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Abstract. Object-oriented (OO) programs, which use subtyping and dynamic dispatch, make
specification and verification difficult because the code executed by a method call may dy-
namically be dispatched to an overriding method in any subtype, even ones that did not exist
at the time the program was specified. Modular reasoning for such programs means allowing
one to add new subtypes to a program without re-specifying and re-verifying it. In a 2015
ACM TOPLAS paper we presented a model-theoretic characterization of a Hoare-style modu-
lar verification technique for sequential OO programs called “supertype abstraction,” defined
behavioral subtyping, and proved that behavioral subtyping is both necessary and sufficient
for the validity of supertype abstraction. The present paper is aimed at graduate students and
other researchers interested in formal methods and gives a comprehensive overview of our
prior work, along with the motivation and intuition for that work, with examples.
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1 Introduction

The goal of our prior work [17] and the 2017 SETSS lectures, was to explain how to modularly
reason about sequential object-oriented (OO) programs that use subtyping and dynamic dispatch.
The key modular verification technique is “supertype abstraction” [16,20,21]. In supertype ab-
straction, one verifies a call to a method by using the specification of the receiver’s static type.
The validity of this reasoning technique depends on two conditions:

1. in each method call, E .m(), the dynamic type of the actual receiver object (the value of E )
must be a subtype of the static type of the receiver expression, E , and

2. every override of the method named m must correctly implement each of the specifications
(given in its supertypes) for that method.

Together, these two conditions allow the specification of the method m in E ’s static type
to be used in verification of the call E .m(), since any subtype of that static type will correctly
implement that specification. The first condition can be enforced by a static type system, such as
the one in Java, in which the static type of an expression is an upper bound on the dynamic types
of all objects it may denote (in the sense that the expression’s static type must be a supertype of
the runtime classes of those objects). The second condition is the essence of behavioral subtyping
[1,2,3,17,20,21,22,23]. To a first approximation, behavioral subtyping is necessary for valid use of
supertype abstraction, because the supertype’s specification is used in reasoning, so the subtypes
must all correctly implement that specification.
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1.1 JML

This paper illustrates (with examples, not pictures) the idea of supertype abstraction using se-
quential Java, with specifications written in the Java Modeling Language (JML) [16,19]. As a
behavioral interface specification language, JML specifies the functional behavior of Java meth-
ods, classes, and interfaces. Functional behavior involves the values of data; thus a JML method
specification describes the allowed values of variables (e.g., method formals) and object fields
before the method starts running (its precondition) and the relationship between such values and
the method’s result after the method finishes (its postcondition and frame condition).

JML and the work reported here only deal with sequential Java programs, so we henceforth
assume that there is no multi-threading or parallelism in the programs discussed.

1.2 OO Programs and Dynamic Dispatch

As the start of a JML example that illustrates how OO programs use dynamic dispatch, consider
the type IntSet, which is shown in Fig. 1.

//@ model import org.jmlspecs.lang.JMLDataGroup;

public interface IntSet {
//@ public instance model JMLDataGroup state;

public /*@ pure @*/ boolean contains(int i);

//@ requires size() > 0;
//@ assignable state;
//@ ensures contains(\result);
public int pick();

//@ assignable state;
//@ ensures contains(i);
//@ ensures size() >= \old(size());
public void add(int i);

//@ assignable state;
//@ ensures !contains(i) && size() <= \old(size());
public void remove(int i);

//@ ensures \result >= 0;
public /*@ pure @*/ long size();

}

Fig. 1. A JML specification of the interface IntSet.

JML specifications are written as comments that start with an at-sign (@); these are processed
by the JML compiler (but would be ignored by a standard Java compiler). Fig. 1 shows the spec-
ification of an interface, which specifies five methods. The contains method is only specified
as being pure, which means that it has no write effects (i.e., assignable \nothing). It has
no precondition (the default in JML is requires true), which means it can be called in any
state. It also has no postcondition; the default (ensures true) imposes no obligations on an
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implementation. The last method, size, is also specified as being pure. However, size has a
specified postcondition, which is that the result of the method is always non-negative. (As can be
seen in this example, the specification for each method is written before the method’s header.)
The contains and size methods are used to specify the behavior of the other methods. This
specification technique is similar to that used in equational algebraic specifications [10] and in
Meyer’s Eiffel examples [24].

The other methods in Fig. 1 have more extensive specifications. The pick method exhibits
the three standard clauses used in a JML method specification. The pick method’s precon-
dition, given by its requires clause, is that the result of calling size() must be strictly
greater than zero; that is, the method should only be called when the object contains some el-
ements. The frame condition for pick is given by its assignable clause, which says that it
may assign to the locations in the data group named state; this datagroup is declared in the
interface. The state datagroup will be populated with fields in the types that implement the
IntSet interface (as we will see below). The postcondition, given in the ensures clause, says
that the result will be an element of the set, since the value returned will satisfy the assertion
this.contains(\result). The add method has a default precondition of true, can as-
sign to the locations in the datagroup state, and has a postcondition that says that its argument
(i) will be in the set at the end of the operation, and that the size of the set will not decrease. The
notation \old(E), which is borrowed from Eiffel [24], denotes the value of the expression E
in the method’s pre-state. (The pre-state of a method m is the state of the program after passing
parameters to m , but before running any of its code.) Similarly, the remove method’s postcondi-
tion says that after the method executes, its argument (i) will no longer be in the set and the size
will not increase.3

1.3 Verifying Method Calls with Supertype Abstraction

The basic technique for verifying a method call is to:

1. check (assert) the method’s precondition before the call,
2. “havoc” all locations that are assignable by the method, and
3. assume that the method’s postcondition holds after the call.

Locations that are assignable by the called method are imagined to be set by the method to an
arbitrary, unknown value; this is what “havoc” does. However, such locations will usually be
constrained by the method’s postcondition to values that satisfy that postcondition. On the other
hand, locations that are not assignable in the method are preserved by the method’s execution.
Thus the frame in the method’s specification can be used to prove that properties that hold before
the call (in the call’s pre-state) also hold after the call (in the call’s post-state). Properties are
automatically preserved by the call if they do not depend on locations that may be assigned by the
method called (i.e., if they are independent of the method’s frame).

This technique for method call verification is modular because it avoids checking the correct-
ness of the method’s implementation each time the method is called. The verification technique
is independent of the method’s implementation, as verification relies only on its specification (its
precondition, frame, and postcondition). Therefore a method’s specification plays the key role in
verifying calls to that method.

With supertype abstraction, once we know the specification of IntSet, we can verify client
code written for it, even though we do not know any of the details of the classes that implement
IntSet. Two simple examples of some client code are shown in Fig. 2 on the following page.

3 The size is not specified to decrease, since it can stay the same if the element being removed was not in
the set in the pre-state.
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public class IntSetClient {
//@ requires iset.size() > 0;
public static void testPick(IntSet iset) {

int k = iset.pick();
//@ assert iset.contains(k);

}

//@ requires iv.size() == 3;
//@ assignable iv.state;
public static void testAddRemove(IntSet iv) {

iv.add(1);
//@ assert iv.contains(1);
long s = iv.size();
//@ assert s >= 3;
iv.remove(1);
//@ assert !(iv.contains(1)) && iv.size() <= s;

}
}

Fig. 2. Client code that uses IntSet.

We demonstrate the above technique by verifying the testPick method; the verification is
recorded with intermediate assertions in Fig. 3. At the beginning of the method testPick, its
precondition is assumed. To verify the call to pick, following supertype abstraction we use the
specification of pick from the static type of the call’s receiver (iset), which is IntSet. So
the method’s specification is taken from Fig. 1. Its precondition is the same as the assumption
(with the receiver substituted for the implicit receiver (this) in the specification4). Since we are
assuming that iset.size()>0, that follows, and so we can assume the postcondition of the
pick method. Again, in the assumed postcondition the actual receiver (iset) is substituted for
the implicit receiver (this) in the specification. With this assumption, the assertion to prove at
the end of the method follows immediately.

//@ requires iset.size() > 0;
public static void testPick(IntSet iset) {

//@ assume iset.size() > 0;
//@ assert iset.size() > 0; // checking method precondition
int k = iset.pick();
//@ assume iset.contains(k); // assumed method postcondition
//@ assert iset.contains(k);

}

Fig. 3. Client code that uses IntSet with intermediate assertions.

For the testAddRemove method, the assertions can also be verified using just the specifi-
cations given for IntSet’s methods (see Fig. 4 on the next page). Again this is independent of
the implementation of the argument iv. Note that only the specifications given in IntSet can

4 Recall that a call such as size() is shorthand for this.size() in Java, thus substituting iset for
this in size()>0 turns it into iset.size() > 0.



An Illustrated Guide to the Model Theory of Supertype Abstraction and Behavioral Subtyping 5

be used, so one cannot conclude that the value of s, the size of iv after adding 1 to iv, will be
4, only that s will be no less than the original size (3).

//@ requires iv.size() == 3;
//@ assignable iv.state;
public static void testAddRemove(IntSet iv) {

//@ assume iv.size() == 3;
//@ assert true; // add’s precondition
addcall: iv.add(1);
//@ assume iv.contains(1); // add’s postcondition
//@ assume iv.size() >= \old(iv.size(),addcall); // continued
//@ assume iv.size() >= 3; // meaning of \old(,addcall) (*)
//@ assert iv.contains(1);
//@ assume true; // size’s precondition
long s = iv.size();
//@ assume s == iv.size(); // meaning of assignment (**)
//@ assume s >= 0; // size’s postcondition
//@ assume s >= 3; // size is pure so (*) is preserved (***)
//@ assert s >= 3;
rmc: iv.remove(1);
//@ assume !iv.contains(1) && iv.size() <= \old(iv.size(), rmc);
//@ assume !iv.contains(1) && iv.size() <= s; // by (**) & (***)
//@ assert !(iv.contains(1)) && iv.size() <= s;

}

Fig. 4. Client code that uses IntSet’s add and remove methods, with a verification recorded using inter-
mediate assertions. The assertions use labelled statements and the operator \old(,) with a label argument,
to reference the prestate of the statement with the given label.

