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——— Abstract

Symbolic execution is an effective but expensive technique for automated test generation. Over
the years, a large number of refined symbolic execution techniques have been proposed to improve
its efficiency. However, the symbolic execution efficiency problem remains, and largely limits the
application of symbolic execution in practice. Orthogonal to refined symbolic execution, in this
paper we propose to accelerate symbolic execution through semantic-preserving code transform-
ation on the target programs. During the initial stage of this direction, we adopt a particular
code transformation, compiler optimization, which is initially proposed to accelerate program
concrete execution by transforming the source program into another semantic-preserving tar-
get program with increased efficiency (e.g., faster or smaller). However, compiler optimizations
are mostly designed to accelerate program concrete execution rather than symbolic execution.
Recent work also reported that unified settings on compiler optimizations that can accelerate
symbolic execution for any program do not exist at all. Therefore, in this work we propose a
machine-learning based approach to tuning compiler optimizations to accelerate symbolic exe-
cution, whose results may also aid further design of specific code transformations for symbolic
execution. In particular, the proposed approach LEO separates source-code functions and lib-
raries through our program-splitter, and predicts individual compiler optimization (i.e., whether
a type of code transformation is chosen) separately through analyzing the performance of exist-
ing symbolic execution. Finally, LEO applies symbolic execution on the code transformed by
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compiler optimization (through our local-optimizer). We conduct an empirical study on GNU
Coreutils programs using the KLEE symbolic execution engine. The results show that LEO sig-
nificantly accelerates symbolic execution, outperforming the default KLEE configurations (i.e.,
turning on/off all compiler optimizations) in various settings, e.g., with the default training/test-
ing time, LEO achieves the highest line coverage in 50/68 programs, and its average improvement
rate on all programs is 46.48% /88.92% in terms of line coverage compared with turning on/off
all compiler optimizations.
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1 Introduction

Symbolic execution is a systematic analysis methodology to explore program behaviors, and
has been widely used in test input generation [29, 15, 30]. In particular, symbolic execution
takes test inputs as symbolic values instead of concrete values so as to generate test inputs
by solving the constraints for program paths. Although symbolic execution facilitates test
generation to a large extent, it is widely recognized to suffer from the efficiency problem
due to the exponential number of paths and constraint solving cost. To relieve the efficiency
problem of symbolic execution, various optimization techniques have been proposed, e.g.,
compositional symbolic execution [41, 72|, incremental symbolic execution (79, 88], and
parallel symbolic execution 78, 76]. However, symbolic execution remains one of the most
expensive testing methodologies [18].

Instead of refining symbolic execution techniques, in this paper, we aim to accelerate
symbolic execution via another orthogonal dimension — transforming the programs under
test. Intuitively, if a program under test can be transformed into a semantic-preserving but
easy-to-analyze program, the efficiency of symbolic execution will be improved. Moreover,
all the refined symbolic execution techniques will be also further improved because of the
orthogonality. That is, semantic-preserving code transformation rules for symbolic execution
are needed. However, few semantic-preserving code transformation rules studied in the
literature targets at symbolic execution, and designing such rules is a complex process
and will be a long-term project. During the initial stage of this direction, we borrow code
transformation rules for concrete execution to learn code transformation rules for symbolic
execution, because of the substantial knowledge accumulated over 30 years in the field
of concrete execution as well as the similarity between concrete execution and symbolic
execution. In particular, we borrow compiler optimization, which is one of the most mature
code transformation approaches to transforming the source program into another semantic-
preserving target program with increased efficiency (e.g., faster or smaller) and has been
widely recognized by its effectiveness on accelerating concrete execution (2, 32, 38, 27].
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Since compiler optimizations are specially designed for compilers to optimize program
concrete execution, they may reduce the efficiency of symbolic execution due to the difference
between concrete and symbolic execution. As reported by recent work [33, 14, some compiler
optimizations indeed largely accelerate symbolic execution for some programs, but some
compiler optimizations even make symbolic execution much slower for some programs.
Moreover, there is no unified configuration on the compiler optimizations guaranteeing the
efficiency of symbolic execution for all programs. If we can learn how to utilize compiler
optimizations to accelerate symbolic execution for each individual program, it will become a
very light-wight approach to accelerating symbolic execution via code transformation, and is
also helpful in designing specific effective code transformation rules for symbolic execution.
Therefore, in this paper we focus on learning to tune compiler optimizations to accelerate
symbolic execution.

In particular, we propose the first machine-L Earning-based approach to tuning compiler
Optimizations for symbolic execution (abbreviated as LEO). LEO tunes compiler optim-
izations for each code portion (e.g., each function) of a program individually rather than
for the whole program, because compiler optimizations transform different code portions
in different ways. More specifically, for any program under test, LEO first divides it into
source-code portions and libraries used in the program, and then learns their settings on
compiler optimizations separately. Library optimizations can be directly applied with the
corresponding compiler. To enable different code portions with different settings on compiler
optimizations, we design and implement two components. The first one is program-splitter,
which splits a program into multiple files so that each file contains only one source-code
portion (e.g., function). The second one is local-optimizer, which optimizes each preceding file
by its learnt compiler optimization settings. With these tools, LEO integrates the optimized
files and optimized libraries into a fine-optimized program using the LLVM linker. Such
fine-optimized program is semantically equivalent with the original program, and is treated as
inputs of symbolic execution engines instead of the original one, so as to accelerate symbolic
execution.

To evaluate LEO, we conduct an empirical study on KLEE using the widely used GNU
Coreutils programs [57, 86, 33, 15]. Our experimental study shows that compared with
two default settings of KLEE (i.e., symbolic execution without any code transformations
— turning off all compiler optimizations, and symbolic execution turning on all compiler
optimizations), LEO achieves the highest line coverage in 50/68 programs, indicating its
great performance on accelerating symbolic execution. In particular, compared with symbolic
execution without any code transformations (i.e., turning off all compiler optimizations),
the average improvement rate of LEO on all programs is 88.92% in terms of line cover-
age, demonstrating that code transformation is indeed a promising direction to accelerate
symbolic execution. Moreover, compared with symbolic execution turning on all compiler
optimizations, the average improvement rate of LEO on all programs is 46.48% in terms
of line coverage, indicating that effectively tunning compiler optimizations is a successful
exploration in this direction and our machine-learning based approach is able to predict
better compiler-optimization settings for accelerating symbolic execution. Furthermore,
the compiler optimizations recommended by LEO with some specified training symbolic
execution time (e.g., the default 10-minute) can always significantly outperform the default
settings of KLEE in most cases even when the testing symbolic execution time increases.
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1 int fun2(int N, int h[10]){ 1 int funl(int M, int g[10]) {
2 int i; 2 int i;
3 oo -forfi=0;iaN-25++1){ 3 ---forl{i=0;icM;4+i) {
4 afEs2=0)hi} =1 +++for(i=M-2;i<M;++i) {
5 ---  else-hlil=0+ 4 glil=i*i;
6 ---} 5 }
7 for(i=0;i<N;++i) { 6 for(i=0;i<M-2;++i) {
8 7
9 8
9

h[i]=2*1i; gli]=0;
} }

10 int sum=0; int sum=0;
11 for(i=0;i<N;++1) 10 for(i=0;i<M;++1)
12 sum+=h[i]; 11 sum+=g[i];
13 return sum; 12 return sum;
14 } 13 }
(a) Acceleration. (b) Deceleration.

Figure 1 Motivating examples.

The contributions of this paper are summarized as follows.

= The first approach to accelerating symbolic execution via machine-learning based compiler
optimization tuning for code transformation.

= An implementation of the proposed approach, including program-splitter and local-
optimizer components, enabling the learnt compiler optimization settings for different
code portions.

