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Abstract—Automatic program repair techniques offer the possibility of

reducing, or even eliminating, the substantial manual effort that currently

goes into the patching of software defects. However, current repair

techniques take minutes or hours, to generate rather simple repairs,

severely limiting their practical applicability. Search-based program

repair represents a popular class of automatic repair techniques. Patch

compilation and test case execution are the dominant contributors to

runtime in this class of repair techniques. In this work we propose

two complementary techniques, namely Location Selection and Test-Case
Pruning, to improve the efficiency of search-based repair techniques.

Location Selection reduces the number of repair candidates examined in

arriving at a repair, thereby reducing the number of patch compilations

as well as the overall number of test case evaluations during the repair

process. Test-Case Pruning, on the other hand, optimizes the number of

test cases executed per examined candidate. We implement the proposed

techniques in the context of SPR, a state-of-the-art search-based repair

tool, evaluate them on the GenProg benchmarks and observe that the

proposed techniques provide a 3.9X speed-up, on average, without any

degradation in repair quality.

I. INTRODUCTION

Debugging and patching of software defects is a laborious, largely

manual activity, consuming a disproportionately large fraction of

software development resources [1]. The relatively nascent body of

research on automatic program repair (APR) [2–4] offers the promise

of reducing the manual burden associated with patching bugs. How-

ever, current repair techniques take on the order of tens of minutes

if not hours to find a repair and in several cases cannot completely

search the space of fairly simple, one-line repairs even in 12 hours

of compute time [3–5]. This factor alone limits expanding the scope

of APR techniques to richer repair spaces and indeed the viability

of APR techniques in real-world debugging scenarios. Therefore, we

believe that in order for APR techniques to have practical impact we

need to dramatically improve the efficiency of automatic program

repair. This paper makes a contribution in that direction. Specifically,

we propose techniques in the context of SPR [6], a state-of-the-art

search-based repair tool. Our proposed techniques provide a 3.9X

speed-up, on average, without any degradation in repair quality.

Search-based program repair techniques, or generate-and-validate

(G&V) repair techniques as they are sometimes called [6], represent a

popular class of automatic repair techniques. Given a buggy program

P , failing at least one test in a test suite T , the repair tool searches the

space of mutations to P , defined by a given set of repair templates

(generate phase) for one that allows the mutated program to pass

all the tests in T (validate phase). We present our approach in the

context of this class of repair techniques.

Several researchers have raised the issue of the efficiency of current

APR techniques [5–7], in particular, the fact that test case execution

dominates the runtime of G&V repair techniques [8, 9]. However,

in order to establish our own empirical basis for our research we

* This author’s research was partially supported by the US National Science
Foundation under Grant Nos. CCF-1704790 and CCF-1718903.

performed the following study. We did the study using the SPR

repair tool [6], a reasonably recent representative of G&V repair

techniques for C programs, on a sample of 7 bugs from the GenProg

benchmarks [2]. We chose one bug each from 7 of the 8 subject

systems in the benchmarks (except fbc, which does not work on 64-

bit systems), randomly chosen from the set of instances for each

subject system, where SPR produced a patch. We profiled the SPR

runs for the fraction of the runtime consumed by various facets

of repair (excluding fault localization), such as test case execution,

compilation of patched program instances, etc. The data shows that

the runtime is dominated by the time for patch compilations and test

executions, which consume, respectively, 4.4—49.8% and 20.9—

91.9% of the runtime. Furthermore, the relative distribution varies

significantly with subject systems (e.g., lighttpd-1948-1949 used

4.4% and 91.9% for compilations and test executions, respectively,

while libtiff-d13be7c-ccadf48a used 49.8% and 39.8% for compila-

tions and test executions, respectively). Thus, an effective strategy

for accelerating repair should address the compilation time as well

as the time for test executions.

In this work we propose two complementary techniques, namely

Location Selection and Test-Case Pruning, to improve the efficiency

of G&V program repair techniques. Location Selection reduces the

number of repair candidates examined in arriving at a repair, thereby

reducing the number of patch compilations as well as the overall

number of test case evaluations during the repair process. Test-Case

Pruning, on the other hand, optimizes the number of test cases exe-

cuted per examined candidate. Of course, much of the previous work

in search-based APR directly or indirectly improves the underlying

efficiency of repair as well. However, with a few exceptions [8],

the focus of previous work has been to maximize the fix-rate of

the technique, i.e., the number of instances in which patches are

produced, by using different search algorithms [2, 10], specialized

schemas [11, 12], better orchestrations of those schemas [6], or by

re-organizing the search space [3, 5]. More recent work addresses

patch quality [13, 14]. By contrast, repair efficiency is the singular,

driving concern of this work. In fact, the optimizations we propose

are largely complementary to previous work on G&V program repair

and arguably generic enough to work with any search-based APR

technique.

Our Location Selection optimization is based on a heuristic state

comparison. The intuitive reasoning behind our technique is as

follows. Assuming a failing test case trace exhibits partially incorrect

behavior (i.e., it is incorrect at some of the program locations it

executes), the locations at which the behavior is actually correct, may

not be good candidate locations for affecting a repair. Further, if we

assume that passing test case traces represent substantially correct

behavior, program locations at which failing test cases and passing

test-cases, in aggregate, exhibit substantially similar behavior, are the

locations that are poor candidates for repair. Our proposed technique
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uses a heuristic comparison of program states at a given location,

under failing and passing tests, to identify such poor repair locations,

and de-prioritize them for repair. Our Location Selection optimization

is loosely inspired by the work on Delta Debugging [15–17], which

views a bug as an “infection” or corruption in the program state.

By iteratively and systematically mutating the program state under

a failing test case and comparing it with that of a passing test at

the same location, delta debugging attempts to precisely localize a

defect as well as the input or state variables responsible for it. Our

optimization employs state comparisons too but in a different manner,

and for the purpose of accelerating program repair.

Our Test-Case Pruning technique is motivated by classical regres-

sion test selection (RTS) [18–22], a somewhat natural idea to pursue,

given that G&V repair entails repeated executions of a test suite.

However, current APR techniques typically evaluate several hundreds

of repair candidates in a single repair run, each of which is typically

a single-statement modification. Standard RTS techniques, which are

designed to work with arbitrary program changes, would either be

too coarse—it may track changes at source file or method level—or

too expensive, to be useful in the current context. Our technique of

Test-Case Pruning tracks test-case-to-source dependencies at a source

line level which allows it to effectively prune test cases. Further, it

derives this dependency information, with minimal overhead, from

the fault localization step that typically precedes the repair run.

The main contributions of this paper are as follows:

• Observation: We make an empirical-study driven observation

that patch compilation and test executions together dominate the

runtime of modern G&V repair tools, partially corroborating the

claims of previous research [8, 9].

• Optimizations: We propose two complementary techniques, Loca-

tion Selection and Test-Case Pruning, to accelerate G&V program

repair techniques, by reducing the time spent on compilation and

test-case executions.

• Implementation: We implement the proposed techniques in the

context of SPR [6], a state-of-the-art G&V repair tool.

• Evaluation: We evaluate the proposed techniques on 43 bugs

from the GenProg benchmarks [2] and observe that the proposed

techniques provide a 3.9X speed-up, on average, without any

degradation in repair quality.