These examples illustrate the modularity properties of supertype abstraction. There are two
important points to make. First, the specification is modular in the sense that it is given indepen-
dently of any subtypes of IntSet, and does not need to be changed if new subtypes implement-
ing IntSet are added to the program. Second, the verification of the client code is similarly
modular in the sense that it does not depend on the possible subtypes of IntSet, and thus does
not need to be redone when new subtypes are added to the program.

1.4 Subtypes for the IntSet Example

To make some of these ideas more concrete, we will consider several subtypes of IntSet.
One family of simple implementations for IntSet are closed intervals of integers, repre-

sented by objects that track a lower and upper bound in the fields lb and ub. The in declaration
adds these fields to the datagroup state. This design’s common parts are described in the ab-
stract class AbsInterval (see Fig. 5 on the next page). The objects of subtypes of this class
represent closed intervals of integers, which we can think of as containing all integers between
the instance field values lb and ub, inclusive, i.e., [lb,ub]. An interval such as [3, 2] represents
the empty set.

The abstract class AbsInterval represents lb and ub as long (64-bit) integers. These
fields have protected visibility in Java, but are also declared to be spec_public in the
first JML annotation. One can think of spec_public fields as being declared to be public for
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public abstract class AbsInterval implements IntSet {
/*@ spec_public @*/ protected long lb, ub; //@ in state;
/*@ public invariant Integer.MIN_VALUE <= lb

@ && lb <= Integer.MAX_VALUE
@ && lb <= ub+1 && Integer.MIN_VALUE <= ub+1
@ && ub <= Integer.MAX_VALUE; @*/

//@ public normal_behavior
//@ requires Integer.MIN_VALUE <= l && l <= Integer.MAX_VALUE;
//@ requires Integer.MIN_VALUE <= u+1 && u <= Integer.MAX_VALUE;
//@ requires l <= ((long)u)+1;
//@ assignable state;
//@ ensures lb == (long)l && ub == (long)u;
public AbsInterval(int l, int u) {

lb = l; ub = u;
}
//@ also ensures \result <==> (lb <= i && i <= ub);
public /*@ pure @*/ boolean contains(int i) {

return lb <= i && i <= ub;
}
public void add(int i) {

if (!contains(i)) {
//@ assert (i < lb || i > ub);
if (i < lb) { //@ assume i < ub && i <= ub;

lb = i;
//@ assert contains(i) && lb < \old(lb);

} else { //@ assert i > ub && lb <= i;
ub = i;
//@ assert contains(i) && ub > \old(ub);

}
/*@ assert this.contains(i)

@ && this.size() > \old(this.size()); @*/
}
//@ assert this.contains(i) && this.size() >= \old(this.size());

}
public void remove(int i) {

long il = (long)i;
if (!contains(i)) { return; }
//@ assert lb <= il && il <= ub;
if (lb == ub) {

lb = 0; ub = -1;
//@ assert !contains(i) && lb <= ub+1;

} else if (il-lb < ub-il && il != Integer.MAX_VALUE) {
lb = il+1;
//@ assert !contains(i) && lb <= ub+1;

} else { //@ assert (il-lb >= ub-il) || il == Integer.MAX_VALUE;
ub = il-1;
//@ assert !contains(i) && lb <= ub+1;

} }
//@ also ensures \result == ub - lb + 1;
public /*@ pure @*/ long size() {

return ub - lb + 1;
} }

Fig. 5. The abstract class AbsInterval, which is a subtype of IntSet.
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purposes of specification, but having the declared visibility (protected in this case) for use in
Java code. Declaring the fields to be public for specification purposes allows them to be used
in specifications intended to be seen by all clients. There is a public invariant; invariants state
properties that must hold whenever a method call is not in progress [19, Section 8.2]. The in-
variant states that lb must be in the range of int values (between Integer.MIN_VALUE and
Integer.MAX_VALUE). It also says that ub cannot be greater than the largest int value and
that it can only be one smaller than the smallest int value. The type long is used for the fields
lb and ub in order to (a) avoid integer overflow, and (b) to allow representation of extreme cases
of empty intervals. An empty interval is one in which the value of ub is less than the value of lb;
indeed the invariant lb <= ub+1 implies that this only happens when lb-1 == ub. (Note
that conjunct of the invariant would not make sense if both these fields had type int and if lb
held the smallest int value.)

The constructor for AbsInterval has a requirement that its arguments, l and u, must be
such that l is not greater than u+1, so that the invariant will hold when l is assigned to lb and
u is assigned to ub. The constructor of AbsInterval has a “heavyweight” specification [19,
Section 2.3], which says that when called in a state that satisfies its precondition, it must terminate
normally (without throwing an exception), as it is a normal_behavior specification.

The specification of the contains method starts with the keyword also, to indicate that
the specification adds to the specification inherited from the supertype IntSet. Since both spec-
ifications have the same precondition (true), effectively this adds an additional postcondition to
the method’s specification for all subtypes of AbsInterval. This specification thus allows a
verifier to equate contains(i) with (lb <= i && i <= ub) in proofs, as <==> means
“if and only if” in JML.

The specification of the method size (at the end of the figure) is similar. It says that the size
of the set is the value of the expression ub - lb + 1. The reader can check that this expression
is the number of integers i such that contains(i) is true.

The add method in AbsInterval inherits the specification from IntSet unchanged.
Thus, if iv is an object of type AbsInterval, then when iv.add(i) returns, it must be
that iv.contains(i) holds. The implementation may add more elements to the set, in addi-
tion to the argument (i), as the implementation can only represent closed intervals. Indeed the
implementation will set either the lower bound (lb) or the upper bound (ub) to i. This may not
seem like the expected behavior for sets, but it satisfies the specification given in IntSet.

The remove method similarly inherits its specification from IntSet. The implementation
will set either the lower or the upper bound to just past the element to be removed. The assert
statements used in the method are designed to help the prover in the JML tools conclude that the
method is implemented correctly. In each case the method must ensure that the argument is no
longer in the set and that the second invariant (lb <= ub+1) holds. The reader is urged to verify
these assertions, recalling that both the lower and upper bound fields are of type long.

As an example of supertype abstraction, the verification of the client code in figure Fig. 4 still
holds, even if the argument is a subtype of AbsInterval.

To understand these modularity properties better, it will be useful to consider some concrete
subtypes of IntSet, which implement the pick method.

The first of these concrete subtypes of AbsInterval is the class Interval shown in
Fig. 6 on the following page. This class’s implementation of pick always returns the lower
bound of the interval. The specification of pick in Fig. 6 says that, in addition to the inherited
specification, it returns the value of lb, when lb <= ub, i.e., when the interval is not empty.
Since that precondition is equivalent (by the specification of contains) to the precondition of
pick given in IntSet (see Fig. 1), this added specification case effectively adds an additional
postcondition to pick, when the receiver’s type is a subtype of Interval. The implementation
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satisfies both the inherited postcondition and the postconditions in this additional specification
when the interval is not empty.

public class Interval extends AbsInterval {
//@ requires l <= ((long)u)+1;
//@ ensures lb == l && ub == u;
public Interval(int l, int u) {

super(l,u);
}

//@ also
//@ requires lb <= ub;
//@ assignable state;
//@ ensures lb == \old(lb) && ub == \old(ub);
//@ ensures \result == (int)lb;
public int pick() {

//@ assert lb <= (int)lb && (int)lb <= ub;
return (int)lb;

}
}

Fig. 6. A subtype of IntSet, the concrete class Interval.

The second of these concrete subtypes of AbsInterval is the class Interval2 shown
in Fig. 7 on the next page. This class’s implementation of pick returns the value of the field
next_pick, which is constrained by its invariants to be an element of the interval and to have
a value that can be represented by an int. The added specification for pick in Fig. 7 describes
this behavior. Again, the implementation is correct if the interval is not empty.

Consider now the code in Fig. 8 on the next page. The final assertion in that figure verifies
because iv has type Interval, and the added specification case for pick in Interval’s
specification (see Fig. 6) says it returns the lower bound of the interval. In JML, a method that
is specified with several specification cases (some of which may be inherited) must obey all of
them, so a client can either pick one specification case and use that to verify a call to the method,
as is done in Fig. 8, or use the combined meaning of the specification cases.

However, suppose that the type of iv in Fig. 8 were changed to IntSet, and the initializa-
tion for that variable called the constructor of Interval2. In that case, the value of iv would
be an object of the class Interval2. And in that case the last assertion in Fig. 8 would not
always be valid, since Interval2’s method pick need not always return the lower bound of
the interval. Supertype abstraction safely avoids drawing such invalid conclusions, because it only
allows using the specification of the supertype (e.g., IntSet) in such cases.