= An extensive study on GNU Coreutils programs demonstrating the performance of LEO
on accelerating symbolic execution as well as the contributions of various components of

LEO.

2 Motivation

In this section, we use two examples of aggressive dead code elimination (ADCE) to illustrate
the motivation of this work, i.e., tunning compiler optimization can accelerate symbolic
execution. ADCE is a compiler optimization that assumes all instructions are dead unless
they are proven not and tries to eliminate dead statements within loop computations. This
optimization can accelerate program concrete execution but has different impacts on symbolic
execution. The first example is shown in Figure la, where the code with marks is the
code transformed through the compiler optimization. The transformation removes the first
redundant loop as marked, and accordingly simplifies path conditions, which facilitates
symbolic execution. As a result, symbolic execution after optimization requires only 11
queries? | while symbolic execution before optimization requires 54 queries.

Figure 1b presents another example on ADCE. Contradictory to the observation in
Figure la, the optimization used in Figure 1b decelerates symbolic execution. More specifically,
the transformation tries to avoid redundant computations by complicating the starting
condition of the first loop (i.e., at Line 3). That is, turning on this compiler optimization
increases the complexity of the path conditions, which enhances the difficulty of constraint
solving in symbolic execution. As a result, symbolic execution before optimization requires

2 Query is a concept of SMT constraint solving. More queries tend to decrease the efficiency of symbolic
execution.
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Function optimization

Figure 2 Overview of LEO.

48 queries, while it requires 107 queries after optimization, significantly aggravating the
efficiency problem of symbolic execution. Combining the observations from Figures la
and 1b, a compiler optimization can behave differently, e.g., accelerate or decelerate symbolic
execution, making it not proper to give a unified compiler optimization setting for all
programs. Therefore, this paper targets learning how to tune these compiler optimizations
for each individual program to accelerate symbolic execution via code transformation.

From Figures la and 1b, the transformation performed by compiler optimizations actually
occurs on some code portions rather than the whole program. For example, the transformation
in Figure la occurs at Lines 3-6, and the transformation in Figure 1b occurs at Lines 3. That
is, the transformation actually occurs at fine granularities (e.g., statements and functions)
rather than at coarse granularities (e.g., the whole program). If a compiler optimization
is uniformly set at coarse granularities, it is hard to guarantee the efficiency of symbolic
execution. For example, if a large program consists of the two functions in Figure la and
Figure 1b, it is hard to tell whether the optimization, ADCE, accelerates the symbolic
execution of the whole program because such an optimization has opposite influence on the
two functions. That is, to accelerate symbolic execution, compiler optimizations should be
tuned at fine granularities, e.g., the function level, rather than at coarse granularities. On
the other side, it is costly to tune compiler optimizations at much finer granularities (e.g.,
the statement level) due to the extra efforts on compiler optimization tuning. Therefore, in
this paper, we use the function level as a compromise and tune compiler optimizations for
symbolic execution at the function level.

3 Approach

To accelerate symbolic execution via code transformation, we propose the first approach
to tuning compiler optimizations at the function level based on machine learning. The key
insight of our approach is that program code portions with certain features (e.g., structure or
complexity features) or combinations of features are inherently more likely to be transformed
to easy-to-analyze programs by certain compiler optimizations. Besides the implemented
source functions, a program may use API functions of some libraries, and thus it is necessary
to learn how to set compiler optimizations for these libraries as well. However, the libraries
are usually so large that splitting libraries into functions and tuning compiler optimizations
for each library function incur huge costs, and thus LEO predicts the settings of compiler
optimizations for libraries in a way different from what it does for functions. That is, LEO

6:5
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divides a program into source-code functions and libraries, and predicts their settings of
compiler optimizations separately.

Figure 2 presents the overview of LEO. It first trains a predictive model for each
optimization to predict whether the compiler optimization should be turned on for a function
(see Section 3.1), and then trains a predictive model for each compiler optimization to predict
whether the compiler optimization is turned on for libraries (see Section 3.2). Based on
the prediction results, LEO tunes the settings of compiler optimizations for the program
under test, and implements the program-splitter and local-optimizer components to facilitate
compiler optimization settings for each code portion (see Section 3.3). Note that although
the general idea of LEO applies to various symbolic execution engines and compilers, in this
work, we present LEO based on the KLEE symbolic execution engine [15] and its underlying
LLVM compiler infrastructure [55].

3.1 Function Optimization

In function optimization, LEO first collects a set of training instances from source functions
by extracting their features and identifying their labels, and then builds a predictive model
based on these training data for each compiler optimization.

3.1.1 Feature Extraction

To predict whether a compiler optimization can facilitate symbolic execution for a function,
the identified features from source functions should characterize how compiler optimizations
influence the efficiency of symbolic execution. Therefore, we identify features from two
aspects: path exploration and constraint solving, which are main reasons for the efficiency
problem of symbolic execution [18]. From the aspect of path exploration, we use a group of
features relevant to program structure, e.g., the number of basic blocks with one/two/more
than two successor(s), the number of edges in the control flow graph, and the number of
conditional branches. From the aspect of constraint solving, we use a group of features
relevant to program complezity, e.g., the number of references (def/use) of static/extern /local
variables, the number of instructions that do pointer arithmetic, and the number of indirect
references via pointers. In particular, prior work on compiler optimizations for program
concrete execution [38] has already recognized some characteristics of a program that are
related to compiler optimizations. Here we use all these characteristics as the features of
LEO because these features are relevant to either path exploration or constraint solving.
Details about our features can be found in the homepage of LEO.

For each function, LEO extracts the values of these features, which are represented by a
vector whose elements are numeric. As these features may have different value ranges, LEO
normalizes each element’s value into the range [0,1] using the min-max normalization [48] so
as to adjust values measured on different scales into a common scale. Supposed that the set
of training instances (i.e., functions) is denoted as P = {p, o, ll{T}, }, the set of vectors
extracted from P is denoted as V = {v; [V [TEH, }, the set of elements in a vector is denoted
asE = {elﬁb }, and the value of the element  in the vector v before normalization
is denoted as X;j, then the value of the element g in the vector Vi after normalization is
denoted as xi*j , Formula 1 presents the min-max normalization on Xjj, where 1 < i <nand
1<j<m
_ Xij —min({xy|1<k<n})

— max({x|1< k <n}) - min({x|1<k<n})

*
xij

(1)
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3.1.2 Labeling

LEO is designed to build a predictive model for a compiler optimization, characterizing how
to accelerate symbolic execution through the compiler optimization setting. Therefore, the
label for each training instance is defined as the setting of a compiler optimization that
accelerates symbolic execution. In other words, a label of a training instance (i.e., function)
refers to whether a compiler optimization should be turned on or off.

For any training instance (i.e., function), LEO labels based on the comparison between

its symbolic execution efficiency with the compiler optimization turned on and turned off.

Same as existing work [33, 15, 87], symbolic execution efficiency is measured by line coverage
achieved by the generated test inputs within time limit. That is, within time limit, if line
coverage achieved when turning on this compiler optimization is higher than that when
turning off it, the instance label for this compiler optimization is “turning on”. Otherwise,
the label is “turning oft”.

It is hard to learn whether a compiler optimization should be turned on or off for a
function, since symbolic execution takes the whole program rather than each function as
input. To relieve this issue, LEO estimates the label of each function by analyzing the line
coverage of the whole program instead. More specifically, LEO first collects line coverage of
the whole program, i.e., which line of code is covered by the test inputs generated through
symbolic execution, then determines the line coverage of each function by analyzing the
distribution of line coverage. Finally, for each function, LEO compares its line coverage
between symbolic execution with the optimization on and that with the optimization off to
set the label.