II. MOTIVATING EXAMPLE

To describe the Location Selection and Test-Case Pruning tech-

niques, we first describe the behavior of generate and validate (G&V)

program repair, and then the specific ways in which our techniques

improve this behavior. To make the descriptions of this behavior

concrete, we use a motivating example, described next.

A. Benchmark

During the development of our techniques, we focused on the

runtime devoted to compilation and the runtime devoted to test case

evaluation over several benchmarks. We use the benchmark php-

307846-307853 as a motivating example to illustrate the proposed

techniques. Figure 1 presents the source code where the correct patch

is applied. The bug is in the function date isodate set. In this

function, a date object is constructed incorrectly: the implementation

does not appropriately initialize some of the fields. The bug fix

is to initialize all fields to zero with a memset. The code for the

buggy date isodate set function is provided with the bug fix in

a comment on the appropriate line. The implementation of our

techniques produces a correct patch, as does the unmodified G&V

program repair system we are implemented on top of.

1 PHP_FUNCTION(date_isodate_set)

2 {

3 zval *object;

4 php_date_obj *dateobj;

5 long y, w, d = 1;

6
7 if (zend_parse_method_parameters(/* ellided */,

&object , date_ce_date , &y, &w, &d) == FAILURE) {

8 RETURN_FALSE;

9 }

10 dateobj = (php_date_obj *)

zend_object_store_get_object(object TSRMLS_CC);

11 DATE_CHECK_INITIALIZED(dateobj ->time , DateTime);

12 dateobj ->time ->y = y;

13 dateobj ->time ->m = 1;

14 dateobj ->time ->d = 1;

15 // Bug fix: memset (&dateobj ->time ->relative , 0,

sizeof(dateobj ->time ->relative));

16 dateobj ->time ->relative.d =

timelib_daynr_from_weeknr(y, w, d);

17 dateobj ->time ->have_relative = 1;

18
19 timelib_update_ts(dateobj ->time , NULL);

20
21 RETURN_ZVAL(object , 1, 0);

22 }

Fig. 1. Buggy function from php-307846-307853

B. Generate & Validate Program Repair

To understand how our techniques accelerate the repair process,

we must first discuss a generic G&V program repair system. G&V

program repair systems operate in three phases: fault localization,

generation, and validation.

The first stage of G&V repair systems is fault localization: the

process of determining locations where the bug may reside. Generally

this is performed by profiling specific characteristics of locations dur-

ing test case evaluation. Spectrum-based fault localization techniques

[23, 24] are widely used to rank such a series of locations based on

their suspiciousness. In the motivating example, all locations within

the function in Figure 1 are selected during the fault localization

process, among approximately 100 more.

The second phase of GV program repair is to generate patches for

one or more of the locations selected by the fault localization phase.

The generation phase can evaluate the test cases or use additional

information (such as whether a patch seems likely to be written by

a developer) to prioritize or de-prioritize locations and patches. For

php-307846-307853, the correct patch is generated after nearly two

thousand others.

The third phase of GV program repair is the validation phase. The

validation phase uses all test cases to show that the patch is valid—

if all test cases pass with the patch, then the patch is considered

validated. If no patch is valid, then G&V program repair can either

return to the generation phase or, if there are no more patches to be

generated, the process can complete with failure. php-307846-307853

provides a test suite of nearly 7000 tests. The vast majority of these

test cases do not detect the failing behavior.

Our work focuses on accelerating both the generation phase and

the validation phase. The generation phase is accelerated by providing

prioritization for locations that are particularly favorable for patching.

For php-307846-307853, we specifically prioritize the line of the

patch and not lines earlier in the function. The validation phase is

accelerated by eliminating unnecessary test case evaluations. For php-

307846-307853, this leads to a 6X reduction in test cases evaluated.
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C. Test-Case Pruning

Here we introduce the Test-Case Pruning technique, which is

inspired by regression test selection. The purpose of Test-Case

Pruning is to minimize the cost of validating a patch. To do this, we

identify a subset of test cases that cover only the changed locations

in a program. In particular, for any location where a patch can be

applied, we use profiling information from the localizer to identify the

test cases that cover that location. For any location that is changed,

that change can only effect test cases that cover that location. The

set of all test cases that exercise at least one of the changed locations

will contain all the test cases effected by the patch.

For the php-307846-307853 benchmark, exactly 15 of the 6951 test

cases cover some part of the function in Figure 1, and only 12 cover

the location where the patch is applied. This information is obtained

by profiling the coverage of the test cases. Using the exact test case

coverage for a patch location, allows us to safely not run the vast

majority of test cases during patching. For comparison, in the ideal

case for generic G&V program repair, the “correct” patch would be

generated on the first attempt and then validated. The validation, in

this case, would use all test cases. This would mean that the generic

G&V program repair would use over 400x more test case evaluations

than are necessary to show that the patch is valid and over 2X what

our technique uses to validate all patches (as discussed in Section IV).

In practice, G&V program repair systems produce multiple invalid

patches which each require the use of one test case to invalidate the

patch. While more patches will always require more test case evalu-

ations and will decrease the effective acceleration of this technique,

this technique will prevent unnecessary test case evaluations in the

case that (1) a “correct” patch is found and (2) a test case is used to

invalidate a patch that is not affected by that patch.

D. Location Selection

Here we describe the Location Selection technique. This technique

aims to accelerate the generation phase of G&V program repair. To

do this, we prioritize locations for patching by analyzing the values

of the variables that are “live” at that location. We define live to

be variables that have been written to and are otherwise in-scope.

In particular, we analyze the range of values that occur during the

positive test cases and compare that to the range of values that occur

during the negative test cases. If the range of values during negative

test cases is a subset of the range of values for positive test cases,

then we consider the location to be a worse location for a patch. If

the range of values during the negative test cases is not a subset of

the ranges from the positive test cases, then we consider this location

to be a better location for a patch. We consider all locations that we

deem better for patching before any location we deem worse. We

will now use Figure 1 to describe two cases: one in which a location

is prioritized and one in which a location is de-prioritized.

To understand how this works for prioritizing locations, let us

consider line 15 in Figure 1. This line is where the patch should be

applied. In order to determine whether this location is suitable for

patching by the Location Selection technique, we must log the values

of the live variables at this location. As discussed in Section III-E,

we use a subset of ‘live variables, focusing on variables that are

used nearby. For purposes of exposition, let us assume that we

have selected the variable dataobj and let us discuss the fields

in dateobj->time->relative that are not correctly initialized.

In particular, the dateobj->time->relative.weekday behavior

field, which is an integer field, causes this location to be

prioritized. During the negative test case1, this function

produces an incorrectly initialized date object: the field of

dateobj->time->relative.weekday behavior, among others, is not set

correctly. The value of dateobj->time->relative.weekday behavior

is non-zero for the negative test case. The incorrect output of

the negative test case is an incorrect week number (the week

number in the year, e.g., the 2nd week of the year). This value

is calculated via the timelib update ts function on line 19. This

function uses different fields of dateobj->time->relative, including

weekday behavior to complete this calculation. If weekday behavior

is non-zero, then the calculation will fail and the results of the

function call will be incorrect. During passing test cases for PHP,

the value can range between zero and two. Because the value of

this field is uninitialized during the negative test case, the values for

dateobj->time->relative.weekday behavior during the negative test

case are pointer values that happen to exist at that memory location2.

No value in this range is in the range of values from the positive

test cases. We, therefore, consider this location as a better location

for a patch. Note that if this field was zero during the negative test

case, the range would be a subset of the range of values for the

positive test cases, and the program would not have produced the

wrong output. This technique works especially well for uninitialized

values.

