—67,
2006.

Kazuyoshi Uesaka and Masayuki Kawamata. Evo-
lutionary synthesis of digital filter structures using

[46]

[47]

[48]

genetic programming. [EEE Transactions on Cir-
cuits and Systems IlI: Analog and Digital Signal
Processing, 50(12):977-983, 2003.

European Union. General data protection regula-
tion. http://www.eugdpr.org/, 2017.

Swagath Venkataramani, Vinay K Chippa, Srimat T
Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. Quality programmable vector processors
for approximate computing. In MICRO, 2013.

Stephen T. Welstead. Fractal and Wavelet Im-
age Compression Techniques. Society of Photo-
Optical Instrumentation Engineers (SPIE), Belling-
ham, WA, USA, 1st edition, 1999.

14

[49]

(50]

Haoyu Zhang, Ganesh Ananthanarayanan, Peter
Bodik, Matthai Philipose, Paramvir Bahl, and
Michael J Freedman. Live video analytics at scale
with approximation and delay-tolerance. In NSDI,
pages 377-392, 2017.

Tan Zhang, Aakanksha Chowdhery, Paramvir Vic-
tor Bahl, Kyle Jamieson, and Suman Banerjee.
The design and implementation of a wireless video
surveillance system. In Proceedings of the 21st An-
nual International Conference on Mobile Comput-

ing and Networking, pages 426—438. ACM, 2015.