3.1.3 Imbalanced Instance Processing

Through the steps introduced by Sections 3.1.1 and 3.1.2, we collect a set of training instances
with features and labels. Based on the prior work [33], some compiler optimizations help
accelerate symbolic execution in most cases but some other compiler optimizations make
symbolic execution slower in most cases. That is, for a compiler optimization, its number of
training instances whose labels are turned on may be greatly different from its number of
training instances whose labels are turned off, which can incur the imbalanced data problem.

As the imbalanced problem may have serious impact on the accuracy of classification (23,
21], LEO uses over-sampling strategy to relieve the impact of imbalanced instances in
optimization prediction. Here we choose over-sampling strategy rather than other strategies
(e.g., under-sampling) because it is costly to collect a large number of training instances®.
In particular, LEO uses SMOTE [22], because SMOTE over-samples the minority class
by creating synthetic examples rather than by over-sampling with replacement [22]. More
specifically, for each instance in the minority class, SMOTE creates synthetic examples along
the line segments joining the instance and its K nearest neighbors by regarding all instances
as points in space. Based on the amount of over-sampling required, neighbors are randomly
chosen from the K nearest neighbors, and then one instance is created on each line segment.

3 Collecting a training instance requires feature extraction and labeling. Moreover, to label each instance,
each program has to be executed twice in symbolic execution, including turning on the compiler
optimization and turning off the compiler optimization.
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3.1.4 Predictive Model

For each compiler optimization, LEO builds a predictive model through machine learning. In
particular, LEO adopts the SMO algorithm, which is used to solve the quadratic programming
problem in the training of Support Vector Machines (abbreviated as SVM) [69] and regarded
as the fastest for linear SVM and sparse data sets. Note that although LEO is implemented
based on SMO, it is not specific to this machine learning algorithm and we investigate the
impact of machine learning algorithms in Section 4.6.4.

3.2 Library Optimization

As the libraries are usually so large that splitting libraries into functions and tuning compiler
optimizations for each library function incur huge cost. Therefore, we predict compiler
optimizations for libraries in a different way. More specifically, LEO regards the functions of
libraries as a whole by building a predictive model for libraries used in a program (rather
than each function). Similar to function optimization prediction, LEO predicts compiler
optimizations for libraries as follows.

First, LEO defines a set of new features that characterize how compiler optimizations
accelerate symbolic execution for libraries. Since library functions are relatively fixed in
implementation and repeatedly used by various client code, it is not necessary to collect
detailed features about each library function separately. Instead, knowing how compiler
optimizations impact programs that used a library function before, can help predict how
compiler optimizations impact the current program using that library function. Therefore,
LEO directly uses whether each individual library function is called by a program as features
of library optimization. That is, for each training instance (i.e., a program), LEO identifies
the called library functions and uses 1/0 to represent a library function is/isn’t called. As
the values of these features are all 0 or 1, normalization is not necessary.

Second, LEO labels each training instance. An instance label is whether a compiler
optimization should be turned on or off for the libraries used in a program. Similar to the
process of function optimization prediction, LEO determines a label by comparing the line
coverage of the whole program achieved when turning on the compiler optimization and that
achieved when turning off the compiler optimization within time limit?.

Finally, based on the collected training data, LEO builds a predictive model for each
compiler optimization using also SMO. Note that LEO also uses SMOTE to filter the impact
of the imbalanced problem in library optimization prediction.

3.3 Optimization Tuning

Following Sections 3.1 and 3.2, LEO learns the settings of all compiler optimizations for a
program, including each source-code function and the related libraries. However, as symbolic
execution engines do not support various settings on different source-code functions of a
program, LEO provides such fine-granularity optimization tuning by implementing two
components: program-splitter and local-optimizer.

LEO first adopts the learnt settings of compiler optimizations for libraries by compiling
the libraries individually. Then LEO splits the whole program into multiple files, each
of which is only a function of the program, and adopts the learnt settings of compiler

4 As the features of a training instance are directly related to libraries and optimized libraries also
contribute to the line coverage of the program, LEO approximately uses whether the line coverage of
the program is improved when turning on a compiler optimization as the label for library optimization
prediction, to save the cost of labeling.
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optimizations for each file (i.e., function). Finally, LEO integrates the multiple optimized files
and optimized libraries into a fine-optimized program using the LLVM linker, and analyzes
this program rather than the original target program through symbolic execution. Due to
program complexity, implementing the program-splitter and local-optimizer is an important
technical challenge in LEO. In the following subsections, we first present the details on how
to split a program into multiple function-level files in Section 3.3.1, and then present the
details on how to optimize these files using learnt settings and integrate these optimized files
and libraries in Section 3.3.2.

3.3.1 Program-Splitter

For any given program denoted as Pa, LEO splits it into function-level files
Pe = {pofbe(lfy, }, where pi refers to a function-level file (1 < k < n and n is
the total number of functions in Pa ), via two stages: preprocessing stage and splitting
stage. In the preprocessing stage, our approach preprocesses Pa and prepares the necessary
materials, and in the splitting stage our approach splits Pa into function-level files based on
these materials.
In the preprocessing stage, LEO first expands macro and removes comments to expediently
transform Pp to Pg, and then prepares the following materials for the splitting stage:
= A common-symbol table, which contains the symbols of all common variables and functions
in Pg?, so as to solve the duplicate-name issue in link-time.
= A type-definition table, which records all definitions of existing types (e.g., structs) in
Ps .
= A dependent table for each function in Pg , which records the declarations of its dependent
functions and global variables.

In the splitting stage, our approach generates an individual file (denoted as pw) for each

function (denoted as My) in Pg by the following steps:

= Putting the declarations of dependent functions and global variables into pokx and using
“extern” as their modifier, based on the dependent table of this function;

= Modifying the scope of the dependent functions and global variables, i.e., removing the
“static” modifier, so that they can be used by the other files;

w  Putting My into the file py;

w Putting all needed type definitions into Py referring to the type-definition table, based
on all declarations in Py.

In particular, our approach records all global variables in an individual file so that all
other files can use them.

3.3.2 Local-Optimizer

The optimizer of the KLEE symbolic execution engine applies all compiler optimizations
together, but does not allow to turn on one compiler optimization or a subset of compiler
optimizations. Therefore, we implement a local-optimizer by setting an interface that
appoints which compiler optimizations are turned on. That is, we regard the names of
compiler optimizations as parameters that are passed to the optimizer by the interface.
Finally, LEO integrates all optimized files and libraries into a fine-optimized program using

® In this paper, common variables and functions refer to the global variables and functions without “static”
modifier.
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the LLVM linker. When linking libraries, some symbols may have duplicate names, which
will incur link errors. To solve this problem, our approach utilizes the common-symbol table
generated in the program-splitter to remove the symbols whose scope is the current file from
the symbol table of the executable.

4 Experimental Study

Our study addresses the following four research questions:

= RQ1: How does LEO perform on accelerating symbolic execution via code transformation?
= RQ2: How do different training and testing time limits impact LEO?

= RQ3: Do both function optimization and library optimization contribute to LEO?

= RQ4: How do different machine learning algorithms impact LEO?

Note that in our study, there are two types of time limits: training time limit and testing
time limit. The former refers to the symbolic-execution time used for collecting training
instances, and the latter refers to the symbolic-execution time used to analyze the programs
under test.

4.1 Tools and Libraries

In our study, we use KLEE [15], one of the most widely used symbolic execution engines [15,
33, 87, 57]. KLEE is implemented using C++ based on the LLVM infrastructure, whose
compiler provides dozens of compiler optimizations. The same as prior work [87, 33], we build
KLEE with LLVM 2.9, which has 30 compiler optimizations integrated by KLEE. These
optimizations are turned on through the command “~optimize” and turned off through the
command “~disable-opt”, which are two default configurations of KLEE. In our study, we use
similar KLEE options as the prior work [15]. Following the prior work [33, 30|, we use the
DFS search heuristic in KLEE so as to acquire more deterministic results, and disable the
caching of KLEE since the caching contents can be different for different strategies, making
it hard to check the actual impacts of different strategies. More discussion on the impact of
search heuristics and caching can be found in Section 5.2.