To continue the discussion, let us consider a location that was de-

prioritized by our algorithm—line 9, after the curly brace. This is the

last line before dateobj becomes “live”. At this location, there are a

number of variables in scope: global variables, object, dateobj, and

the long-type variables y,w, and d. Our technique selects the variables

that are “live”—they have been written to—and are otherwise used

in the function (we don’t use global variables that are only used

elsewhere). This selection includes the long-type variables and the

object variable. For purposes of discussion, let us consider only the

long-type variable y—the remaining variables behave similarly. In the

negative test case, the value for y is 2005. For the positive test cases

for php-307846-307853, the values for y are -12345, -10, 0, 1, 10,

1963, 2006, 2008, 2009, 2010, and 12345. First, we should note that

the value 2005 is not in this set, but it is still a value that can be

used without causing a bug to occur. We use a summary of values in

order to enable our technique to solve this issue—to overcome under-

specification due to the sparseness of test cases. We compare the value

2005 to the range of values obtained in the positive test cases: -12345

to 12345. Since it is in that range, we conclude that this variable does

not make this location suspicious. The remaining variables at this

location exhibit similar behavior (the remaining long-type variables

have the exact same range, as 12345 was used as a sentinel in testing).

Since no variable makes this location suspicious, we de-prioritize it.

Logically, we are asserting that there are no variables at this line that

are immediately causing the bug. This technique works especially

well with variables that can store any value from a continuous-range

and have test cases that cause many values in that range to occur.

III. TECHNIQUES

In this section we describe both techniques more formally. While

both of the techniques are distinct, we use one algorithm to perform

both in tandem. First, we describe a high-level view of G&V repair,

and then we describe the algorithm in detail.

1This benchmark only has a single negative test case.
2No pointers between zero and two are valid in our experimental setup.
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Algorithm 1 Algorithm for validating patches

1: function REPAIRALGORITHM(L, G, TP . TN , P )

2: S ← PREPROCESS(L, TP ∪ TN , P )

3: for all l ∈ GETORDER(L, S, TP , TN ) do

4: for all I ∈ G(P,L′) do

5: for all t ∈ GETTESTSETFORPATCH(I , S) do

6: if Fails(RunProgram(P, I, t)) then

7: go to 4

8: return I

9: return ⊥

A. Generate & Validate Repair

The problem of automated repair is to generate patches to programs

such that all test cases pass. Our techniques work to increase the

efficiency of existing repair systems that use a generic generate and

validate (G&V) mechanism. To describe our techniques, we first must

define a high-level view of G&V automated repair.

For our purposes, the following definitions suffice:

• A program P is a pair of two mappings: n and p, where p maps

a location l to a statement s, and n maps a location to a set of the

next locations that can be executed. This is inspired by [6].

• A patch I is a pair of two mappings n and p, which are a subset

of their respective mappings in a program. This subset overrides

the mappings in the program. For instance, if a patch maps l → s′

and a program maps l → s, then when the patch is applied l maps

to s′ instead of s.

• A patch generator G takes a program P , and a location l and

returns a list of patches I for that location. The patch generator

may take additional information, but our techniques do not require

that it does so. For instance, the patch generator may use the

program test cases to decide on the prioritization of possible

patches for a location in the list.

• A test case set T is a set of test cases. We require two test case

sets: the set of all test cases that the program passes originally

(the positive test case set TP ) and the set of all test cases that the

program fails to pass originally (the negative test case set TN ).

Algorithm 1 describes a simple G&V repair algorithm. Here, the

repair algorithm is broken up into a pre-processing step and three

nested loops. Our techniques require a pre-processing step, while

in a generic G&V algorithm, the pre-processing step does nothing

(e.g., PREPROCESS simply returns ⊥ on line 2). The outermost of

the three nested loops iterates over the locations to generate patches

at. In a generic G&V repair system, the order is unchanged from the

order inputted (e.g., GETORDER returns the L unmodified), while

our techniques provide a more-optimal order. The middle nested loop

iterates over the patches for a location. In the inner-most loop, the

patch is tested by running the program with the patch for a set of

test cases. In a generic G&V repair algorithm, this set is the set of

all test cases (e.g., GETTESTSETFORPATCH returns a set of all test

cases). If the patch fails a test case, then a new patch is generated

and tested. If the patch successfully passes all test cases, then the

patch is returned. Should no patch successfully pass all test cases,

then a bottom value is returned, signifying a failure to produce a

valid patch.

To describe our techniques, we provide algorithms for the

GETORDER and GETTESTSETFORPATCH functions that improve

the overall run time of the repair system, using information gained

through a PREPROCESS function call. These functions augment the

Algorithm 2 Algorithm for filtering test cases and candidate locations

1: function GETORDER(L, S, TP , TN )

2: ŜN ←SUMMARIZEFORTESTSET(TN , L, S)

3: ŜP ←SUMMARIZEFORTESTSET(TP , L, S)

4: LS ← empty list, LO ← empty list

5: for all l ∈ L do

6: if ŜN [l] �≤ ŜP [l] then

7: LS ← LS‖l
8: else

9: LO ← LO‖l

10: function SUMMARIZEFORTESTSET(T , L, S)

11: Ŝ ← empty map

12: for all t ∈ T do

13: for all l ∈ L do

14: Ŝ[l] ← Ŝ[l] ⊔ S[t, l]

15: return Ŝ

16: function GETTESTSETFORPATCH(I , S)

17: testSet ← empty set

18: for all l ∈ ChangedLocations(I) do

19: testSet ← testSet ∪ {t|S[t, l] �= ⊥}

20: return testSet

21: function PREPROCESS(P,L, T )

22: I ←GETINSTRUMENTATIONPATCH(P , L)

23: S ← map from all values t ∈ T, l ∈ L to ⊥
24: for all t ∈ T do

25: for all σ, l ∈ LoggedStates(RunProgram(P, I, t)) do

26: S[t, l] ← S[t, l] ⊔ σ

27: return S

28: function GETINSTRUMENTATIONPATCH(P ,L)

29: p, n ← P

30: p′ ← empty map, n′ ← empty map

31: for all l ∈ L do

32: lt ← a new location

33: n′[lt] ← n[l]
34: p′[lt] ← p[l]
35: varsToLog ←LOGGINGVARS(l, P )

36: s′ ← createLogStmt(l, varsToLog)
37: p′[l] ← s′

38: n′[l] ← {lt}

39: return p′, n′

repair algorithm by adding three different phases: a pre-processing

phase that logs state information from the evaluation of test cases, a

processing phase that summarizes the state information and uses it

to prioritize patch locations, and a test case selection phase. These

phases are discussed below, and the full algorithms is given are

Algorithm 2.

B. Pre-Processing Phase

The pre-processing phase collects information to be used by the

later stages by running the program under test with instrumentation.

In particular, the pre-processing phase collects traces of partial states.

A state σ is a mapping from variables to values during the execution

of a specific program location. In order to provide the necessary

instrumentation, each location where a patch may be made has

a logging statement inserted in front. The logging statement logs

the value of a heuristically-determined set of variables as a state.