2 Background and Motivation

Ideally, one could characterize supertype abstraction in a way that does not depend on the details
of a specification language and the details of a particular verification logic. This is what was done
in our earlier TOPLAS paper [17]. Instead of repeating that formal development, in what follows
we will try to adapt those more general results (from the TOPLAS paper [17]) to Java and JML.
In the process we will skim over some of the formal details, which may not match Java and JML
exactly.
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public class Interval2 extends AbsInterval {
/*@ spec_public @*/ protected long next_pick; //@ in state;
//@ public invariant Integer.MIN_VALUE <= next_pick;
//@ public invariant next_pick <= Integer.MAX_VALUE;
//@ public invariant lb <= ub ==> contains((int)next_pick);

//@ requires l <= ((long)u)+1;
//@ assignable state;
//@ ensures lb == l && ub == u;
//@ ensures next_pick == lb;
public Interval2(int l, int u) {

super(l,u);
next_pick = lb;

}

//@ also
//@ requires lb <= ub;
//@ assignable next_pick;
//@ ensures lb == \old(lb) && ub == \old(ub);
//@ ensures \result == (int)next_pick;
public int pick() {

//@ assume lb <= ub;
if (next_pick < ub) {

next_pick++;
if (next_pick > ub) { next_pick = lb; }
//@ assert (lb <= next_pick && next_pick <= ub);

} else {
next_pick = lb;
//@ assert (lb <= next_pick && next_pick <= ub);

}
//@ assert contains((int)next_pick);
return (int)next_pick;

}
}

Fig. 7. A subtype of IntSet, the class Interval2.

public void testPickConcrete() {
Interval iv = new Interval(5,7);
//@ assume iv.lb == 5 && iv.ub == 7;
int p;
//@ assert iv.lb <= iv.ub;
pck: p = iv.pick();
//@ assume p == iv.lb;
//@ assert p == 5;

}

Fig. 8. A test of the pick method for a concrete subtype of IntSet.
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2.1 Background: Denotational and Axiomatic Semantics

A verification logic that is sound must, by definition, only draw conclusions that are valid in all
possible executions. This requires a model of both the meaning of a specification and of how a
program executes: the semantics of the specification language and the semantics of the program-
ming language.

There are three broad families of programming language semantics, developed in the 1960s:

– Denotational semantics, developed by Christopher Strachey and Dana Scott [30,31,28,29]. A
standard summary is found in Schmidt’s book [27]. A denotational semantics describes the
meaning of a program as a mathematical function.

– Operational semantics, developed by Peter Landin [14,15] A modern treatment is given in
Hennessy’s book [11]. An operational semantics describes the meaning of a program as a
rewrite machine.

– Axiomatic semantics, developed by Robert Floyd and C. A. R. (Tony) Hoare [9,12]. An ax-
iomatic semantics describes the meaning of a program as a proof system. A modern treatment
is given in Apt and Olderog’s book [4].

For example, in the denotational semantics of a simple imperative language, one may use
states, σ, that are finite functions from variable names to values. Thus the denotational semantics
of an assignment statement such as k = k+1; would be given by a meaning function, such as
C, that maps commands (statements) and states to states; for example

C[[k = k+1;]](σ) = [σ | k :σ(k) + 1]

where the notation [σ | k : (σ(k) + 1)] means a mapping that is the same as σ except that for the
argument k the result is the value σ(k) + 1:

[f | x : v ] = λy · if y ≡ x then v else f (y).

An axiomatic semantics describes states using predicates; one can think of a predicate as
representing the set of all states that satisfy it. For example, the predicate k > 0 describes all
states in which the value of the variable k (presumably an integer) is strictly greater than zero. A
Hoare logic for a programming language gives axioms and rules for drawing conclusions about
program states. Hoare logic uses “Hoare triples” of the form {P} C {Q} which mean that if
the command C is executed starting in a state satisfying the predicate P (the precondition), and
if C terminates normally, then the predicate Q (the postcondition) will hold. For example, the
following is a valid Hoare triple (ignoring integer overflow):

{k > 0} k = k+1; {k > 1}.

We will sometimes write Hoare triples using assume and assert in JML; thus the example above
would be written in JML as follows.

//@ assume k > 0;
k = k+1;
//@ assert k > 1;

To define a programming language’s meaning, one must generalize from specific examples,
such as those above. In a Hoare Logic, this is done by giving axiom schemes for simple statements
and proof rules for compound statements. Some simple axioms and inference rules in a Hoare
Logic are presented in Fig. 9. The “turnstile”, `, can be read as “one can prove that.” The rules
SEQ, CONSEQ, WHILE, and IF are inference rules, with hypotheses above the horizontal line and
a conclusion below it. The CONSEQ rule has a side condition, starting with if, which tells when
the rule can be used.
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ASSIGN

` {P [E/x ]} x=E; {P}
SKIP

` {P} ; {P}

SIMPLESEQ
` {P} C1 {Q}, ` {Q} C2 {R}

` {P} C1 C2 {R}

CONSEQ
` {P ′} C {Q ′}
` {P} C {Q}

if P ⇒ P ′ and Q ′ ⇒ Q

WHILE
` {I && B} C {I }

` {I } while (x ) { C} {I && !x}

IF
` {P && x} C1 {Q}, ` {P && !x} C2 {Q}
` {P} if (x) { C1 } else { C2 } {Q}

Fig. 9. Some simple Hoare Logic rules. These rules assume that test expressions in while and if statements
are variables, since those have no side effects, and that the expressions in assignment statements have no
side effects.

Example 1. A proof in Hoare logic can be written as a tree. For example to prove the Hoare triple
in the conclusion below, one uses the SEQ rule, with two sub-derivations (sub-trees, growing
upwards), named (A1) and (I1), corresponding to the two hypotheses of the SEQ rule. So overall
the tree looks as follows, where the subderivations (A1) and (I1) will be explained below.

(A1),
(C1), (C2)

(I1)
IF

` {true} xGty = x>y; if (xGty) {m=x;} else {m=y;} {m>=x&&m>=y}
SEQ

Derivation (A1) uses the CONSEQ rule and has a hypothesis that is an instance of the ASSIGN
axiom scheme. The conclusion of (A1) is the first hypothesis needed by the SEQ rule above.

(A1)
` {(x>y) == (x>y)} xGty=x>y; {(xGty)==(x>y)} ASSIGN

` {true} xGty=x>y; {(xGty)==(x>y)}
CONSEQ

The derivation (I1) uses the IF rule. Since the IF rule has two hypotheses, there are two more
sub-derivations, named (C1), and (C2) as required by the IF rule.

(I1)
(C1), (C2)

` {(xGty)==(x>y)} if (xGty) {m=x;} else {m=y;} {m>=x&&m>=y}
IF

The derivation (C1) is as follows. Note that the conclusion is the formula needed for the first
hypothesis of the IF rule. The implications can be proven using the theory of integer arithmetic.

(C1)
` {x>=x&&x>y} m=x; {m>=x&&m>y}

` {((xGty)==(x>y))&&xGty} m=x; {m>=x&&m>=y}
CONSEQ

The derivation (C2) is similar. Its conclusion is the formula needed for the second hypothesis
of the IF rule.

(C2)
` {y>=x&&(y>=y)} m=y; {y>=x&&m>=y}

` {((xGty)==(x>y))&&!xGty} m=y; {m>=x&&m>=y}
CONSEQ

Another way to display this proof is to use intermediate assertions, as shown in Fig. 10 below.
In the figure preconditions of Hoare triples follow the keyword assume and postconditions fol-
low assert. Two such conditions written next to each other indicate a use of the CONSEQ rule.
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Overall the first assume and the last assert are the formulas in the main derivation given above,
with the assertion (xGty) == (x>y) being the assertion that is between the two statements as
demanded by the SEQ rule. The proof of the first statement (lines 1-5) corresponds to the deriva-
tion (A1) above. The proof of the if-statement is given in the rest of the lines, with the five lines
around each assignment statement corresponding to derivations (C1) and (C2) above. Comments
to the right of each assume or assert indicate which rule these preconditions and postconditions
correspond to.

//@ assume true; // Seq
//@ assume (x>y) == (x>y); // Assign (A1)
xGty = x>y;
//@ assert (xGty) == (x>y); // Assign (A1)
//@ assume (xGty) == (x>y); // If
if (xGty) {

//@ assume ((xGty) == (x>y)) && xGty; // Conseq (C1)
//@ assume x>=x && x>y; // Assign
m = x;
//@ assert m>=x && m>y; // Assign
//@ assert m>=x && m>=y; // Conseq (C1)

} else {
//@ assume ((xGty) == (x>y)) && !xGty; // Conseq (C2)
//@ assume y>=x && y>=y; // Assign
m = y;
//@ assert m>=x && m>=y; // Assign
//@ assert m>=x && m>=y; // Conseq (C2)

}
//@ assert m >= x && m >= y; // If
//@ assert m >= x && m >= y; // Seq

Fig. 10. Code for computing the maximum value of x and y with intermediate assertions.

In sum, Hoare Logic uses predicates to represent sets of states. Statements transform precon-
ditions into postconditions. And intermediate assertions can stand for a Hoare Logic proof.

The challenge is to extend this verification technique in a modular way to the verification of
method calls in Java.

2.2 Specification Language Semantics

A fundamental step towards modular verification of method calls is to specify the state trans-
formation that a method call achieves. Declaring method specifications avoids having to inline
method bodies to verify method calls. It also allows the verification of recursive and mutually-
recursive methods.

In JML method specifications are written with requires and ensures clauses (and pos-
sibly with assignable clauses). For example, a specification for a max method on two int
arguments is shown in Fig. 11 on the next page.

To deal with Java’s return statement, some extension to Hoare Logic is needed, as this
statement does not terminate normally, but abruptly stops execution of the surrounding method
[13]. Instead of investigating such extensions here, we will content ourselves with proving that
the value returned satisfies the appropriate condition, just before the return statement.
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//@ requires true;
//@ ensures \result >= x && \result >= y;
public int max(int x, int y);

Fig. 11. Specification of a max function in JML.

In this way one can show that the code given in Ex. 1, when put in sequence with return m;
correctly implements the specification of Fig. 11.5

To abstract a bit from the syntax of specifications we define some terms, following the TOPLAS
paper [17]. (A table of notations appears in Fig. 18 on page 40 at the end of this paper.)

A pair of a precondition and a postcondition, (P ,Q), is called a simple specification [17].
Validity of specifications is defined with respect to the denotational semantics of the language.

If C is the meaning function for commands, then a Hoare formula {P} C {Q} is valid in state
σ, written σ |= {P} C {Q} if and only if: whenever P holds in state σ and the meaning of C
starting in state σ is a state σ′, then Q holds in state σ′. As a mathematical formula, we write this
as follows

σ |= {P} C {Q} def
= (σ ∈ P ∧ C[[C ]](σ) = σ′)⇒ (σ′ ∈ Q) (1)

thinking of predicates as sets of states, so that σ ∈ P means that P holds in state σ and using
C[[C ]](σ) = σ′ to mean that the meaning of command C started in state σ is state σ′. This is
partial correctness; since if the command C does not terminate normally (does not produce a
state σ′), then the implication holds trivially.