We implement LEO’s machine-learning component by using the SMO algorithm provided
by Weka 3.6.12%, whose P uk kernel is set with omega = 3 and sigma = 1in this study based
on a preliminary study on a small dataset.

In our study, we measure the performance with code coverage and fault detection
rates achieved by the test inputs generated within the given testing time limit. For code
coverage, we use line coverage, which is widely used to measure the effectiveness of symbolic
execution (33, 15, 87, 86]. For fault detection rates, since real faults are usually small in
number in practice and mutation faults have been widely recognized as suitable for simulating
real faults in software testing experimentation [5, 51, 26, 25], following prior work [86, 57, we
use mutation testing to simulate real faults and check the mutation scores, i.e., the proportion
of killed mutants in all generated mutants. When collecting code coverage and mutation
scores, we use widely-used and mature tools gcov’ and mutGen [5]. When calculating
mutation scores, following prior work [86, 57], we regard the console outputs of the original
program as test oracles. If there is any difference between the console outputs of the original
program and the console outputs of a mutant for the same test inputs, we regard a mutant
as killed.

5 http://www.cs.waikato.ac.nz/ml/weka/.
" http://ltp.sourceforge.net/coverage/gcov.php
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4.2 Subjects

Following previous work on symbolic execution [15, 33, 87, 57, 86, 62|, we also use GNU
Coreutils C programs as subjects, which implement different tools for Unix-like operating
systems [15, 57]. In particular, we use 76 GNU Coreutils 6.11 programs®, whose total lines
of source code (SLOC)? are 39,752 linked with an internal library size of 49,710 SLOC and
an external library size of 223,147 SLOC.

Furthermore, when measuring mutation scores, we use 40 programs in GNU Coreutils
because the rest of programs cannot produce outputs under the study environment or their
outputs are related to environment/context information (e.g., system time). Following prior
work [86], for each program, we randomly select 100 mutants. If the total number of generated
mutants is less than 100, we use all generated mutants instead.

4.3 Experimental Setup

We consider the following independent variables:

Compared Approaches. LEO is the first automated approach to tuning compiler optim-
izations for accelerating symbolic execution. Therefore, we compare LEO with only
the default optimization configurations of KLEE, i.e., all compiler optimizations off
(abbreviated as NO) and all compiler optimizations on (abbreviated as ALL). Here, NO
is regarded as the baseline, representing the original symbolic execution without any
code transformations for programs under test whereas ALL is regarded as a compared
approach applying all available compiler optimizations to accelerate symbolic execution.

Time limits. As the GNU Coreutils programs are normally large and complicated, all paths
of a program cannot be fully explored by symbolic execution during the acceptable period
of time. Therefore, similar as prior work [15, 33|, in the experiment we also limit the
maximum execution time of KLEE and halt its execution when reaching the time limit.
In particular, for the testing time limit, we set it to 10, 15, 20, 25, and 30 minutes, to
investigate whether LEO always performs well regardless of testing time limits. We set
the default training time limit to be 10 minutes in LEO. Moreover, we also study the
impact of different training time limits on LEO. Due to the high cost of training, we first
set the training time limit to be 10 minutes to 30 minutes with the step of 10 minutes.
Then, we also add a 5-minute training time limit to better understand the trend of the
impact of training time limit. That said, we set the training time limit to be 5, 10, 20,
and 30 minutes.

Variants of LEO. To explore whether each component of LEO (i.e., function optimization
and library optimization) contributes to LEO on accelerating symbolic execution, we
adapt LEO by removing each component and compare the performance of the adapted
LEO and the original LEO. In particular, LEO has four variants through such adaption,
which are (1) LEO with all compiler optimizations for libraries turned on (denoted as
LEO-Lall), (2) LEO with all compiler optimizations for libraries turned off (LEO-Lno),
(3) LEO with all compiler optimizations for functions turned on (LEO-Fall), and (4) LEO
with all compiler optimizations for functions turned off (LEO-Fno). That is, LEO-Lall
and LEO-Lno are variants of LEO without library optimization prediction, LEO-Fall and
LEO-Fno are variants of LEO without function optimization prediction.

¥ We remove some programs from GNU Coreutils mainly because they can destroy our experimental data
by generating dangerous test inputs.
? Following prior work [87, 61, 54, 60], the SLOC in this paper are measured by cloc, which is accessible

at https://github.com/AlDanial/cloc.
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Machine learning algorithms. To investigate the impact of machine learning algorithms
on LEO, we consider other five typical machine learning algorithms besides SMO —
Alternating Decision Tree (abbreviated as ADT) [36], Bayesian Logistic Regression
(BLR) [40], Multinomial Logistic Regression (MLR) [56], LogitBoost (LB) [37], and
Random Forests (RF) [12]. In particular, we also use their implementations provided by

Weka.

Following prior work on machine learning [20, 6], LEO is evaluated through leave-one-out
cross-validation. That is, for each subject, we use the instances collected from the remaining
75 programs as the training data to build predictive models for compiler optimizations
respectively, and use these predictive models to learn the settings of compiler optimizations
for the specific subject. The training is conducted offline, and not included as overhead. Note
that we use 68 of 76 programs as the testing programs in turn because the other 8 programs
incur KLEE errors when using some predicted compiler optimization settings.

The dependent variables considered are line coverage and mutation scores, which have
been widely used in prior studies on symbolic execution [57, 86, 33, 15, 87].

4.4 \Verifiability

The experimental study is conducted on a workstation with eight-core Intel Xeon E5620 CPU
(2.4GHz) with 24G memory, and Ubuntu 15.04 operating system. For ease of experiment
replication, we release the tools and implementation used in our experiment as well as all
the experimental data at the homepage of LEO'. The detailed results in the homepage
allow for verification without running the experiment again. The open-source tools, the
implementation of our experiment (including the source code and readme files), and the
subjects and mutants are available, so that one can easily reproduce our experiment.

4.5 Threats to Validity

The threats to internal validity mainly lie in the tool supports and our own implementations.
To reduce the threat from tool supports, we use the widely-used KLEE symbolic execu-
tion engine [15] and the LLVM compiler infrastructure [55]. Since LEO predicts compiler
optimizations for each source-code function, it may discount the effect of inter-procedural
compiler optimizations. In the future, we plan to utilize LEO to predict optimizations for a
subset of functions rather than a single function to reduce this threat. It can also bring an
additional benefit, i.e., reducing the cost of LEO for optimization prediction. Also, we use
the mature tools, i.e., gcov and mutGen [5], to collect line coverage and generate mutants,
respectively. To avoid implementation errors, the first two authors review the source code and
experimental scripts, and we adopt the mature implementations of those machine learning
algorithms used in our study, which are provided by Weka.

The threat to external validity mainly lies in the studied subjects. Although we use the
widely-used GNU Coreutils programs [15, 33, 87, 57|, they may not be representative of other
programs. To reduce this threat, we will use more and larger subjects in the future. Note
that our current subjects do not suffer from overfitting. The reason is that GNU coreutils
was created by merging a lot of earlier GNU packages; even within the same package,
programs differ in their implementation, creation time, and functionalities. Moreover, LEO
optimizes at the function rather than program level. Regarding to the libraries, LEO predicts

' https://github. com/JunjieChen/1eo.
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optimizations of a library for a target program based on the actual library portions invoked
and does not necessarily produce the same prediction results on the same libraries of different
target programs, which is confirmed by our experimental data. Therefore, the library code
does not have overfitting concerns as well.