The heuristic is described in Section Section III-C1. This logic is

described on lines 28 through 39 of Algorithm 2.
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The instrumentation patch is then used to log states by running

the program, with the patch, for all test cases. During the execution

of the program with the instrumentation, the state & location pairs

are recorded. This logic occurs on lines 21 through 27 in Algo-

rithm 2. Ideally, we desire the state to give us information about

its corresponding location, but a location can produce multiple states

due to loops in the program. Instead of keeping a list of states for

each location, we summarize the states by keeping a summary of

values for each variable instead of a set of values. A summary is an

abstraction of a set of values—any value that is in a set must be in

the summary of that set, though values that are not in the set may

also be in the summary of the set. Abstracting sets into summaries

decreases the memory requirements of our algorithm, but it is not

sound as the summary is necessarily an over-approximation of the

values that occur in the program for that location. We require that

summaries form a lattice: the join is well-defined, that the ⊥ value

represents an empty set of values, and ⊤ represents the set of all

possible values. While there are a variety of summarization methods

we can use, we elected to use ranges of values (e.g., the values 1 and 3

would be summarized as the range from 1 to 3). We call the mapping

from variables to summaries a state summary. A state summary is

a mapping from a variable to the summary of values it has during

the execution(s) of a specific program location. In order to create

state summary from the recorded states, we extend (if necessary)

each summary for each variable with the corresponding value from

the state. This computation is identical to the least upper bound of a

lattice over state summaries. We use state summaries to implement

Location Selection.

C. Location Selection

During the first phase, we collect the summaries of values that

variables can obtain (state summaries) for each location for each test

case. During this phase, we use this information to determine whether

the state summaries for a location is “different” during positive test

cases than during negative test cases. To do this, we first summarize

the state summaries for each location for all positive test cases and

construct a separate summary for each location for all negative test

cases. This results in two separate mappings—each mapping is from

a location to a state summary. This is performed on line 10 through

line 15 in Algorithm 2. This code produces the least upper bound of

all state summaries for each location for all test cases in the specified

set.

Now, we have a mapping from each location to a single state

summary for the positive test cases and a single state summary

for the negative test cases. Let σ̂P be the state summary for a

location l for the positive test cases and let σ̂N be the state summary

for the same location for negative test cases. We then prioritize

suspicious locations before ordinary locations for the purposes of

patch generation. A suspicious location is one such that the σ̂N �≤ σ̂P ,

which means that at least one value during the negative test cases did

not occur during the positive test cases at that location. Any location

that is not suspicious is ordinary. This operation is performed on

lines 5-9 of Algorithm 2.

During patch generation, all locations are considered, but suspi-

cious locations are prioritized above ordinary locations. Ordinary

locations are still evaluated to maintain soundness of the technique:

because we can discard variables via our heuristic (see Section Sec-

tion III-C1) and we consider summaries instead of sets of values,

discarding ordinary locations is unsound. To understand the former

reason, consider a location that produces different state summaries

between positive and negative runs only because of a single variable,

which our heuristic happens to discard. For the latter case, consider

a location that has the state summary (a range) of 1 to 5 for positive

test cases but in the negative test cases the value 3 causes those

test cases to fail and the value 3 does not occur during the positive

test cases. In this case our Location Selection technique would

incorrectly de-prioritize the location because the state summary is

an over approximation of the values that can occur at that location.

State summaries can trivially be overly broad: consider a variable that

either contains the minimum value or the maximum value of its type.

The summary of this variable will have a range containing all values

for its type. We now discuss the selection of variables to create state

summaries.

1) Variable Selection Heuristic: In the Location Selection tech-

nique, we construct summaries of values for variables at a location.

Naively, we could construct these summaries for all variables at a

location, but this is ineffective and inefficient in practice. Instead,

we use the variable selection heuristic to select specific variables for

which to construct summaries.

First, we only consider variables that are in-scope at that location

and are “live”. A “live” variable, for our purposes, is a variable that

has already been written to (this prevents using uninitialized vari-

ables) or read from (we assume that variable is correctly initialized

if it is read from). From this set of considered variables, we apply the

heuristic. The heuristic is designed to eliminate variables that cannot

be used by any patch and to eliminate variables that have values that

cannot effectively be summarized.

The first set of variables to eliminate—variables that cannot be

used by any patch—is effective because any variable that cannot be

used in the patch (the patch cannot read from or write to it) is a

variable that the patch is agnostic to. A patch is agnostic to the

variable if the behavior of the patch is not effected by the value

of the variable. A variable that cannot effect the behavior of the

patch and, hence, its correctness, is not necessary to be evaluated for

the Location Selection technique. Our heuristic removes variables

that SPR’s patch generation technique cannot use; e.g., floating point

variables.

The second set of variables to eliminate—variables that have

values that cannot be effectively summarized—is necessary to prevent

our technique from behaving erratically and is independent of the

summarization method. To explain this concept, consider a pointer

variable that obtains its value from a call to malloc. The range of

values this pointer may obtain is any pointer value in the heap,

with the correct byte alignment. A summary of this range would

be, ideally, the minimum and maximum values of the portion of

the heap used for memory allocation at that time in the program.

Knowing that a pointer points to some specific area in the heap rarely

determines whether the pointer is valid. This is both because multiple

locations in the same range are invalid and code is rarely designed

to require specific heap ranges for execution. Our heuristic removes

these variables that cannot be effectively summarized; e.g., pointer

variables.

D. Test-Case Pruning

The remaining technique to implement is the Test-Case Pruning

technique. In this technique, we construct a test case set of all test

cases that covered a location that was changed in the patch. In

practice, the coverage of each test case is commonly available for

each location that a patch may be applied. For purposes of exposition,

we will assume that no such information is available for each location

and will construct the necessary information from the mappings

obtained in the first phase. At the end of the first phase, we have
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a map from test case & location pairs to the summary of values that

variables can obtain (state summaries). If the state summary is an

empty range (the variables there cannot obtain any value), then we

know that the location is never encountered during execution of the

program for that test case. The set of all tests cases where a specific

location has a non-empty range is the set of all test cases that cover

that location. This set is constructed on line 17 through line 19. When

a patch for that location is being validated, we skip any test case that

is not in this set. This is sound because any test case that exercises

the locations in the patch are in the test case set—any test case that

exercises the location must produce some non-empty state summary

for that location.

E. Implementation

We implement both of our techniques on top of SPR [6], modifying

the source code available in its replication package. SPR is a recent

generate and validate automated repair tool for C programs. SPR uses

several heuristics to decrease its runtime and improve its accuracy.

We now describe SPR’s architecture and how it’s internal heuristics

interact with our techniques.

The execution of SPR can be broken into multiple phases: a

fault localization phase, patch schema selection, and staged patch

validation. The first phase—fault localizing—runs as a pre-processing

step for SPR, using the coverage information for all test cases

to determine a list of locations for patching. The resulting list is

ordered based on how likely the location is the source of the bug.

Our Test-Case Pruning technique can use the coverage information,

with zero overhead, from this phase to determine the test cases for

each patch location. Our Location Selection technique requires a

separate pre-processing stage with measurable overhead (as discussed

in Section IV-E).

The second phase—patch schema selection—chooses a schema for

each of these locations. A schema is a generic plan for patching, like

introducing an if-statement or an assignment statement. A schema

does not necessarily specify a complete patch: for instance, it may

specify that an if-statement is introduced, but not the condition.

Once a schema is selected for each location, the location-schema

pairs are prioritized based on both the position in the list from the

fault localization and the schema selected. Our Location Selection

prioritization supersedes this ordering.