A Hoare triple {P} C {Q} is valid, written |= {P} C {Q}, if and only if it is valid for all
states.

Definition 1 (Validity of Simple Specifications). A command C correctly implements a simple
specification (P ,Q) if and only if |= {P} C {Q}.

The concept of refinement of specifications is of great importance in what follows. To define
refinement, it is useful to define the set of commands that correctly implement a specification. We
notate this Impls(P ,Q)

def
= {C | |= {P} C {Q}}.

Definition 2 (Refinement). Let (P ,Q) and (P ′,Q ′) be simple specifications. Then (P ′,Q ′) re-
fines (P ,Q), written (P ′,Q ′) w (P ,Q), if and only if Impls(P ′,Q ′) ⊆ Impls(P ,Q).

It is an easy corollary that if (P ′,Q ′) w (P ,Q), then for all commands C , if |= {P ′}C {Q ′},
then |= {P} C {Q}.

2.3 Programming Language Semantics

An object in an OO language is data with an identity (its address on the heap) and several named
fields (also called instance variables). In most OO languages objects have infinite lifetimes and
live on the heap. Objects are referred to indirectly by their addresses and their fields are mutable
(can hold different values over time). In addition, in a class-based OO language, like Java, objects
refer to their class, so it is possible to determine their class dynamically.

A class is a code module that describes objects. Classes are a built-in feature of Java and other
OO languages, such as Smalltalk-80, C++, and C#. Classes contain declarations for the fields of

5 There still are some other details omitted, such as how declarations (e.g., of the variable xGty) are
handled.
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objects of that class, methods, which are procedures that operate on objects, and constructors,
which initialize objects. Examples of classes in Java are given in Fig. 6 and Fig. 7. A method
declaration in a class may be abstract if it does not have an implementation. In Java an abstract
method is either declared with a semicolon (;) instead of a method body or is inherited from a
supertype but not implemented.

An interface is like a class, but with no method implementations; that is, all the methods it
declares are abstract. Interfaces can be used as types in Java.

In Java, subtype relationships are declared. A class may declare that it implements one or more
interfaces, making it a subtype of all of those interfaces, and those interfaces are its supertypes. For
example, the examples in the introduction directly declare the following subtype relationships.

AbsInterval ≤ IntSet
Interval ≤ AbsInterval
Interval2 ≤ AbsInterval

In addition, subtyping is reflexively and transitively closed, so Interval ≤ IntSet.
Types are upper bounds in an OO language. Thus, if S is a subtype of T , which we write as

S ≤ T , then one can assign an object of type S to a variable declared to have type T and one can
pass an actual parameter of type S to a formal parameter of type T .

To have indefinite lifetimes, objects are stored in the heap, as shown in Fig. 12. Local vari-
ables, such as ivl, are stored in the runtime stack. When a variable’s type is a reference type
its contents consist of a reference (i.e., a pointer) to an object, in this case an object of class
Interval. Objects are typically represented as records that can be mathematically modeled as
mappings from field names to values. There is a distinguished field named class that contains
a reference to the class object, which is a run-time representation of the class declaration.

ivl

Interval 
class 
object

class

lb

ub
3
5

runtime stack heap

Fig. 12. Picture of the stack and heap after executing the statement ivl = new Interval(3,5);.

Class objects themselves contain their name, a reference to their superclass object, and a
method table that maps method names to the a closure for that method. The closure contains the
code for the method’s body as well as the names of its formal parameters.

To explain how the dynamic dispatch mechanism for method calls works in Java and other
OO languages, consider the call ivl.size(). To evaluate this expression, Java:

1. Evaluates ivl, producing a reference to an object, o (a pointer).
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2. Finds the class of o (o.class), say this is the class whose class object is Iv .
3. Looks up the method code for the method named size (with no arguments) in the method

table found via Iv .
4. Allocates space for the result of the call.
5. Creates a stack frame for the call, binding this to o (and in general also binding formals to

actuals).
6. Runs the code in the new stack frame.
7. Executing a return E; statement evaluates the expression E , copies the value of E to the

space allocated for it, and then pops the call’s stack frame off the runtime stack.

Calling methods indirectly via the method table found at runtime from the receiver object is
what makes this calling mechanism dynamic. Consider the call to pick in Fig. 3. The argument
iset could be any subtype of IntSet, including Interval, Interval2, and even subtypes
of IntSet that have not yet been programmed.

As another example, consider the call to pick shown in Fig. 13. In this figure, the argu-
ment has type AbsInterval, and thus the actual argument could have a dynamic type that is
Interval, Interval2, or any other subtype of AbsInterval. The integer returned by the
call must be in the interval, but although Interval’s method will return 5, there is no guaran-
tee that if iv denotes an object of dynamic type Interval2 (or some other subtype) that the
result will be 5, so the last assertion may fail. Thus the verification technique must take dynamic
dispatch into account.

public void badTestPick(AbsInterval iv) {
//@ assume iv.lb == 5 && iv.ub == 7;
int p;
//@ assert iv.lb <= iv.ub;
//@ assert iv.size() > 0; // checking method precondition
p = iv.pick();
//@ assume iv.contains(p); // assumed method postcondition
//@ assert p == 5; // WRONG!

}

Fig. 13. A method that demonstrates the problems that dynamic dispatch causes for reasoning about method
calls.

The essence of the problem is that specification and verification are done statically, before
runtime, but the dynamic types of objects are only known (in general) at runtime. Furthermore,
OO programs are “open” in the sense that new types may be added after the program is specified
and verified, so even an exhaustive case analysis of the program’s existing types will not be sound.
Finally, not only is the code of the method that is run by a call determined dynamically, but the
different subtypes may have different specifications for what the method should do. (However,
for modular verification to be possible, we will always assume that methods correctly implement
their specifications.)

To explain this problem in verification, imagine a verification technique that relies on a table of
specifications for each method, indexed by dynamic types, and that verifies code involving method
calls exhaustively, with a verification for each possible dynamic type of each call’s receiver, using
the dynamic type’s specification. When new types are added to a program, all proofs must be
examined and new cases must be added where needed to account for the new types. An advantage
of this verification technique is that it would be very precise, as it could consider the exact effects
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of each method call. However, such a technique would not be scalable, since adding a new type to
a program would require finding and reproving an unbounded number of assertions. The number
of cases that would need to be considered would explode with the number of combinations of
different dynamic types that are possible in a program fragment that is to be verified. In essence,
such a technique would not be modular.

We would like a reasoning technique that is both static (so that specification and verification
are done before runtime) and modular (so that adding new types to a program does not cause
re-specification or re-verification). In addition, a suitable reasoning technique should be not much
more difficult than reasoning about non-OO programs.

2.4 Supertype Abstraction

A reasoning technique for OO programs that is both static and modular is supertype abstraction
[16,17,20,21]. Supertype abstraction relies on static type information to give upper bounds on
the types of expressions; in a language without a built-in static type system, a separate static
analysis could provide this information. Verification of a method call uses the specification of
the method being called found in the receiver’s static type. For validity, an overriding method
in a subtype must obey all specifications for that method in all its supertypes, since these super-
type specifications could be used in reasoning; that is, all subtypes must be behavioral subtypes
[1,2,3,17,20,21,22,23]. In addition, if other properties of supertypes, such as invariants, can be
used in reasoning, then subtype objects must also obey those properties.

An example of reasoning using supertype abstraction is shown in Fig. 2, which uses the spec-
ifications found in the supertype IntSet to verify the call to pick.

Behavioral subtyping, which is necessary for the validity of supertype abstraction [17], must
be checked when new types are added to a program. These new types must each be behavioral
subtypes of all of their supertypes (in particular of those that are already present in the program).

Even though supertypes generally have more abstract (less precise) specifications than sub-
types, one can recover the precision of reasoning by using dynamic type information, while still
using supertype abstraction. The way to do this is to use type tests (instanceof in Java) and
downcasting to align the static types of receiver objects with dynamic type information. Fig. 14
on the next page shows an example in which there is a supertype Staff of types Doctor and
Nurse, and type tests and downcasting are used to specialize the static types of receivers. Then
supertype abstraction can be used to verify the calls to methods on these subtypes. Thus by using
supertype abstraction, one does not lose any ability to verify OO programs, compared to an ex-
haustive case analysis, since by using type tests and downcasts, one can add explicit case analysis
on dynamic types.

3 Semantics

In order to investigate the connection between supertype abstraction and behavioral subtyping,
our TOPLAS paper [17] used a small “core” programming language that is similar to Java. To
avoid repeating that formal development here, we will simply outline the main ideas and results.

3.1 A-normal Form

A small problem with verification in a language such as Java is that expressions may, in general,
have side effects. These side effects make it unsound to use substitution (of such expressions) in
verification rules. To avoid these problems the core language used in the TOPLAS paper has a
syntax that is in “A-normal form” [26]. In A-normal form, variables are used for certain expres-
sions, such as the tests in while loops and if-statements, so that effects in such sub-expressions do
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/*@ requires p instanceof Doctor
@ || p instanceof Nurse; @*/

public boolean isHead(final Staff p) {
if (p instanceof Doctor) {

Doctor doc = (Doctor) p;
return doc.getTitle().startsWith("Head");

} else {
Nurse nrs = (Nurse) p;
return nrs.isChief();

}
}

Fig. 14. Using downcasting to do case analysis.

not complicate the semantics. Although Java and JML do not require A-normal form syntax, we
assumed it in presenting Hoare Logic rules for Java previously (in Fig. 9). Some verification tools
(such as OpenJML) transform a complex expression in Java into A-normal form by rewriting the
program; for example, if the condition x > y were used as the test in an if-statement, it would
first declare a boolean variable, such as xGty, and assign xGty the value of that expression,
as was done in Fig. 10. This transformation would be applied recursively to eliminate complex
subexpressions within expressions. For example the code

if (a[i] > y) ...

would be transformed into A-normal form in a way similar to the following.6

int x; boolean xGty;
x = a[i];
xGty = (x > y);
if (xGty) ...