The threats to construct validity lie in the measurement, the time limits, and the compared
approaches. In this study, we measure the performance of LEO through only its acceleration
effectiveness rather than its cost because LEO has little overhead!!. In particular, we choose
the mostly used line coverage and mutation scores. The second threat comes from the
time limit, including the training and testing time limits. To reduce these threats, we will
repeat the experiment by using other time limits. The third threat lies in the compared
approaches. As the first work on optimization prediction for symbolic execution, we use the
state-of-the-art symbolic execution work KLEE and its compiler optimization support as the
compared approaches (i.e., ALL and NO). There are also some other approaches that may
be compared in the study, such as statically applying a subset of compiler optimizations for
all the programs [84, 33]. However, according to the existing work [33], there is no unified
compiler-optimization configuration guaranteeing the efficiency of symbolic execution for
all programs. In particular, the experimental results in the existing work [33] have shown
that the four different subsets of KLEE compiler optimizations that are designed based
on their knowledge for symbolic execution perform almost the same as turning on all the
optimizations (i.e., ALL). Therefore, statically applying a subset of compiler optimizations
may not outperform LEO.

4.6 Results and Analysis

4.6.1 RQ1: Performance Comparison

Performance on line coverage. Table 1 lists the line coverage achieved by LEO and ALL/NO
under the 10-minute testing time limit'?, where (4 ), (m), (8) represent that the approach
achieves the highest, medium, lowest line coverage on the corresponding subject among
LEO, ALL and NO, respectively. In particular, the last two rows of this table present the

number of subjects where each approach achieves the best, medium, and worst results.

From this table, the number of subjects where LEO achieves the best performance (i.e.,
50) is much larger than that of ALL (i.e., 26) and NO (i.e., 13), and the number of
subjects where LEO achieves the worst performance (i.e., 5) is much smaller than that
of ALL (i.e., 13) and NO (i.e., 44). Based on these results, LEO is more effective than
the baseline NO, demonstrating code transformation is indeed a promising direction to
accelerate symbolic execution. Also, LEO is more effective than ALL, indicating that
effectively tuning compiler optimizations is a good exploration in this direction and our
machine-learning based approach indeed predicts better compiler-optimization settings
specific to symbolic execution.

Figure 3 further shows the comparison results between LEO and ALL/NO under the
10-minute testing time limit, where we calculate the difference between the line coverage
achieved by LEO and that achieved by ALL/NO, as the coverage improvement using LEO. In
this figure, the y axis represents the coverage improvement using LEO and the x axis sorts the

" Predictive models are built offline and they predict each optimization for each function or libraries very
quickly (in seconds).

'2If no otherwise specified, all training symbolic execution runs of LEO use the default 10-minute training
time limit in the remainder of this paper.
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Table 1 Line coverage achieved by LEO/ALL/NO within 10-minute testing time limit

Sub | LEO ALL NO || Sub | LEO ALL NO |
base64 71.4’%(4) 42.86(m)  14.29(8) || basename 79.49(4) 79.49(4) 76.92(8)
cat 66.38(4 55.17(m)  54. 74( ) || chcon 70.77(4) 45.64(m)  15.90(8)
chgrp 67.78(4 ) 67.78(4) 44(8) || chown 65.59(4) 60.22(m)  30.11(8)
chroot 62.1()(4) 62.16(4) 56 7()( ) || cksum 91.94(4) 80.65(8) 91.94(4)
comm 78.57(4) 71.43(m)  62.24(8) || p 41.46(m) 46.34(4)  26.29(8)
csplit 53.76(m ) 62.57(4) 3.30(8) || cut 64.53(4) 48.99(8) 56.08(m)
date 48.05(4) 44.16(m) 24.68(8) || df 64.15(m) 64.42(4) 63.61(8)
dircolors 73.16(4) 20.00(m)  10.00(8) || dirname 93.55(4) T74.19(m) 74.19(m)
echo 27.18(8) 28.16(m) 39.81(4) || env 100.00(4) 82.22(m) 51.11(8)
expand 42.38(m)  39.07(8) 43.05(4) || expr 48.22(m) 48.52(4) 34.02(8)
factor 71.64(4) T1.64(4) 64.18(8) || fmt 65.83(4) 65.83(4) 60.19(8)
fold 43.36(m)  41.59(8) 44.25(4) || hostid 63.64(4) 63.64(4) 59.09(8)
hostname | 67.86(4) 57.14(8) 67.86(4) || id 32.03(4) 27.34(m) 24.22(8)
join 12.93(8) 53.06(4) 28.80(m) || link 75.00(4) 64.29(m)  60.71(8)
In 78.35(4) 75.26(m) 29.38(8) || logname | 56.00(4) 56.00(4) 52.00(8)
Is 44.24(m)  45.33(4) 22.70(8) || mkdir 77.27(4)  66.67(m)  34.85(8)
mkfifo 82.98(4) 74.47(m)  36. 17( ) || mknod 56.10(4) 53.66(m)  42.68(8)
mktemp | 88.89(4) 76.77(m) 44(8) || nice 61.02(8) 76.27(4) 72.88(m)
nl 48.82(4)  46.92(m) 42.18(8) nohup 77.63(4) T77.63(4) T7.63(4)
od 40.65(m)  40.79(4)  29.25(8) || paste 66.84(m) 68.98(4) 44.92(8)
pathchk | 46.97(m ) 46.97(m)  56.06(4) || pinky 83.33(4) 83.33(4) 79.91(8)
pr 38.08(4 37.86(m)  36.64(8) || printenv 77.14(4) 62.86(m) 62.86(m)
printf 74. 32(4) 10.51(8)  12.45(m) || pwd 20.34(4) 20.34(4)  20.34(4)
readlink 96.00(4 ) 72.00(m)  54.00(8) || runcon 54.37(m) 55.34(4)  44.66(8)
seq 53.04(4) 53.04(4) 48.62(8) || setuidgid | 55.84(4) 41.56(m) 23.38(8)
shuf 59.88(4) 47.67(8) 59.30(m) || sleep 45.65(4) 45.65(4) 43.48(8)
split 45.62(4) 41.01(m) 14.29(8) || stat 37.05(4)  9.47(8) 31.75(m)
stty 20.43(m) 31.32(4) 13.77(8) || tee 86.96(4) 75.36(m)  75.36(m)
touch 56.25(8) 68.75(4) 59.72(m) || tr 22.15(8) 39.15(m)  40.52(4)
tsort 72.91(4) 6.90(8) 42.36(m) || tty 76.67(4) 76.67(4)  50.00(8)
uname 79.55(4 77.27(m)  19.32(8) || unexpand | 47.42(4) 44.85(8) 47.42(4)
uniq 64. a2(4) 63.24(m)  45.95(8) || unlink 72.00(4)  60.00(8) 72.00(4)
uptime 91.03(4) 17.95(8) 91.03(4) || users 90.38(m)  26.92(8) 98.08(4)
who 83.00(4) 59.71(m) 24.10(8) || whoami 53.85(4) 53.85(4)  50.00(8)
Best(4) 50 26 13 M ed(m) 13 29 11
Worst(8) 5 13 44 - -

subjects in their coverage improvement by removing those with zero coverage improvement.
That is, any bar above 0 represents a subject whose LEO result is better than ALL or NO,
whereas any bar below 0 represents a subject whose LEO result is worse. Besides, LEO

achieves the same line coverage as ALL in 14 subjects, and as NO in 6 subjects. From this

figure, the vast majority of bars are above (). That is, LEO makes symbolic execution more

efficient than both ALL and NO in most cases. Moreover, the improvement of LEO is usually

larger than its decrement. In particular, the increased coverage for uptime, tsort, printf
and users on ALL, as well as dircolors, printf and unameon NO are even more than 60%.
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Figure 3 Coverage improvement within 10-minute testing time limit

This is another empirical evidence that LEO does effectively accelerate symbolic execution
on most subjects.