The third phase—staged patch validation—creates a concrete patch

from the schema in stages and validates the patch. The creation of

a concrete patch from a schema sometimes involves the running

of test cases to collect further information. Here, our Test-Case

Pruning technique eliminates unnecessary test case executions. Once

a concrete patch is created, the patch is added to a batch. A batch

is a set of patches that are compiled at once. Patches are added to a

batch until certain heuristics are met, one of which is the time since

a batch was last compiled. The patch that is run during validation

is selected via a run-time environment variable. This is achieved by

separating the patches by a switch-case statement. Once the batch is

compiled and a specific patch is selected, it is validated by running

all test cases, prioritizing the test cases that last caused a patch to

fail earlier. Our Test-Case Pruning technique alters this technique

to only be test cases that could be affected by the patch. The very

design of staged patch validation, decreases the number of concrete

patches and thereby decreases the number of compilations and test

cases evaluated.

Two of the heuristics in the third phase negatively effect the utility

of our techniques: batching and the existing test-case prioritization.

The batching behavior prevents Location Selection from effectively

minimizing compilation time, as the difference of time of compilation

between a batch of size one and a batch of a larger size is negligible.

The existing test-case prioritization essentially simulates a simpler

form of the Test-Case Pruning technique, because the test case that

last failed is often the test case that has the most coverage.

IV. EVALUATION

A. Experimental Setup

All experiments for this paper were performed on virtual machines

with 2 Intel Xeon E5-2695 CPUs and 8Gb of memory allocated. The

experiments used modified source code and support scripts from the

SPR replication package [25] with a time limit of 12 hours. We used

43 bugs from the GenProg benchmarks [2] used by SPR.

RQ1: Can Test-Case Pruning and Location Selection working in tan-

dem improve the efficiency of generate-and-validate program

repair without degrading patch correctness? (Section IV-B)

RQ2: What is the contribution to the speedup from each of the two

techniques? (Section IV-C)

RQ3: Does Test-Case Pruning reduce the number of test cases

evaluated for each repair candidate and Location Selection

the number of repair candidates examined to derive a repair?

(Section IV-D)

RQ4: What is the overhead of applying the proposed techniques?

(Section IV-E)

B. RQ1: Overall Speedup

Table I shows the patch generation results for the execution of

four techniques: the original SPR (columns SPR), SPR enhanced

with Test-Case Pruning (columns +TP), SPR enhanced with Location

Selection (columns +LS), and SPR enhanced with both techniques

(+TP+LS). The patch correctness columns record the correctness of

the patch categorized as CR (correct patch), PL (plausible patch),

or TO (timeout). As in previous work [3, 4, 6] we categorize a

patch that is semantically equivalent to the developer-provided patch

(established through manual comparison) as correct, and one that is

not equivalent but nevertheless passes the test suite, as plausible.

The upper half of the table (termed comparable instances) corre-

sponds to the 27 bugs where all four techniques produced identical

patches. These include all of the 12 correct patches produced by

the original SPR (bugs # 1 − 12) and a further 15 instances with

plausible patches. In these instances all four techniques are effec-

tively searching comparable search-spaces, and can be meaningfully

compared in terms of efficiency. The bottom half of the table (termed

incomparable instances) includes a further 16 instances where all

techniques ran but produced different results, i.e., either different

plausible patches or one or more of the techniques timing out. In these

instances the techniques are effectively searching different search

spaces and it is less meaningful to compare (or even define) their

relative efficiency. Nevertheless, we report this data for completeness.

The columns labeled Runtime report the repair time for various

techniques, recorded in minutes (720 minutes if a timeout occured).

Note that, consistent with previous work [3, 4, 6], this time does not

include the bug localization time. Further, it does not include our

pre-processing time, which we discuss separately under RQ4. The

columns labelled Speed-up are calculated as a ratio to the runtime

of the original SPR. Again, speed-ups although calculated for the

bottom half-of the table have only nominal value.

Discussion: Overall, the combined technique (+TP+LS) provides

a net speed-up for almost all of the 27 comparable instances (top

half of Table I), and in particular for each of the 12 correct instances

232



TABLE I
PATCH GENERATION RESULTS.

Bug Patch Correctness Runtime [min.] Speed-up [X] Pre-processing

# ID SPR +TP +LS +TP+LS SPR +TP +LS +TP+LS +TP +LS +TP+LS Time [min.]

1 gmp-13420-13421 CR CR CR CR 179.9 179.3 103.8 100.8 1.0 1.7 1.8 3.2
2 libtiff-ee2ce5b7-b5691a5a CR CR CR CR 13.1 11.3 12.5 9.6 1.2 1.1 1.4 1.4
3 php-307562-307561 CR CR CR CR 251.4 184.3 300.7 420.3 1.4 0.8 0.6 5.7
4 php-307846-307853 CR CR CR CR 78.2 52.3 23.5 9.6 1.5 3.3 8.2 5.3
5 php-307914-307915 CR CR CR CR 45.5 45.2 46.8 40.5 1.0 1.0 1.1 4.9
6 php-308734-308761 CR CR CR CR 339.3 123.0 343.5 121.2 2.8 1.0 2.8 4.7
7 php-309516-309535 CR CR CR CR 92.8 51.5 60.9 18.6 1.8 1.5 5.0 4.3
8 php-309579-309580 CR CR CR CR 66.5 23.1 69.9 22.5 2.9 1.0 3.0 4.6
9 php-309892-309910 CR CR CR CR 84.4 36.6 118.7 10.2 2.3 0.7 8.3 5.5
10 php-310991-310999 CR CR CR CR 143.1 166.2 165.2 142.5 0.9 0.9 1.0 4.3
11 php-311346-311348 CR CR CR CR 64.4 21.3 48.7 5.5 3.0 1.3 11.8 4.7
12 python-69783-69784 CR CR CR CR 74.0 50.8 61.8 38.4 1.5 1.2 1.9 3.6
13 gmp-14166-14167 PL PL PL PL 19.0 9.3 15.8 4.7 2.1 1.2 4.1 3.0
14 gzip-a1d3d4019d-f17cbd13a1 PL PL PL PL 6.1 6.6 18.0 18.0 0.9 0.3 0.3 1.9
15 libtiff-0860361d-1ba75257 PL PL PL PL 24.4 20.0 15.6 14.8 1.2 1.6 1.6 2.0
16 libtiff-90d136e4-4c66680f PL PL PL PL 13.3 11.7 12.7 9.8 1.1 1.0 1.4 1.3
17 lighttpd-1948-1949 PL PL PL PL 55.1 57.9 59.0 54.2 1.0 0.9 1.0 2.6
18 lighttpd-2330-2331 PL PL PL PL 43.2 24.5 35.1 16.2 1.8 1.2 2.7 3.0
19 php-308525-308529 PL PL PL PL 370.9 58.1 258.5 64.8 6.4 1.4 5.7 5.1
20 php-309688-309716 PL PL PL PL 42.3 30.6 43.5 43.2 1.4 1.0 1.0 4.8
21 php-310011-310050 PL PL PL PL 462.0 228.6 470.9 220.1 2.0 1.0 2.1 5.3
22 php-310370-310389 PL PL PL PL 165.2 109.8 160.1 96.0 1.5 1.0 1.7 5.7
23 php-311323-311300 PL PL PL PL 96.5 112.0 147.2 96.2 0.9 0.7 1.0 22.0
24 python-69368-69372 PL PL PL PL 35.8 35.9 68.4 64.5 1.0 0.5 0.6 7.4
25 python-69709-69710 PL PL PL PL 48.0 44.6 47.9 41.0 1.1 1.0 1.2 3.8
26 python-70019-70023 PL PL PL PL 306.2 280.1 323.9 285.3 1.1 0.9 1.1 8.2
27 wireshark-37112-37111 PL PL PL PL 42.0 30.0 32.6 25.4 1.4 1.3 1.7 12.3