Such a program transformation would be carried out mechanically and would need to respect the
semantics of Java expressions. The idea would be to allow Java expressions that involve at most
one operation in an assignment statement, so that the semantics of that operator can be isolated
from any side effects (or exceptions) caused by other operators.

Since method calls are expressions in Java, using A-normal form requires each actual argu-
ment be evaluated and its value stored in a variable, if it is not already a variable. Thus a call such
as

iv.add(i+j);

would be transformed to something like the following (depending on the types of i and j, which
the following assumes to be int).

int ipj;
ipj = i+j;
iv.add(ipj);

Henceforth let us assume that all programs have been converted to A-normal form.

6 Note that the transformation must ensure that any variables declared are fresh.
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3.2 Semantic Domains and Meaning Functions

In order to prove the soundness of a verification technique (i.e., that all conclusions reached
are valid), one needs a semantics of the programming language and the specification language.
To that end, the following development will discuss (but not precisely define all the details of)
a denotational semantics for the programming and specification languages Java and JML. This
subsection is adapted from our TOPLAS paper [17].

Java is a statically typed language, and our specification and verification approach requires
that the static types of expressions are upper bounds of the types of values they may denote.
We write typing judgments using a context (type environment), Γ , which is a finite mapping
from names to types. Such finite maps are often treated as sets of pairs; for example, suppose
Γ0 = [x :K , y :int]. Then the value of Γ0 applied to x , Γ0(x ), is K and Γ0(y) is int.
We extend such finite mappings using a comma, thus [Γ0 , z :boolean] is the finite map
[x :K , y :int, z :boolean]. This extension notation (with the comma) is only used when the
variable is not in the domain of the finite function; if it may be in the domain, then we use an
override notation, such as [Γ0 | x :L], which is the finite map [x :L, y :int].

Types in Java can be either primitive (value) types, such as int and boolean or reference
types, which are class or interface names (instantiated with type parameters if necessary). The
notation RefType denotes the set of all reference types.

Our denotational semantics for a language like Java [18,17] assumes that the class and inter-
face declarations of a program are available in a class table, CT , that maps reference types to
their declarations. From now on the class table, CT , of the program being considered is assumed
to be fixed.7

Types are partially ordered by the subtype relation ≤, which is derived from the reflexive-
transitive closure of the declarations in classes and interfaces in the same way as in Java. Primitive
types such as int are only subtypes of themselves. Subtyping for method types follows the usual
contravariant ordering [6], although the formal parameter names must be identical. That is,

x :T→T1 ≤ y :U→U1

if and only if U ≤ T , T1 ≤ U1, and x is identical to y [17].

Example 2. Consider the interface and classes declared in Fig. 15 on the next page. This figure
would produce a class table, call it CT1, that maps AbsCounter to its declaration, Counter
to its declaration, and Gauge to its declaration.

In this example Counter≤ AbsCounter and Gauge≤ AbsCounter, and each of these
types is also a subtype of itself.

As in Java, both expressions and commands (i.e., statements) can have effects. To model
exceptions, our earlier work used a distinguished variable, exc in the post-state of a command;
when no exception is thrown, exc is null, otherwise it contains the exception object thrown [17].

We formalize semantics uses the domains shown in Fig. 16 below.
We assume that there is a set, Ref, of references; these are the abstract addresses of objects.
To model the “class” field in an object’s runtime representation that was shown in Fig. 12 we

use a ref context, which is a finite partial function, r , that maps references to class names (and not
interface names). The idea is that if o ∈ dom(r) then o is allocated and moreover o points to an
object of dynamic type r(o). We define the set of reference contexts:

RefCtx = Ref⇀ ClassName

7 If classes can be created or loaded at runtime, then CT would contain all the classes that might be
available to the program at runtime.
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public abstract class AbsCounter {
protected /*@ spec_public @*/ int count = 0;
//@ requires count < Integer.MAX_VALUE;
//@ assignable count;
//@ ensures count > \old(count);
public abstract void inc();
//@ ensures \result == count;
public /*@ pure @*/ int val() { return count; }

}

public class Counter extends AbsCounter {
public void inc() { count++; }

}

public class Gauge extends AbsCounter {
public void inc() {

int cp2 = count+2;
boolean ovfl = cp2 < count;
if (!ovfl) {

count = count+2;
} else {

count = Integer.MAX_VALUE;
}

}
}

Fig. 15. The classes AbsCounter two subtypes.

where ⇀ denotes finite partial functions. For r and r ′ in RefCtx, r ⊆ r ′ means that dom(r) ⊆
dom(r ′) and, for objects allocated in r , the dynamic types are the same in r ′ [17].

For data type T its domain of values in a reference context r is defined by cases on T , where
K is a class name and I is an interface name [17]:

Val(int, r) = {. . . ,−2,−1, 0, 1, 2, . . .}
Val(boolean, r) = {true, false}
Val(K , r) = {null} ∪ {o | o ∈ dom(r) ∧ r(o) ≤ K}, if K ∈ ClassName
Val(I , r) = {null} ∪ {o | ∃K · K ≤ I ∧ o ∈ Val(K , r)}, if I ∈ InterfaceName

A store, s , for a context Γ is a dependent function from variables in scope to type-correct
and allocated values. Thus for each x ∈ dom(Γ ), s(x ) is an element of Val(Γ (x ), r). In a store,
this cannot be null.

s ∈ Store(Γ, r)
⇐⇒ s ∈ ((x : dom(Γ ))→ Val(Γ (x ), r)) ∧ (this ∈ dom(Γ ) ⇒ s(this) 6= null) (2)

A heap h maps each allocated reference o to an object record, where the auxiliary function
fields returns a context for all the fields of the given class (taking inheritance into account) [17].

Obrecord(K , r)
def
= Store(fields(K ), r)

Heap(r) def
= (o : dom(r))→ Obrecord(r(o), r)
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Metavariable(s) ∈ Domain Description
o ∈ Ref references (addresses)
r ∈ RefCtx typing of allocated refs
o, v ∈ Val(T , r) value of type T in ref context r
Γ ∈ Context contexts (type environments)
s, t ∈ Store(Γ, r) stores for Γ
h ∈ Heap(r) heaps
σ, τ ∈ State(Γ ) states for Γ
ϕ, ψ ∈ Γ1 Γ2 state transformers
η ∈ MethEnv method environment
η̇ ∈ XMethEnv extended method environment

Fig. 16. A guide to the domains used in the semantics, adapted from our earlier work [17].

Given a type environment, Γ , a state for Γ is a tuple consisting of a ref context, r , together
with an appropriate heap and store for r :

State(Γ )
def
= (r :RefCtx)× Heap(r)× Store(Γ, r)

Example 3. An example of a state for the class table CT1 (in Ex. 2) is as follows. Let the type
environment Γ2 be [c :AbsCounter,g :AbsCounter]. Let the store s2 be [c : o1,g : o2]. Let
a reference context, r2 be [o1 :Counter, o2 :Gauge]. Let a heap for r2 be defined by h2(o1) =
[count : 0] and h2(o2) = [count : 2]. Then (r2, h2, s2) is an element of State(Γ2).

A state transformer, which is an element of Γ  Γ ′ is a function ϕ that maps each state σ in
State(Γ ) to either⊥ or a state ϕ(σ) in State(Γ ′), with a possibly extended heap, subject to some
additional conditions.

Γ  Γ ′
def
=

(σ :State(Γ ))→ ({⊥} ∪ {σ′ | σ′ ∈ State(Γ ′), extState(σ, σ′), imuThis(σ, σ′)})

The predicate extState(σ, σ′) says that the ref context of σ is extended by the ref context of σ′.
The predicate imuThis(σ, σ′) says that this is not changed (if present in both states).

Example 4. Let ∆3 be [this :Counter] and ∆′3 be [res :void,exc :Throwable]. A state
transformer that is an element of ∆3 ∆′3 is ϕ3 defined by

ϕ3(r , h, s) = (r , h ′, s ′)

where for some o ∈ Ref and integer n , if s(this) = o and (h(o))(count) = n , then the result-
ing heap is defined by h ′ = [h | o : [h(o) | count :n + 1]], and the resulting store is defined by
s ′ = [res : it,exc : null]. (This state transformer would be appropriate for a call to Counter’s
method inc; see Fig. 15. This transformer uses res to hold the method’s normal result. It also
uses it as a value of type void, which avoids a special case for void state transformers. )

State transformers are used for the meanings of expressions, commands, and methods as fol-
lows (where mtype returns the declared type of a method from the class table):

SemExpr(Γ,T )
def
= Γ  [res :T ,exc :Throwable]

SemCommand(Γ )
def
= Γ  [Γ , exc :Throwable]

SemMeth(T ,m)
def
= Γ  [res :U ,exc :Throwable]

where mtype(T ,m) = z :U→U
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Note that the meanings for expressions and method bodies are similar and neither contains this
(or the formals in the case of methods). This means that expressions and method calls cannot
change the store. Thus the conversion to A-normal form must make any expressions that have
effects on the store that occur in a command or expression become commands that store the
expression’s value in a fresh variable, with this fresh variable replacing the expression with the
effect. For example to convert a command such as the following

b = count++ > 0;

into A-normal form, one would add extra commands to evaluate the expression count++ first,
such as the following.

int ocount = count;
count = count+1;
b = ocount > 0;

In Java, arguments are passed by value,8 so a method itself cannot change the formal parameters
(or this).

Example 5. Let Γxy be [x :int,y :int]. A state transformer in SemExpr(Γxy ,boolean) is

the following. ϕxy(r , h, s)
def
= (r , h, s ′), where s ′ = [res : s(x) > s(y),exc : null]. The state

transformer ϕxy would be the denotation of the expression x>y in the context Γxy .