To further quantitatively measure the performance of LEO on accelerating symbolic
execution, similar to previous work [24], we calculate the improvement rate of LEO in terms
of line coverage for each program. It is calculated via Formula 2, where Cov(LE O) represents
the line coverage achieved by LEO and Cov(ALL(orNQ)) represents the line coverage
achieved by ALL or NO. The average line-coverage improvement rate of LEO compared with
ALL on all subjects is 46.48% and that compared with NO is 88.92%, demonstrating the
significant acceleration performance of LEO in terms of line coverage.

_ Cov(LEO) — Cov(ALL(orNO))

Note that in some cases LEO decelerates symbolic execution, e.g., nice and tr. We try
to analyze the possible reasons and find that some compiler optimizations have coupling
effect in fact. For instance, based on the comments of LLVM, the optimization “IndvarSim-
plify”** should be performed after all the desired loop optimizations (e.g., the optimization
“LoopRotation”). Currently, LEO learns each predictive model for each compiler optimization

'3 This optimization analyzes and transforms the induction variables into simpler forms suitable for
subsequent analysis and transformation.
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Table 2 Mutation scores achieved by LEO/ALL/NO within 10-minute testing time limit.

Sub LEO ALL NO || Sub | LEO ALL NO |
baset4 17.00 (4) 11.00 (m) 4.00(8) || basename | 44.00 (4) 44.00 (4) 44.00(4)
chcon 39.00 (4) 18.00 (m) 7.00(8) || cksum 10.00 (m) 9.00 (8) 14.00(4)
comm 20.00 (m) 14.00 (8) 21.00(4) || cut 19.00 (m)  18.00 (8) 25.00(4)
dircolors 46.00 (4) 12.00 (8)  45.00(m) || dirname 74.12 (m) 98.82 (4) T74.12(m)
env 100.00 (4) 62.20 (M) 48.78(8) || expand 3.00 (m) 3.00 (m) 13.00(4)
expr 100.00 (4)  99.00 (m)  8.00(8) || fold 3.00 (M) 3.00 (M)  9.00(4)
hostid 60.87 (4)  60.87 (4)  34.78(8) || link 37.00 (8) 46.00 (4) 39.00(m)
In 99.00 (4)  42.00 (m) 11.00(8) || logname 62.50 (4) 62.50 (4) 32.50(8)
mkfifo 51.28 (m) 50.00 (8) 100.00(4) || mknod 50.00 (4) 46.00 (m)  26.00(8)
nice 2900 (8)  48.00 (4)  40.00(m) || nl 0.00 (M)  0.00 (M)  7.00(4)
nohup 39.00 (4)  39.00 (4)  39.00(4) || od 25.00 (m)  28.00 (4) 3.00(8)
paste 11.00 (m) 10.00 (8)  23.00(4) || pathchk 20.00 (m)  18.00 (8) 24.00(4)
printf 25.00 (4) 4.00 (m) 1.00(8) || pwd 7.00 (4) 7.00 (4) 7.00(4)
readlink 66.67 (4) 38.10 (8)  47.62(m) || runcon 32.00 (4) 27.00 (m) 25.00(8)
setuidgid 27.00 (4)  20.00 (m) 13.00(8) || sleep 32.00 (4) 21.00 (8) 30.00(m)
split 12.00 (m) 16.00 (4) 11.00(8) || tee 31.00 (4) 20.00 (8) 29.00(m)
touch 23.00 (8)  27.00 (4)  25.00(m) || tr 4.00 (8) 12.00 (m) 15.00(4)
tsort 400 (8)  9.00 (4)  7.00(m) || tty 46.30 (4) 44.44 (M)  24.07(8)
unexpand 3.00 (m) 3.00 (m) 12.00(4 ) || unlink 98.61 (4) 58.33(8) 98.61(4)
users 100.00 (4) 100.00 (4) 100.00(4) || whoami 69.70 (4) 69.70 (4) 36.36(8)
Best(4) 22 14 16 || Med(m) 13 15 9
Worst(8) 5 11 15 || - - - -
individually. Neglect of such couple effects may impact the performance of LEO. Therefore,

in the future we plan to improve LEO by learning predictive models considering the coupling

effect of compiler optimizations, which can be learned/inferred through source code and

documentation of these optimizations.

Performance on mutation score. Besides line coverage, Table 2 further shows the compar-
ison of mutation scores. Similar with Table 1, in this table, (4 ), (m), (8) represent the

approach achieves the highest, medium, lowest mutation scores. From this table, similarly,

the number of subjects where LEO achieves the best mutation scores (i.e., 22) is larger
than that of ALL (i.e., 14) and NO (i.e., 16), and the number of subjects where LEO
achieves the worst mutation scores (i.e., 5) is smaller than that of ALL (i.e., 11) and NO

(i.e., 15). This finding further confirms the performance of LEO in enhancing symbolic

execution.

Similarly, to further quantitatively measure its performance, we also calculate the im-
provement rate of LEO in terms of mutation score for each program. It is calculated via

the similar formula — Formula 3, where M ut(LE O) represents the mutation score achieved
by LEO and M ut(ALL(orN O)) represents the mutation score achieved by ALL or NO.
The average mutation-score improvement rate of LEO compared with ALL on all subjects
is 83.88% and that compared with NO is 149.11%, further demonstrating the significant
acceleration performance of LEO in terms of mutation score.

Ratey 4t =

M ut(LEO) — Mut(ALL(orNO))

M ut(ALL(orNO))

* 100%

()
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Table 3 Comparison within various testing time limits under the default training time limit.

Time (minutes) Ll Wt
LEO ALL NO |[LEO ALL NO
10 50 26 11 5 13 44
15 51 29 10 5 12 46
20 46 33 8 ) 10 47
25 44 38 8 H 9 45
30 50 34 7 6 9 45

Table 4 Statistics analysis on LEO and ALL/NO within various testing time limits under the
default training time limit (a@=0.05).

Time (minutes) | 10 15 20 25 30 |
LEO Imp. rate(%) | 46.48 39.01 37.80 23.85 18.39
v.s. ALL | p-value 0.000(%¥)  0.001(%) 0.008(%) 0.065 0.029(%)
LEO Imp. rate(%) | 88.92 86.70 87.26 79.47 89.60
v.s. NO p-value 0.000(%)  0.000(%)  0.000(*)  0.000(%)  0.000(*)

4.6.2 RQ2: Impact of Training and Testing Time Limits

Although label collection in LEO needs to fix time limit, in practical usage symbolic execution
may set various time limits (i.e., testing time limit) based on different requirements. It
is quite necessary to investigate whether LEO always works no matter which testing time
limit is set. Therefore, we first explore the performance of LEO through symbolic execution
in different testing time limits by using the predictive models learnt in default 10-minute
training time limit, whose results are shown in Table 3. In this table, the first column
lists various testing time limits and Columns 2-4 and 5-7 represent the number of subjects
where the corresponding approach achieves the best and worst performance, respectively.
From Table 3, the number of subjects where LEO achieves best performance is always much
larger than that of ALL and NO, and the number of subjects where LEO achieves worst
performance is always much smaller than that of ALL and NO. That is, LEO accelerates
symbolic execution regardless of testing time limits.

To learn whether LEO outperforms ALL and NO significantly at various testing time
limits, we further perform statistical analysis on their results. First, we analyze the population
on line coverage achieved by each approach and find that the population of each approach
follows the normal distribution by Kolmogorov-Smirnov test [63], which is the precondition
of the paired sample T test. Then, we perform a paired sample T test (whose significant level
o is 0.05), and the results are shown in Rows 3 and 5 of Table 4, where “*” demonstrates
significant difference between the compared approaches. Moreover, in Table 4, Rows 2
and 4 refer to the average line-average improvement rates on all subjects. From this table,
LEO significantly outperforms ALL in 4/5 testing time limit comparisons with line-coverage
improvement rates ranging from 18.39% to 46.48%, and always significantly outperforms NO
with line-coverage improvement rates ranging from 79.47% to 89.60%.