Average 1.7 1.1 2.7
Average (correct) 1.8 1.3 3.9

28 libtiff-5b02179-3dfb33b PL PL PL∗ PL∗ 6.3 2.9 11.2 11.0 2.2 0.6 0.6 1.6
29 lighttpd-1913-1914 PL PL PL∗ PL∗ 134.4 148.7 21.1 12.0 0.9 6.4 11.2 2.3
30 php-309111-309159 PL PL PL∗ PL∗ 92.1 46.3 22.2 6.1 2.0 4.1 15.2 5.0
31 php-309986-310009 PL PL PL∗ PL∗ 560.7 360.4 103.2 3.5 1.6 5.4 159.4 5.6
32 php-310673-310681 PL PL PL∗ PL∗ 42.1 41.2 108.7 24.3 1.0 0.4 1.7 5.1
33 python-69223-69224 PL PL TO TO 225.7 216.9 720.0 720.0 1.0 0.3 0.3 3.9
34 lighttpd-2661-2662 PL PL∗ PL∗ PL∗ 162.0 165.2 12.4 7.7 1.0 13.1 21.0 1.5
35 python-70098-70101 PL PL∗ PL PL∗ 63.8 34.4 60.6 35.3 1.9 1.1 1.8 2.7
36 wireshark-37172-37171 PL PL∗ PL∗ PL∗ 39.4 40.0 24.2 17.1 1.0 1.6 2.3 13.4
37 wireshark-37172-37173 PL PL∗ PL∗ PL∗ 36.0 34.6 19.6 29.8 1.0 1.8 1.2 13.2
38 wireshark-37284-37285 PL PL∗ PL∗ PL∗ 35.9 40.2 21.9 29.7 0.9 1.6 1.2 13.2
39 libtiff-d13be72c-ccadf48a TO PL∗ TO PL∗ 720.0 19.4 720.0 4.1 37.1 1.0 173.5 2.4
40 php-308323-308327 TO PL∗ TO PL∗ 720.0 121.7 720.0 12.7 5.9 1.0 56.8 5.0
41 lighttpd-1806-1807 TO TO TO TO 720.0 720.0 720.0 720.0 1.0 1.0 1.0 2.2
42 php-307931-307934 TO TO TO TO 720.0 720.0 720.0 720.0 1.0 1.0 1.0 5.0
43 php-308262-308315 TO TO PL∗ PL∗ 720.0 720.0 79.0 19.5 1.0 9.1 36.9 12.4

Average 3.8 3.1 30.3

SPR: original SPR, +TP: SPR with Test-Case Pruning technique, +LS: SPR with Location Selection technique, +TP+LS: SPR with both techniques
CR: a correct patch, PL: a plausible but incorrect patch, TO: no patch generated due to time-out, ∗: the patch is different from the SPR patch.

(bugs # 1− 12), faithfully re-generating each of the correct patches.

For these instances, the average speed-up is 2.7X , and 3.9X on only

the correct instances. It can be as high as 11X on the correct or

plausible instances (bug #11).

There are three instances, bug #3, 14, 24, where there is a modest

slowdown. In these instances, Location Selection incorrectly de-

prioritizes the correct location and the repair search takes significantly

longer to re-discover the same patch, later. There are some remarkable

speed-ups among the incomparable instances, specifically bugs #31,

40, and 41. These are discussed under RQ2.

✄

✂

�

�

The combined technique provides a 3.9X speed-up of repair, on

average, without any degradation in correct patch quality.

C. RQ2: Speedup Contribution by Each Technique

The columns +TP and +LS under the speed-up section of Table I

report the speed-ups provided (individually) by the Test-Case Pruning

and Location Selection techniques respectively.

Discussion: Test-Case Pruning provides a speed-up of 1.7X on

average (1.8X on only the correct patches), producing modest slow-

downs in some of the instances, e.g., bug #10 where the speed-

up is 0.9X . In this case, and most others, the pruning of some

(redundant) test-cases by Test-Case Pruning slightly perturbs the

candidate batching order that was being produced by SPR’s heuristics,

actually increasing runtime by a modest amount. Location Selection

provides a speed-up of 1.1X on average (1.3X on only the correct

patches). It also produces slow-down in several cases, sometimes as
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Fig. 2. The runtime of php-307846-307853, broken into compilation and
processing time (darker colors, with vertical lines) and test case runtime
sections (lighter colors). The test case runtime sections correspond to the
compilation and runtime sections immediately below them on a bar.

much as 0.3X speedup (i.e., 3.3X slow-down), e.g., in bug #14. In

these cases, one of two behaviors occur: the patch location is de-

prioritized or the batching system is made less optimal.

The former case—the patch location is de-prioritized—occurs

when either the positive test case set is unable to explore a good

representation of the range of valid values for a variable or the

failing value exists inside this range (e.g., an integer value causes

the test case to fail, but the values greater than or less than it

do not cause failing behavior). This is the case for bug #14. The

latter case—the batching system is made less optimal—occurs due

to an interaction between the batching evaluation behavior. A batch

attempts to compile many patches to nearby locations at once. If the

locations are prioritized in a different order, then the size of the batch

may decrease, causing more compilations.

Interestingly, the two techniques complement each other quite well,

producing an overall speed-up that exceeds the product of the two

individual speed-ups. An example of this behavior is in the motivating

example php-307846-307853, which is bug #4. The runtime of this

benchmark is given in Figure 2. In the figure, there are four bars

corresponding to the four configurations tested: unmodified SPR,

SPR with the Test-Case Pruning technique, SPR with the Location

Selection technique, and SPR with both techniques enabled. Each

bar is broken into two or more sections. We describe the sections

by focusing on the first bar, which contains all sections. On this bar,

the lowest section (dark red with vertical lines) is the compilation

and processing runtime for patch locations that would have been

prioritized; the second lowest section on the bar (light orange) is the

test case execution time for those patch locations; the third section

(dark blue with vertical lines) is the runtime for the compilation

and processing time for patch locations that would be de-prioritized;

and the fourth section (light green) is the runtime for the test case

execution time for the de-prioritized patch locations. In the remaining

bars, one or more of these sections have been eliminated or minimized

by our techniques. In this figure, the speedup is clearly shown: the

reason a better-than-linear speedup is possible is that the Location

Selection removes both test cases and compilation runtime, and the

Test-Case Pruning optimization does not affect both sets of patch

locations (those prioritized or de-prioritized) equally.

✞

✝

☎

✆

Test-Case Pruning and Location Selection provide speed-ups of

1.8X and 1.3X respectively, on average. They work even

better together, each compounding the other’s gains.