Example 6. Exceptions in expressions and commands are handled by examining the special vari-
able exc in the post-state. For example, the semantics of the Java assignment statement x=E;
would be as follows.

[[Γ ` x=E;]](η)(r , h, s)
def
=

lets (r1, h1, s1) = [[Γ ` E :T ]](η)(r , h, s)
in if s1(exc) = null

then (r1, h1, [[s | x : s1(res)] , exc : null])
else (r1, h1, [s , exc : s1(exc)])

If the expression goes into an infinite loop, then the meaning of the command is an infinite loop
(⊥) also, since lets is a strict let expression in the notation. If the expression completes normally,
then the state is updated with the variable being assigned bound to the result of the expression.
Otherwise, if the expression threw an exception, then the command throws the same exception
(and the store does not undergo any changes). (The meaning functions [[·]] are curried functions
that take a typing judgment and a method environment and then a state and produce a state of the
appropriate type. Typing judgments for commands have no result type, but typing judgments for
expressions do include a result type.)

Example 7. The state transformer ϕ3 in Ex. 4 is an element of SemMeth(Counter,inc),
where Counter is defined in Fig. 15. The transformerϕ3 would be the denotation of Counter’s
inc method.

A normal method environment is a table of denotations for all methods in all classes:

MethEnv def
= (K :ClassName)× (m :Meths(K ))→ SemMeth(K ,m).

8 In Java, and Smalltalk-80 and C#, the values of expressions may be references, but the parameter passing
mechanism is call by value, since one cannot write a method that modifies variables passed as actual pa-
rameters, such as swap. However, the semantics of method calls would need to be different for a language
like C++ where parameters can be declared to be passed by reference (using &).
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A normal method environment η is defined on pairs (K ,m) where K is a class with method m;
and η(K ,m) is a state transformer suitable to be the meaning of a method of type mtype(K ,m).
In case m is inherited in K from class L, η(K ,m) will be the restriction of η(L,m) to receiver
objects of type K .

In our formulation of modular reasoning based on static types, we need to associate method
meanings to interfaces as well as to classes, even though the receiver of an invocation is always
an object of some class. So we define the set of extended method environments by

XMethEnv def
= (T :RefType)× (m :Meths(T ))→ SemMeth(T ,m).

The metavariable η̇ is used to range over extended method environments; think of the dot as a
reminder that interfaces are included.

3.3 Dynamic vs Static Semantics

Mathematically modeling supertype abstraction is essentially about modeling a reasoning pro-
cess that uses static type information for method calls and comparing that to the actual (dynamic)
semantics of the programming language. In our prior work [17] we avoided committing to a par-
ticular verification technique by using an imaginary semantics for the language that runs method
calls using a state transformer for a called method that is based on a specification table, given
statically, and the static types of receivers. Thus, following this prior work, we will work with two
different semantics for Java:

– D[[·]], the dynamic dispatch semantics, which is the operationally accurate and models dy-
namic dispatch for method calls, and

– S[[·]], the static dispatch semantics, which models static reasoning by using a static dispatch
semantics based on method specifications as the semantics for method calls.

These semantics differ primarily in the way they treat method calls.
The dynamic dispatch semantics of method call expressions is as follows [17]:

D[[Γ ` x .m(y) :U ]](η)(r , h, s)
def
=

if s(x ) = null
then except(r , h,U ,NullPointerException)
else let K = r(s(x )) in let z = formals(K ,m) in

let s1 = [this : s(x ), z : s(y)] in (η(K ,m))(r , h, s1).

(3)

This semantic function’s definition makes use of a helping function except , that returns a state
that has the reference context and heap passed to it along with res bound to null and exc bound
to a new object of type NullPointerException [17]. The auxiliary function formals returns
the list of formal parameter names for a method. Note that in this semantics, K is the dynamic
type of the receiver x and η(K ,m) is the meaning of the method m in the method environment,
η. That method meaning is applied to a state, (r , h, s1), which has bindings for this and the
formal parameters (z ).

The static dispatch semantics of a method call uses the receiver’s static type (T below) and a
method meaning taken from an extended method environment, η̇, which is ultimately determined
by specifications [17]:

S[[Γ ` x .m(y) :U ]](η̇)(r , h, s)
def
=

if s(x ) = null
then except(r , h,U ,NullPointerException)
else let T = Γ (x ) in let z = formals(T ,m) in

let s1 = [this : s(x ), z : s(y)] in (η̇(T ,m))(r , h, s1).

(4)
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Note that in the static dispatch semantics, not only is the method meaning taken from an ex-
tended method environment, but the type used to look up the method is based on the context (type
environment) Γ , so the meaning can be determined statically.

There are both dynamic and static semantics for other expressions and statements, D[[·]] and
S[[·]], which are constructed with identical definitions, except for their treatment of method call
expressions.

The method environment for a program is constructed, using the dynamic disptach semantics
D, from the program’s declarations (i.e., from the program’s class table). Since methods may be
mutually recursive, a chain of approximations is used to reach a fixed point [17,27]. We write
D[[CT ]] for the method environment that is the least upper bound of this fixed point.

4 Specification Semantics

In order to formalize behavioral subtyping and supertype abstraction, we need to formalize spec-
ifications and refinement of specifications.

Recall that we think of the meaning of predicates as sets of states. For example, the meaning of
the predicate x>y is {(r , h, s) | s(x) > s(y)}. As another example, the meaning of the predicate
this.num>0 would be {(r , h, s) | o = s(this), (h(o))(num) > 0}.

To consider the relationship between specifications in supertypes and subtypes, we need a
notion of subtyping for contexts and state transformers.

Subtyping for type contexts, Γ ≤ ∆, holds when the domains of Γ and ∆ are equal and for
each x in their domain, Γ (x ) ≤ ∆(x ). Since a subtype relation between types, S ≤ T , implies
that for each ref context r , Val(S , r) ⊆ Val(T , r), states for Γ are a subset of the states for ∆
when Γ ≤ ∆:

Γ ≤ ∆ ⇒ State(Γ ) ⊆ State(∆). (5)

Subtyping for state transformer types follows the usual contravariant rule [6]:

(Γ  Γ ′) ≤ (∆ ∆′)
def
= (∆ ≤ Γ ) ∧ (Γ ′ ≤ ∆′) (6)

4.1 Formalizing JML Specifications

In JML, postconditions specify a relationship between two states, by using the notation \old()
to refer to the pre-state. We formalize such specifications as a pair of a predicate and a relation.

Definition 3 (Specification in two-state form). Let Γ and Γ ′ be contexts, Then (P ,R) is a
specification in two-state form of type Γ  Γ ′ if and only if P is a predicate on State(Γ ) and R
is a relation between State(Γ ) and State(Γ ′).

However, Hoare logic typically uses one-state specifications, where each assertion only refers
to a single state, as in our semantics for predicates above. JML does have a way to turn two-state
postconditions into one-state postconditions, by using universal quantification over a specifica-
tion.

Example 8. For example, the specification of AbsCounter’s method inc in Fig. 15,

/*@ requires count < Integer.MAX_VALUE;
@ assignable count;
@ ensures count > \old(count); @*/

can be written with JML’s forall clause in an equivalent way as follows.
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/*@ forall int oldCount;
@ requires oldCount == count;
@ && count < Integer.MAX_VALUE;
@ assignable count;
@ ensures count > oldCount; @*/

The idea is that this specification applies for all values of oldCount that happen to equal the
pre-state value of count.

One must also remember that references to field names such as count mean this.count
in Java. Furthermore, since this is not available in the denotational semantics of the post-state,
one also needs to use a forall to save the value of this and thereby allow the postcondition
to access its fields. (This works because this cannot be changed by commands.) Thus the above
should be rewritten as follows.

/*@ forall int oldCount; forall AbsCounter oldThis;
@ requires oldThis == this && oldCount == this.count
@ && this.count < Integer.MAX_VALUE;
@ assignable oldThis.count;
@ ensures oldThis.count > oldCount; @*/

To approach Hoare logic even more closely, the formalization in the TOPLAS paper [17]
assumed that the meaning of JML’s assignable clauses could be written into the method’s post-
condition; these added postconditions would state that all locations that are not assignable are
unchanged. For example, if the only other location in the program is the field size, then the
above specification would be translated as follows into an equivalent specification.

/*@ forall int oldCount, oldSize; forall AbsCounter oldThis;
@ requires oldThis == this && oldCount == this.count
@ && oldSize == this.size
@ && this.count < Integer.MAX_VALUE;
@ ensures oldThis.count > oldCount
@ && oldThis.size == oldSize; @*/

(As can be seen from this example, this translation to eliminate assignable clauses is not modular,
as it depends on the locations in the rest of the program.)

Such specifications as last the one above, which have universally quantified variables, a pre-
condition, and a postcondition, are termed “general specifications” in our TOPLAS paper [17].

Definition 4 (General Specification). A general specification of type Γ  Γ ′ is a triple of form
(J , pre, post) such that:

1. J is a non-empty set,
2. pre is a J -indexed family of predicates over Γ -states, i.e., a function from J to the powerset

of State(Γ ), and
3. post is a J -indexed family of predicates over Γ ′-states, i.e., a function from J to the powerset

of State(Γ ′).

Example 9. Let Γ3 be [this :AbsCounter] and Γ ′3 be [res :void,exc :Throwable]. Let
Jcst be the set of triples of two integers and an AbsCounter reference. Let precst and postcst
be the functions defined by:

precst(oc, os, ot)
def
= {(r , h, s) | s(this) = ot , (h(ot))(count) = oc,

(h(ot))(size) = os, oc < MaxInt}
postcst(oc, os, ot)

def
= {(r , h, s ′) | (h(ot))(count) > oc, (h(ot))(size) = os}.
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(We assume that Integer.MAX_VALUE denotes MaxInt .) Then (Jcst , precst , postcst) is a gen-
eral specification of type Γ3 Γ ′3 that would be an appropriate meaning for the specification of
AbsCounter’s method inc (from Fig. 15) with the rewrites shown in Ex. 8.