Besides, from Tables 3 and 4, the smaller the gap between the default training time limit
and the used testing time limit, the better LEO tends to perform compared with ALL and
NO (especially ALL). This observation is as expected due to two possible reasons. First,
given sufficient time, symbolic execution can always achieve high line coverage for a subject.
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Figure 4 Trend of performance of LEO with different training time limits.

30 minutes may be already long enough for symbolic execution of individual GNU Coreutils
programs, especially the transformed programs using compiler optimizations. Therefore,
symbolic execution will achieve similar (high) line coverage and become saturate eventually,
no matter what the settings of compiler optimization are (especially for LEO and ALL).
Second, based on the theory of machine learning [82], the time limit in training and testing
staying consistent tends to achieve the best effectiveness. In our study, even though the
training time limit of LEO is inconsistent with the testing time limit, LEO still improves the
efficiency of symbolic execution. That said, if LEO sets training time limit longer than 10
minutes, its accelerating effectiveness may be more obvious when being applied to symbolic
execution with these longer testing time limits.

Therefore, we further explore the impact of different training time limits on LEO. More
specifically, we study whether the performance of LEO within these longer testing time limits
becomes better when using longer training time limits. Figure 4 shows the performance
trends of LEO whose training time limit is gradually close to the testing time limit, where
the line in each box represents the median line coverage and LEO-X (i.e., X = 5, 10, 20,
and 30) refers to LEO with X-minute training time limit. Figures 4a, 4b, and 4c present the
trends in 10-minute, 20-minute, and 30-minute testing time limit, respectively. From each
subfigure in Figure 4, with the training time limit being closing to the specific testing time
limit, LEO indeed achieves better performance, confirming our hypothesis. Also, we find that
LEO always performs better than ALL and NO no matter which training time limit is used.

Furthermore, Table 5 further shows more details about the impacts of training time limits.
The comparison results include the number of subjects where LEO with various training
time limits achieve best and worst performance, and the average line-coverage improvement
rates compared with ALL and NO. For each row in this table, reading values from left
to right, we find that with the training time limit being close to the specific testing time
limit, the number of subjects where LEO achieve best performance becomes larger, the
number of subjects where LEO achieves worst performance becomes smaller, and the average
line-coverage improvement rates of LEO mostly becomes better. That is, when the training
time limit in LEO is close to the testing time limit, LEO achieves better performance on
accelerating symbolic execution.

Overall, LEO mostly significantly accelerates symbolic execution in various testing time
limits with our default training time limit. Furthermore, when having more sufficient training
time, LEO tends to perform better for longer testing time limits.
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Table 5 Comparison within various training time limits.

Training time (minutes) | 5 10 20 30
# Best 46 50
# Worst 6 5

Testing-10min | Imp. rate(%) (v.s. ALL) | 39.31 46.48
Imp. rate(%) (v.s. NO) 79.18 88.92

# Best 45 46 47
# Worst 6 5 5
Testing-20min | Imp. rate(%) (v.s. ALL) | 32.04 37.80 38.23
Imp. rate(%) (v.s. NO) 81.66 87.26 87.92

# Best 47 50 51 51
# Worst 8 6 6 4
Testing-30min | Imp. rate(%) (v.s. ALL) | 1598 1839 1851 18.51
Imp. rate(%) (v.s. NO) 83.51 89.60 89.81 89.69

Table 6 Comparison between LEO and its variants.

A pproach LEO v.s.
LEO-Lall | LEO-Lno | LEO-Fall | LEO-Fno
#Win 36 50 7 7
# Lose 17 11 0 2
| Avg. Improvement (%) | 989 | 1651 | 38 | 128

4.6.3 RQ3: Contribution of Function/Library Optimization

Table 6 shows the comparison between LEO and its four variants. In this table, the
second /third row presents the number of subjects where LEO achieves higher/lower line
coverage than its variants within 10-minute testing time limit. The last row presents the
average coverage improvement through LEO compared with its variants. Note that we do not
list the number of subjects that the two compared approaches perform equally, i.e., achieve
the same line coverage. From this table, LEO performs much better than its four variants
since the number of subjects LEO performing better is always larger than the number of
subjects it performing worse. Therefore, both function optimization and library optimization
are indispensable.

Furthermore, the difference between “#Win” and “#Lose” in the second and third columns
(i.e., results of LEO without library optimization prediction) is much larger than the following
two columns (i.e., results of LEO without function optimization prediction). Moreover, the
average coverage improvement of LEO compared with LEO without library optimization
prediction (i.e., LEO-Lall and LEO-Lno) is also larger than that of LEO compared with LEO
without function optimization prediction (i.e., LEO-Fall and LEO-Fno). That is, library
optimization is more important than function optimization for LEO in accelerating symbolic
execution. The main reason is that the studied GNU Coreutils programs usually use a large
portion of library code (Section 4.2).

These results tell us another promising direction for further improving LEO. We have
known that library optimization is more important for LEO. Currently, LEO achieves such
great performance through simply taking all the libraries used in the program as a whole by
predicting unified settings on compiler optimizations for them. If library optimization can be
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Figure 5 Comparison on machine learning algorithms.

better dealt with, LEO are quite likely to be improved on accelerating symbolic execution. In
the future, we plan to learn how to further fine-tune compiler optimizations for libraries, e.g.,
splitting libraries into several sets of functions (which is more coarse granularity than each
single function but makes it more efficient), or analyzing open-source repositories such as
Github. Since libraries are widely used in software development, we believe that, like existing
library researches (e.g., building a summary for library code to accelerating the analysis
of client code [80]), researches on better transforming libraries for accelerating symbolic
execution are also worthy and should attract more attentions.

4.6.4 RQA4: Impact of Machine Learning Algorithms

Figure 5 shows the results of LEO with various machine learning algorithms, to investigate
the impact of machine learning algorithms on LEO. Actually, our approach using any of
machine learning algorithms outperforms ALL and NO. From this figure, our approach using
SMO performs slightly better than our approach using other machine learning algorithms,
e.g., the top, median and bottom of SMO in box-plot are all higher than those of all other
algorithms. Therefore, LEO achieves stably good acceleration performance for all studied
machine learning algorithms, and SMO is a better choice.

5 Discussion

In this section, we first discuss the new direction that LEO opens for symbolic execution
acceleration, and then discuss the impact of search heuristics and caching on LEO.

5.1 Promising Direction

Our work demonstrates the significant performance of code transformation on accelerating
symbolic execution, indicating a promising direction for accelerating symbolic execution.
Moreover, learning to tune existing compiler optimizations is a good exploration to accelerate
symbolic execution in this direction. It can be further studied from the following aspects:
First, it is promising to design new code transformations specific to symbolic execution.
As code transformations designed for symbolic execution scarcely exist, and it is very difficult
to design such code transformations due to lack of knowledge in this direction, in this paper
LEO accelerates symbolic execution by borrowing the knowledge of code transformation for
concrete execution. Besides, LEO can be used as a light-weight approach to accelerating
symbolic execution via code transformation. The results of LEO (e.g., the predictive model)
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Table 7 Line coverage achieved by LEO/ALL/NO with random search heuristic and caching
within 10-minute testing time limit.