D. RQ3: Reduction in Executed Test-cases & Repair Candidates

Table II shows data for the same 43 bugs as Table I, organized

in the same two sets of bugs. Columns 3 − 5, show statistics for

the Test-Case Pruning technique, in particular, the number of test-

cases executed per candidate patch evaluated, for the original SPR

(column 3), SPR+TP (column 4) and the ratio of columns 3 and 4

as the reduction ratio (column 5). Columns 6 − 8, show statistics

for the Location Selection technique, in particular, the number of

candidate patches evaluated till the generation of a successful patch

(or timeout), for the original SPR (column 6), SPR+LS(column 7)

and the ratio of columns 6 and 7 as the reduction ratio (column 8).

Discussion: Considering only the comparable instances (i.e., the

set of first 27 bugs) Test-Case Pruning produces, on average, an

9.6X reduction in the number of test-cases executed per candidate.

For bug # 19 the reduction is quite remarkable (126.5X) but this is

definitely an extreme case. For most instances TP produces a 1−2X
reduction, and in some cases leaves it unchanged. Overall, this is still

a substantial reduction, which ultimately contributes to the runtime

speed-up (RQ1 and RQ2).

Overall, Location Selection produces an average 3.6X reduction

in the number of candidates evaluated per repair run, compared to the

original SPR. However, the gains are not uniform across all instances,

ranging from a 7.7X reduction for bug #7 to a 10X increase for bug

#24. This is because a single location can produce a different number

of candidate patches depending on the statements at that location.

For instance, SPR has different schemas for generating conditionals

than for generating statements—should a location with many schemas

available be de-prioritized, the number of candidate patches will drop

more than if a location with few schemas is de-prioritized.
✞

✝

☎

✆

Test-Case Pruning produces an average 9.6X reduction in the

number of test-cases executed per candidate. Location Selection

produces an average 1.8X reduction in the number of

candidates evaluated in a repair run.

E. RQ4: Overhead of the Techniques

As discussed earlier, Test-Case Pruning has no overhead, since the

information needed to perform it is already provided by spectrum-

based fault localization. The time for the pre-processing phase needed

to implement Location Selection, is shown in the last column of

Table I, for each bug. When taken as a fraction of the original SPR

repair time for the corresponding bug, and averaged out, this comes

to, an overhead of 5.6% for only correct patches, 9.0% when averaged

on the first 27 bugs, i.e., the comparable, instances, and 9.5% when

considering all 43 bugs.

Discussion: Overall, the 10−20% pre-processing overhead, while

not negligible, is more than compensated by the speed-up in the

repair time provided by the techniques (typically 2.7X speed-up on

average for comparable cases), making the techniques a net-positive

proposition. Further, with the exception of a single instance (where

the pre-processing time is about 22 minutes) the pre-processing is of

the order of 5− 15 mins., where the original SPR time was several

tens of minutes.

Finally, we note that there is significant scope for optimizing the

current, first-cut implementation of the pre-processing phase. One

direction is to gather the necessary state information, not through a

pre-processing phase (as is currently the case) but in a incremental,
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TABLE II
QUANTITATIVE REDUCTIONS BY THE PROPOSED TECHNIQUES.

Bug # of Test Cases Executed Per Repair Candidate # of Repair Candidates Evaluated

# ID SPR +TP Reduction Ratio [X] SPR +LS Reduction Ratio [X]

1 gmp-13420-13421 1.6 1.5 1.1 6475.0 2976.0 2.2
2 libtiff-ee2ce5b7-b5691a5a 3.7 2.6 1.4 499.0 499.0 1.0
3 php-307562-307561 5.2 5.4 1.0 1675.0 5128.0 0.3
4 php-307846-307853 7.7 1.2 6.4 1999.0 125.0 16.0
5 php-307914-307915 21.8 22.1 1.0 387.0 377.0 1.0
6 php-308734-308761 45.3 2.1 21.6 2252.0 2252.0 1.0
7 php-309516-309535 11.0 1.5 7.3 1455.0 188.0 7.7
8 php-309579-309580 48.9 1.2 40.8 499.0 499.0 1.0
9 php-309892-309910 49.7 1.9 26.2 438.0 352.0 1.2
10 php-310991-310999 558.4 558.4 1.0 101.0 101.0 1.0
11 php-311346-311348 284.2 72.2 3.9 99.0 127.0 0.8
12 python-69783-69784 15.5 7.6 2.0 232.0 158.0 1.5
13 gmp-14166-14167 6.2 3.9 1.6 499.0 258.0 1.9
14 gzip-a1d3d4019d-f17cbd13a1 1.7 1.7 1.0 579.0 1050.0 0.6
15 libtiff-0860361d-1ba75257 7.7 8.0 1.0 397.0 296.0 1.3
16 libtiff-90d136e4-4c66680f 3.9 2.8 1.4 499.0 499.0 1.0
17 lighttpd-1948-1949 22.4 22.4 1.0 159.0 159.0 1.0
18 lighttpd-2330-2331 6.2 3.2 1.9 409.0 339.0 1.2
19 php-308525-308529 455.3 3.6 126.5 289.0 998.0 0.3
20 php-309688-309716 20.6 20.6 1.0 366.0 366.0 1.0
21 php-310011-310050 355.7 170.3 2.1 499.0 499.0 1.0
22 php-310370-310389 116.3 72.0 1.6 499.0 499.0 1.0
23 php-311323-311300 42.2 42.2 1.0 499.0 499.0 1.0
24 python-69368-69372 5.2 5.2 1.0 499.0 4999.0 0.1
25 python-69709-69710 9.0 9.0 1.0 320.0 320.0 1.0
26 python-70019-70023 3.2 3.2 1.0 2654.0 2654.0 1.0
27 wireshark-37112-37111 16.1 8.4 1.9 249.0 219.0 1.1

Average 9.6 1.8

28 libtiff-5b02179-3dfb33b 11.0 3.9 2.8 72.0 499.0 0.1
29 lighttpd-1913-1914 45.1 43.8 1.0 145.0 82.0 1.8
30 php-309111-309159 44.1 3.8 11.6 499.0 51.0 9.8
31 php-309986-310009 1991.8 1557.8 1.3 122.0 11.0 11.1
32 php-310673-310681 16.9 16.9 1.0 492.0 589.0 0.8
33 python-69223-69224 12.7 12.8 1.0 188.0 TO -
34 lighttpd-2661-2662 3.2 2.6 1.2 999.0 155.0 6.4
35 python-70098-70101 2.2 1.4 1.6 1494.0 1494.0 1.0
36 wireshark-37172-37171 2.1 2.0 1.1 359.0 331.0 1.1
37 wireshark-37172-37173 2.1 1.8 1.2 369.0 266.0 1.4
38 wireshark-37284-37285 1.9 1.6 1.2 430.0 188.0 2.3
39 libtiff-d13be72c-ccadf48a TO 6.6 - TO TO -
40 php-308323-308327 TO 1.9 - TO TO -
41 lighttpd-1806-1807 TO TO - TO TO -
42 php-307931-307934 TO TO - TO TO -
43 php-308262-308315 TO TO - TO 24.0 -

Average 2.4 3.6

on-demand fashion during the repair run. We are currently experi-

menting with this idea among others.
✞

✝

☎

✆

Test-Case Pruning has no additional overhead. Location

Selection has a 10− 20% pre-processing overhead, which is

more than compensated by the 2− 4X reduction in repair time

provided by the two techniques.

V. THREATS TO VALIDITY

Internal validity. Our implementation of the two techniques in

the context of SPR could have bugs, which could impact our internal

validity. One technique that was used to validate the absence of bugs

in the state recording mechanism was to use a slower implementation

for verifying correctness and a faster mechanism for the actual

evaluation runs, and verifying that they produced the same results.