As a general technique, one can use the entire pre-state as the index set J , which allows one
to access any features of the pre-state in postconditions [17]. This idea allows us to define an
operator for converting specifications in two-state form into general specifications.

Definition 5 (Translation from two-state to general specifications). Let (P ,R) be a specifica-
tion in two-state form of type Γ  Γ ′. Then the translation of (P ,R) into a general specification
of type Γ  Γ ′ is as follows.

〈〈P ,R〉〉 def= (J , pre, post)
where J = State(Γ )
and for all σ ∈ State(Γ ),

pre(σ) = {τ | τ = σ ∧ σ ∈ P}
post(σ) = {σ′ | (σ, σ′) ∈ R}

4.2 Satisfaction and Refinement

With the above semantics of Java and JML in hand, we can resume the study of their relationship.

4.2.1 Satisfaction The key relation is satisfaction of a method specification by its implementa-
tion; in the formal model this boils down to satisfaction of the meaning of a specification by the
meaning of a method implementation, which is a state transformer. For simple (pre/post) specifi-
cations (P ,Q) of type Γ  Γ ′, a state transformer ϕ :∆ ∆′, whose type is a subtype of the
specification’s, ∆ ∆′ ≤ Γ  Γ ′, we say that ϕ satisfies (P ,Q), written ϕ |= (P ,Q), if and
only if for all σ ∈ State(Γ ), σ ∈ P ⇒ ϕ(σ) ∈ Q . The definition for general specifications is
analogous [17].

Definition 6 (Satisfaction). Let (J , pre, post) be a general specification of type Γ  Γ ′. Let
ϕ :∆ ∆′ be a state transformer, where ∆ ∆′ ≤ Γ  Γ ′. Then ϕ satisfies (J , pre, post),
written ϕ |= (J , pre, post), if and only if for all j ∈ J , and for all σ ∈ State(Γ ),

σ ∈ pre(j )⇒ ϕ(σ) ∈ post(j ).

This definition of satisfaction is a total correctness one, since the resulting state of a state
transformer, ϕ(σ), must be defined.

Example 10. Consider the general specification (Jcst , precst , postcst) from Ex. 9, which has the
type:

[this :AbsCounter] [res :void,exc :Throwable].

This is a formalization of the specification in AbsCounter for the method inc (from Fig. 15).
Consider also the state transformer ϕ3 from Ex. 4. This state transformer has type:

[this :Counter] [res :void,exc :Throwable].

However, the type of ϕ3 is not a subtype of the type of the specification, since Counter is a
subtype of AbsCounter, but for subtyping of transformer types the argument contexts should
be in a supertype relationship (as subtyping is contravariant on arguments) and the opposite is
true. Thus ϕ3 does not satisfy (Jcst , precst , postcst).
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4.2.2 Restrictions of Specifications The above example shows that the type of the receiver
argument (this) requires a careful treatment in an OO language like Java. The problem is that
the dynamic dispatch mechanism will guarantee that the receiver for a method m in class K has
a dynamic type that is a subtype of K , but the receiver’s type is part of the context that is used
to define the state spaces in the semantics, which leads to the subtyping problem in the above
example.

In what follows, we use the auxiliary function selftype, which is defined as:

selftype(r , h, s)
def
= r(s(this)).

Using selftype we can define two restrictions on predicates.

Definition 7 (Exact Restriction). Let T be a reference type and let Γ be a context which is
defined on this. If pre is a predicate on State(Γ ), then the exact restriction of pre to T , written
pre�T , is the predicate on State([Γ | this :T ]) defined by

σ ∈ (pre�T )
def
= selftype(σ) = T ∧ σ ∈ pre.

If (J , pre, post) is a general specification of type, ∆ ∆′, where this is in the domain
of ∆, then the exact restriction of (J , pre, post) to T , written (J , pre, post)�T , is the general

specification (J , pre ′, post) of type [∆ | this :T ] ∆′, where pre ′(j )
def
= pre(j )�T .

For simple specifications, (P ,Q)�T is (P�T ,Q).
As methods may be inherited in subtypes in Java, they may be applied to receivers that do not

have the exact type of the class in which they are defined. Thus it is useful to have a similar notion
that permits the type of this to be a subtype of a given type.

Definition 8 (Downward Restriction). Let T be a reference type and let Γ be a context that is
defined on this. If pre is a predicate on State(Γ ), then the downward restriction of pre to T ,
written pre�∗T , is the predicate on State([Γ | this :T ]) defined by

σ ∈ (pre�∗T )
def
= selftype(σ) ≤ T ∧ σ ∈ pre.

If (J , pre, post) is a general specification of type Γ  Γ ′ where this ∈ dom(Γ ), then the
downward restriction of (J , pre, post) to T , written (J , pre, post)�∗T , is the general specifica-

tion (J , pre ′, post) of type [Γ | this :T ] Γ ′, where pre ′(j )
def
= pre(j )�∗T .

Example 11. Consider the precondition specification (Jcst , precst , postcst) from Ex. 9, which has
the type:

[this :AbsCounter] [res :void,exc :Throwable].

The exact restriction (Jcst , precst , postcst)�Counter, is (Jcst , pre ′cst , postcst), where

pre ′cst(oc, os, ot)
def
= {(r , h, s) | s(this) = ot , (h(ot))(count) = oc,

(h(ot))(size) = os, oc < MaxInt
selftype(r , h, s) = Counter}.

Note that (Jcst , precst , postcst)�Counter, has the type

[this :Counter] [res :void,exc :Throwable].

Since the type of this exact restriction is the same as the type of ϕ3 from Ex. 4, the reader can
check that ϕ3 |= (Jcst , precst , postcst)�Counter.
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The downward restriction (Jcst , precst , postcst)�∗Counter is (Jcst , pre ′′cst , postcst), where

pre ′′cst(oc, os, ot)
def
= {(r , h, s) | s(this) = ot , (h(ot))(count) = oc,

(h(ot))(size) = os, oc < MaxInt
selftype(r , h, s) ≤ Counter}.

The reader can check that the type of this downward restriction is the same as the type of the state
transformer ϕ3 from Ex. 4, so that ϕ3 |= (Jcst , precst , postcst)�∗Counter.

4.2.3 Refinement of Specifications In general, a specification S2 refines a specification S1

if S2 restricts the set of correct implementations such that every correct implementation of S2

is a correct implementation of S1. The importance of this is that if a verifier uses S1, then any
conclusions it draws are valid for implementations that satisfy S2. This is exactly the property
that supertype abstraction should have to permit modular reasoning about OO programs, hence
refinement is key to the results reported in our TOPLAS paper [17].

Definition 9. Let spec1 be a specification of type Γ  Γ ′ and let spec2 be a specification of type
∆ ∆′ where ∆ ∆′ ≤ Γ  Γ ′. Then spec2 refines spec1, written spec2 w spec1, if and only
if for all ϕ :∆ ∆′,

(ϕ |= spec2)⇒ (ϕ |= spec1).

In terms of specifications, refinement can be characterized as follows [17].

Theorem 1. Let (I , pre, post) be a specification of type Γ  Γ ′ and let (J , pre ′, post ′) be a
specification of type ∆ ∆′ where ∆ ∆′ ≤ Γ  Γ ′. Then the following are equivalent:

1. (J , pre ′, post ′) w (I , pre, post),
2. ∀i ∈ I · ∀σ ∈ State(Γ ) ·

σ ∈ pre(i)
⇒ ((∃j ∈ J · σ ∈ pre ′(j ))
∧ (∀τ ∈ State(∆′) ·

(∀j ∈ J · σ ∈ pre ′(j )⇒ τ ∈ post ′(j ))
⇒ τ ∈ post(i)))

Example 12. Imagine that in the abstract class AbsInterval the method pick was specified
as follows:

//@ forall AbsInterval othis;
//@ requires this.lb < this.ub;
//@ ensures othis.lb <= \result && \result <= othis.ub;
public /*@ pure @*/ abstract int pick();

This JML specification corresponds to the general specification (Jpai , prepai , postpai) of the type
[this :AbsInterval] [res :int,exc :Throwable], where

Jpai
def
= State([this :AbsInterval])

prepai(σ)
def
= {(r , h, s) | σ = (r , h, s), ot = s(this), (h(ot))(lb) < (h(ot))(ub)}

postpai(r , h, s)
def
=
{(r ′, h ′, s ′) | ot = s(this), r ⊆ r ′, h ⊆ h ′,

(h(ot))(lb) ≤ s ′(res), s ′(res) ≤ (h(ot))(ub)}

Consider the following JML specification for pick in the subtype Interval.
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//@ also
//@ forall Interval othis;
//@ requires this.lb < this.ub;
//@ ensures othis.lb == \result;
public /*@ pure @*/ int pick() { /* ... */ }

This JML specification corresponds to the general specification (Jpi , prepi , postpi), which has
type [this :Interval] [res :int,exc :Throwable], where

Jpi
def
= State([this :Interval])

prepi(σ)
def
=
{(r , h, s) | σ = (r , h, s), ot = (h(ot))(s(this)),

(h(ot))(lb) < (h(ot))(ub)}

postpi(r , h, s)
def
=
{(r ′, h ′, s ′) | r ⊆ r ′, h ⊆ h ′,

(h(ot))(lb) = s ′(res), s ′(res) < (h(ot))(ub)}

Then (Jpi , prepi , postpi) w ((Jpai , prepai , postpai)�Interval), since

ϕ |= (Jpi , prepi , postpi)⇒ ϕ |= (Jpai , prepai , postpai)�Interval.

To see this, let ϕ be such that ϕ |= (Jpi , prepi , postpi) and consider an arbitrary pre-state
(r , h, s) ∈ State([this :AbsInterval]) such that

(r , h, s) ∈ (prepai�Interval)(r , h, s).