Sub | LEO ALL NO [[Sub | LEO ALL NO |
chown 83.87(4)  82.80(m)  82.80(m) || cp 48.24(8) 49.05(4) 48.78(m)
esplit 68.62(m)  64.59(8)  75.60(4) || date 85.06(4) 80.52(8) 82.47(m)
echo 87.38(4)  79.61(m)  79.61(m) || fmt 71.16(m)  66.77(8) T75.86(4)
id 60.94(4)  60.16(m)  60.16(m) || In 82.99(4) 76.80(8) 77.84(m)
Is 53.93(4) 50.34(8)  53.46(m) || nice 96.61(4) 94.92(8) 96.61(4)
nl 86.26(4)  83.89(m) 78.20(8) || od 86.08(4) 86.08(4) 84.11(8)
paste 92.51(4)  92.51(4)  9251(4) || pr 60.93(m)  60.60(8) 61.15(4)
printenv 100.00(4) 100.00(4) 100.00(4) || pwd 20.34(4) 20.34(4) 20.34(4)
runcon 66.99(4)  66.99(4)  66.99(4) || stat 63.23(4) 57.38(8) 62.40(m)
touch 76.39(8)  77.08(4)  77.08(4) || tr 55.24(m)  55.69(4)  54.32(8)
Best(4) 14 8 9 [[ Med(m) 1 1 5
Worst(8) 2 8 3| - - - -

can also provide knowledge to facilitate the design of code transformation specific to symbolic
execution. That is, LEO can be regarded as a necessary step to code transformation for
symbolic execution. Furthermore, when code transformations for symbolic execution are
available, we can also use LEO to tune these transformations to achieve best acceleration
performance due to the generality of our machine-learning based approach.

Second, code transformation can be combined with other symbolic execution optimization
techniques (e.g., parallel and incremental symbolic execution). Code transformation manipu-
lates the program under test by regarding symbolic execution as a black box, and thus it is
orthogonal to other symbolic execution optimization techniques. For instance, through code
transformation, a program is transformed into an easy-to-analyze target program, and then
various optimized symbolic execution techniques can be applied to this new target program,
making the analysis more easier. That is, LEO can further improve all the existing refined
symbolic execution techniques because of the orthogonality.

5.2 Impact of Random Search Heuristic and Caching

The default KLEE random search heuristic and caching is disabled in our experimental study
because the random search heuristic can bring much randomness and non-determinism and
the caching contents can be different for different strategies, making it hard to evaluate the
effectiveness of LEO. However, as random search heuristic and caching are widely used for
symbolic execution, it is still interesting to know the performance of LEO with random search
heuristic and caching on. Therefore, we conduct a preliminary study on 20 randomly-chosen
GNU Coreutils programs with the similar setting as Section 4, but using random search
heuristic and caching on. Table 7 shows the line coverage achieved by LEO, ALL, and NO
with random search heuristic and caching. In particular, we repeat the experiments 5 times
to reduce the impact of nondeterminism. From this table, with random search heuristic and
caching, the number of subjects where LEO achieves the best performance (i.e., 14) is still
larger than that of ALL (i.e., 8) and NO (i.e., 9), and the number of subjects where LEO
achieves the worst performance (i.e., 2) is also still smaller than that of ALL (i.e., 8) and NO
(i.e., 3). Furthermore, most subjects keep the same rankings with the results in Table 1. For
example, LEO always performs the best for chown no matter whether using random search
heuristic and caching. In particular, the main difference between using and not using random
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search heuristic and caching is that when using them, the difference of LEO, ALL, and NO
becomes smaller than that when not using them, no matter which technique performs the
best. This is because random search heuristic and caching make symbolic execution more
efficient and thus LEO, ALL, and NO achieve the similar (high) line coverage under the
default 10-minute testing time limit. Therefore, the setting with random search heuristic
and caching has the orthogonal impact on accelerating symbolic execution with LEQO. That
is, it further confirms that LEO, which optimizes the code under test, accelerates symbolic
execution from an orthogonal dimension with techniques optimizing symbolic execution itself.

6 Related Work

In this section, we present the related work on both the symbolic execution and code
transformation areas.

6.1 Symbolic Execution

Symbolic execution [29, 52, 17], is a systematic technique for generating program test inputs
based on exploring all possible program paths, which has been recognized as one of the
most costly testing methodologies. To improve the efficiency and effectiveness of symbolic
execution, a huge amount of research effort [74, 81, 15, 28, 45, 50, 43, 70, 71, 34, 65, 58, 68, 79,
67, 83, 13, 44, 41, 85, 49, 11, 75, 3, 73, 67, 39, 59, 10, 35, 72| has been dedicated to the area,
and more details on symbolic execution can be found in a recent survey [18]. To reduce the
cost of symbolic execution, variants of symbolic execution have been proposed, e.g., concolic
execution [42, 74] and execution-based testing [15, 16|, which combine concrete execution
with symbolic execution. Some researchers also proposed various techniques to accelerate
the path exploration in symbolic execution. One specific approach is distributed symbolic
execution where the path exploration is distributed among different workers 78, 77]. Since
real-world programs usually consist of various sub-modules, a number of techniques have also
been proposed to use the compositional approach to speed up symbolic execution [13, 44, 43].
Furthermore, Researchers have also proposed techniques to prune the search space of symbolic
execution 79, 88].

Different from the above previous work on symbolic execution, our work accelerates
symbolic execution via another orthogonal dimension — manipulating the programs under test
via code transformation. Here we discuss closely related work applying code transformation to
symbolic execution. Anand et al. [4] applied code transformation based on type-dependence
analysis to help users identify problematic cases for symbolic execution and then the users
can manually solve the problem. Dong et al. [33] showed that compiler optimizations could
be harmful for symbolic execution via empirical study. Cadar [14] pointed out the potential
direction of transforming program under test for better symbolic execution. Perry et al. [66]
proposed code transformation rules specific to array operations to simplify constraints
involving arrays for symbolic execution. Wagner et al. [84] and Converse et al. [31] mainly
focused on reducing path exploration by simplifying program control-flow, but the generated
tests may fail to cover the original program paths. In contrast, our work provides a general
and fully automated machine-learning-based solution for accelerating symbolic execution
based on all possible transformations.
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6.2 Code Transformation

Compiler optimization is a typical and mature approach of code transformation [2, 32].
Besides, testability transformation [46], another code transformation approach, has been
proposed to speed up search-based test generation (8, 53, 7], but cannot be directly applied
to symbolic execution. Here we mainly review the work on compiler optimization (2, 32,
38, 19, 47, 1, 64, 9] since our work accelerates symbolic execution through this type of
code transformation. Traditional work on compiler optimization focused on defining new
optimizations and exploring their impacts on program concrete execution [2], whereas recently
researchers focused on choosing the most suitable set of optimizations for general or specific
target programs on concrete execution. More specifically, iterative compilation [32, 38,
19], a search-based approach that explores the compiler optimization space by iteratively
compiling for single optimization objective (e.g., performance or code size) or multiple
objectives [47]. Different from previous work searching for optimal compiler optimizations
for program concrete execution, this paper presents the first work on predicting optimal
compiler optimizations for symbolic execution based on machine learning.

7 Conclusion

Compiler optimization is a typical code transformation approach, which is firstly pro-
posed to accelerate program concrete execution. In this paper, we present LEO, the first
machine-learning-based approach to accelerating symbolic execution through tuning compiler
optimizations. More specifically, LEO predicts compiler optimizations for source-code func-
tions and libraries separately and applies the learnt optimization settings by program-splitter
and local-optimizer. From our empirical study, compared with the default turning on/off all
compiler optimizations in KLEE, LEO achieves the best acceleration performance in 50/68
GNU Coreutils programs and its average improvement rate on all programs is 46.48% /88.92%
in terms of line coverage, with the default training/testing time limit. Furthermore, LEO
consistently outperforms KLEE default settings with various training/testing time limits,
and tends to perform the best when training and testing time limits are close.
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