External validity. Our techniques have currently only been imple-

mented in the SPR tool [6] for C program repair and evaluated only

on the GenProg benchmarks [2]. As such our conclusions may not

apply to other G&V repair tools or other benchmarks or to repair

for other languages, such as Java. Intuitively, our techniques do not

directly exploit any special features of SPR, the GenProg benchmarks,

or the C programming language, and should apply more generally.

However, to rigorously mitigate this threat, replication studies on

other benchmarks and G&V repair tools, including Java repair tools,

should be conducted.

Construct validity. Our criterion for classifying patches as correct

or plausible is based on manual analysis, which is not scientifically

rigorous, even though it is accepted practice in previous work [4, 6, 7,

26]. For each correct patch that was produced, we verified that it had

the same MD5 hash as the patch produced by the local installation

of the unmodified SPR. Any patches that produced different MD5

hashes were manually compared to see if the patches were otherwise

semantically identical and none of the patches with different hashes

were considered semantically equivalent.
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Other metrics, such as number of repair candidates evaluated

and the number of test-cases evaluated per candidate, while not

common, are simple modifications of metrics used by previous work

on program repair [8, 27].

VI. RELATED WORK

Search-based repair. The objective of research in this area, at least

initially, was to maximize the fix-rate of the repair technique, i.e., the

fraction of instances for which a patch (passing all tests) is produced.

The proposed techniques use innovations in the underlying search

technique, the repair search space defined by the repair templates,

or the search order to achieve this. GenProg [2] uses a genetic

programming based search and produced patches for 55 out of 110
bugs evaluated. RSRepair [10] uses a random search instead, with

similar success. PAR [11] proposes a set of repair schemas manually

derived from human-written patches, Relifix [12] proposes a set

of repair schemas specialized for regression errors, while SPR [6]

prioritizes repairs related to conditional statements. Prophet [3] and

history-driven repair [5] both use knowledge from a large corpus

of previous successful patches to order the search space of potential

repairs; Prophet relies on a machine-learned model while [5] abstracts

patches into canonical graph representations. Machine learning has

also been applied to repair selection conditions in database statements

in ABAP programs [28] and more recently conditional statements

in Java programs [29]. SketchRep [30] reduces the problem of

program repair to program sketching [31] and uses the SAT-based

Sketch system as an off-the-shelf synthesis backend. More recent

work [32] performs a similar reduction but employs execution-driven

sketching [33] to solve the ensuing search problem and perform

program repair.

Recent studies have highlighted the concern around patch qual-

ity [26, 34]. The Kali tool [26] demonstrated that many of the earlier

G&V repair tools tend to produce patches that effectively deleted

(valid) functionality. Smith et al. [34] further showed that G&V

repair tools tend to overfit repairs to the weak specifications (i.e.,

test suites) they work with, leading to poor quality repairs. Tan et

al. [13] use this understanding to propose a set of generic, forbidden

repair transformations, which they refer to as anti-patterns, to block

nonsensical repairs that might otherwise be produced. In very recent

work, ACS [14] proposes a method for precise condition synthesis

by instantiating heuristically ranked variables in frequently occurring

predicates, mined from a given corpus of code.

While most of the above innovations have indirectly also con-

tributed to the efficiency of G&V repair, only a handful of tech-

niques have directly targeted or even evaluated the efficiency of

repair [6, 8]. AE [8] uses deterministic search coupled with light-

weight program analysis to prune equivalent patches. SPR [6] uses

abstract conditions to evaluate and prune candidates for condition-

related repairs, before concretizing the repairs, typically providing an

order of magnitude speed-up over vanilla G&V repair. In any case,

our proposed techniques are orthogonal to the above techniques, since

they are independent of the search algorithm or the repair schemas

used (i.e., the repair space). Thus, arguably they can be integrated

into any G&V repair technique.

Oracle-based repair. These techniques use some analysis, typi-

cally symbolic execution, to generate an oraclular representation of

the repair. They differ in how they create a concrete repair from the

repair oracle. SemFix [35] uses program synthesis for this purpose,

while MintHint [36] uses statistical analysis to search for a concrete

repair. DirectFix [37] attempts to generate comprehensible patches

by generating minimal repairs; it casts repair concretization as a

partial maximum satisfiability problem over satisfiability modulo the-

ories (SMT) formulas. Angelix [4] retains this notion of minimality

but enhances scalability by using a light-weight repair constraint.

SearchRepair [38] searches for repairs in a corpus of human-written

correct patches, indexed on the basis of their input-output behavior,

encoded as SMT constraints. NOPOL [7], a predecessor of SPR,

also uses abstract conditions as repair oracles of condition-related

repairs, but concretizes the repair by encoding it as an SMT formula.

In principle, our proposed techniques, especially Location Selection

should also be applicable to oracle-based repair techniques, but would

require further investigation to establish feasibility and impact.

Regression test selection. Regression test selection (RTS) is a

well-research body of work, spanning over three decades, summa-

rized in several excellent surveys [18–22]. The main distinction

between different RTS techniques is the granularity at which they

collect dependency information. While it seems natural, even obvious,

to apply RTS techniques to optimize G&V repair, the challenge is

that classical RTS techniques would be either too-grained and/or too

expensive to be useful in the context of repair. Our contribution is to

design a precise, but relatively cheap RTS technique that effectively

exploits the mechanics of G&V repair.

Delta Debugging. The work on Delta Debugging and its exten-

sions [15–17, 39, 40] attempts to precisely localize the location of

a defect, as well as a minimal subset of input or state variables

responsible for it. This is done by iteratively and systematically

mutating the program state under a single failing test case and

comparing it with that of a single passing test, at the same location,

under the applied mutations. However, while this work provided the

initial motivation for our Location Selection technique our approach

is fairly different in both its objective and its mechanics. Our aim

is to identify program locations where it would be unproductive to

attempt repairs and de-prioritize such locations during a G&V repair

search. This is done through a heuristic function which compares, in

aggregate, the program states produced by all failing and passing tests

(in the complete test suite), to determine if failing and passing tests

exhibit substantially similar behavior at that location. This involves

no mutations or repeated execution of tests.

VII. CONCLUSIONS & FUTURE WORK

Repair efficiency of program repair, i.e., the time it takes for a

repair tool to generate a successful patch, is currently one of the key

impediments to the practical adoption of such tools. In this work

we proposed two complementary optimization techniques, namely

Location Selection and Test-Case Pruning, to substantially improve

the efficiency of search-based repair techniques. We implemented

them in the context of the SPR search-based repair tool, and evaluated

them on the GenProg benchmarks. As our experiments demonstrate,

Location Selection successfully reduces the number of candidates

that need to be examined before generating a repair, by 1.8X on

average, while Test-Case Pruning reduces the number of test cases

executed per examined candidate, by 9.6X on average. Together

they accelerate the repair runs, by a factor of 3.9X , on average.

Interestingly, the techniques perfectly complement each other, with

the speed-up of the combined technique surpassing even the product

of the individual speed-ups. Further, the techniques can be integrated

into current G&V repair flows fairly easily, through an additional

pre-processing step, which consumes 10−20% of the repair time on

average. There is significant scope for further reducing this overhead.

We are actively exploring this, as well as other research ideas to

enhance repair efficiency.
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