The above means that (r , h, s) ∈ prepai(r , h, s) ∧ selftype(r , h, s) = Interval. It follows
that (r , h, s) ∈ State([this :Interval]) and (r , h, s) ∈ prepi(r , h, s). Let reference ot
be such that (s(this)) = ot . By assumption ϕ(r , h, s) ∈ postpi(r , h, s). Let (r ′, h ′, s ′) be
ϕ(r , h, s). Then by definition of postpi(r , h, s): r ⊆ r ′, h ⊆ h ′, (h(ot))(lb) = s ′(res), and
s ′(res) < (h(ot))(ub). It follows that (h(ot))(lb) ≤ s ′(res) and s ′(res) ≤ (h(ot))(ub),
so ϕ(r , h, s) = (r ′, h ′, s ′) ∈ postpai(r , h, s).

As in the above example, due to subtyping and inheritance, it is useful to consider combina-
tions of refinement with exact or downward restrictions of specifications (from supertypes). So
we make the following definitions [17].

Definition 10 (Refinement at a subtype). Let spec1 be a specification of type Γ  Γ ′, where
this ∈ dom(Γ ). Let spec2 be a specification of type [∆ | this :T ] ∆′, which is such that
([∆ | this :T ] ∆′) ≤ (Γ  Γ ′).

Then spec2 refines spec1 at exact subtype T , written spec2 wT spec1, iff spec2 w (spec1�T ).
Further, spec2 refines spec1 at downward subtype T , written spec2 w∗T spec1, if and only if

spec2 w (spec1�∗T ).

Example 13. Consider the specifications (Jpai , prepai , postpai) and (Jpi , prepi , postpi) from Ex. 12.
Since that example showed that

(Jpi , prepi , postpi) w ((Jpai , prepai , postpai)�Interval)

it follows that (Jpi , prepi , postpi) wInterval (Jpai , prepai , postpai). The reader can check
that it is also the case that (Jpi , prepi , postpi) w∗Interval (Jpai , prepai , postpai).

It happens that the downward restriction of a specification refines the exact restriction of that
specification (at the same type), and so downward refinement implies exact refinement [17]. Thus
downward refinement is a stronger notion than exact refinement.

Corollary 1. Let spec1 be a specification of type Γ Γ ′, where this ∈ dom(Γ ). Let spec2 be a
specification of type [∆ | this :T ] ∆′, which is such that ([∆ | this :T ] ∆′) ≤ (Γ Γ ′).

Then spec2 w∗T spec1 implies spec2 wT spec1.
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5 Supertype Abstraction

Armed with the understanding of the semantics of specifications and programs discussed above,
we can return to the topic of supertype abstraction and its soundness and completeness.

Recall that we want verification to be modular, so that one can verify OO programs in a way
that will remain valid when new subtypes are added to the program. In addition, for the verification
technique to be practical, it should be able to verify one method at a time, using the specifications
of all other methods (to allow for mutually-recursive methods).

5.1 Specification Tables

The method specifications available in a program are modeled [17] in a specification table, ST ,
which is a function from pairs of reference types and method names to general specifications.
That is, for all reference types T and method names m such that mtype(T ,m) = x :U → V :

ST (T ,m) : [this :T , x :U ] [res :V ,exc :Throwable]. (7)

An element of ST , ST (T ,m) is a general specification, and thus models the meaning of specifi-
cation of m in type T , taking into account all of the specification language’s semantics.

Each method in a program should satisfy its specification; this can be summarized by saying
that the method environment satisfies the specification table.

Definition 11 (Satisfaction of ST by a method environment). Let ST be a specification table.
An extended method environment η̇ satisfies ST , written η̇ |= ST , if and only if for all refer-

ence types T and method names m ∈ Meths(T ), η̇(T ,m) |= ST (T ,m).
A normal method environment η satisfies ST , written η |= ST , if and only if for all class

types K and methods m ∈ Meths(K ), η(K ,m) |= ST (K ,m).

5.2 Modular Verification

Verification is modular with respect to methods if it relies on the specifications of called methods,
from the specification table for a program, not on the code of those methods (from the class table).
The main advantage of modular verification is that it is scalable, since verification can proceed
one method at a time and does not depend on how many other methods are called in a method
(or how deep the call graph is in a program). Another advantage is that modular verification does
not need to be changed when the code changes. For example, code in a method may be changed
in any way (e.g., to make it more efficient), and as long as it correctly implements the method’s
specification (and that specification is unchanged), then verification of method calls that uses that
method does not need to change. Another important example is that one should be able to add
new subtypes to a program without re-verifying it. The main disadvantage of modular verification
is that when the specifications used (to make it modular) are too weak, then one will not be able
to draw all the conclusions that might be valid operationally.

In Java all code is part of a method. If every method has a (JML) specification, then satisfaction
of the specification table means that the program is correct. That is, a program with class table
CT and specification table ST is correct if and only if D[[CT ]] |= ST , i.e., when the method
environment constructed by the dynamic semantics satisfies the specification table, so that every
method correctly implements its specification. This models the way a verification logic would
prove the implementation of each method separately, using the specifications of all methods as
assumptions.

To formalize that reasoning is not dependent on method implementations, but only relies on
the specifications of methods, one can quantify over all correct method implementations, as in the
following.
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Definition 12. Let ST be a specification table, let Γ be a context, and let C be a command that
type checks in the context Γ , i.e., Γ ` C . Then C modularly satisfies spec with respect to ST ,
written ST , (Γ ` C ) |=D spec, if and only if for all η ∈ MethEnv ,

(η |= ST )⇒ (D[[Γ ` C ]](η) |= spec).

We will use a similar notation for any phrase-in-context (i.e., typing judgment), P , so that
ST ,P |=D spec if and only if in every correct method environment for ST , D[[P]](η) |= spec.
The idea is that modular satisfaction can only depend on the specifications in ST , since all correct
method environments must satisfy the specification.

Example 14. Let ST be such that ST (AbsCounter,inc) is the general specification from
Ex. 9: (Jcst , precst , postcst). Let Γ3 and Γ ′3 be as in Ex. 9. Let the command Cinc be as follows.

this.count = this.count+1;

Then Γ3 ` C is a valid typing judgment. Let η be a method environment that satisfies ST and
in particular η(AbsCounter,inc) is the state transformer ϕ3. Since Cinc does not involve any
method calls, the following is independent of the type environment η.

D[[Γ3 ` C ]](η)(r , h, s) = (r , h ′, s ′)
where s ′ = [res : it,exc : null]

and ot = h(s(this))
and h ′ = [h | ot : [h(ot) | count : ((h(ot))(count)) + 1]]

Then ST , (Γ3 ` C ) |= (Jcst , precst , postcst) follows (ignoring overflow and the field size,
which is mentioned in the specification).

More interesting examples involve method calls. For example, the verification shown in Fig. 4
is modular, as it only uses the specifications from IntSet to verify several commands in se-
quence. We formalize such modular reasoning using the specifications associated with static types
as follows [17].

Definition 13. Let ST be a specification table. Let P be a phrase-in-context. Let spec be a
specification. Then P modularly satisfies spec with respect to ST under static dispatch, written
ST ,P |=S spec, if and only if for all extended method environments η̇ ∈ XMethEnv ,

(η̇ |= ST )⇒ (S[[P]](η̇) |= spec).

5.3 Supertype Abstraction

Supertype abstraction allows one to prove modular correctness using the static dispatch seman-
tics. What we call strong supertype abstraction is formalized as modular satisfaction under static
dispatch implying modular satisfaction [17].

Definition 14 (strong supertype abstraction). Let ST be a specification table. Then ST allows
strong supertype abstraction if and only if for all phrases-in-context P and specifications spec,

(ST ,P |=S spec)⇒ (ST ,P |=D spec).

Specification tables that allow strong supertype abstraction thus have the property that one
can reason in a modular way using just specifications based on static type information, and yet
can draw conclusions that are dynamically valid, in spite of subtyping and dynamic dispatch.

Of course, we would like to reason in a way that is more economical than considering all
possible extended method environments. The approach for doing this is to use specifications in
reasoning, as in JML.
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5.4 Supertype Abstraction and Behavioral Subtyping

Leaving aside many technical details, we can point to the main theoretical result of our TOPLAS
paper [17].

One approach to more economical reasoning is to treat calls of the form x .m(y), where x has
static type T as indicated in the introduction as predicate transformers. If ST (T ,m) is the simple
specification (pre, post), then the call can be treated as a specification statement that asserts pre
and then assumes post , which in JML can be written as follows.

requires pre;
ensures post;

Following the TOPLAS paper [17], we can give semantics to such specification statements
as weakest precondition (wp) predicate transformers, which map postconditions to the weakest
preconditions that guarantee the postcondition will be reached. Recall that one can think of predi-
cates as set of states, so a predicate transformer can also be thought of as mapping sets of states to
sets of states. We write {[(pre, post)]} for the weakest precondition predicate transformer above
that maps the predicate post to the predicate pre. One can also think of this as mapping the set of
all states that satisfy post to the set of all states that satisfy pre.

The weakest precondition transformer for a general specification [17] (J , pre, post) of type
Γ  Γ ′, written {[(J , pre, post)]}, is defined such that for any state σ and predicate Q :

σ ∈ {[(J , pre, post)]}(Q)
def
= (∃j ∈ J · σ ∈ pre(j ))
∧(∀τ · (∀i ∈ J · σ ∈ pre(i)⇒ τ ∈ post(i))⇒ τ ∈ Q)

The TOPLAS paper used such wp predicate transformers to define an environment of predicate
transformers derived from the specifications of each method. That is, the method environment,
{[ST ]}, is such that for all types T and method names m , the transformer for the method m in
type T is the weakest precondition predicate transformer that corresponds to the specification of
that method:

{[ST ]}(T ,m)
def
= {[ST (T ,m)]}.

This extended method environment is called the least refined specification table [17].
The least refined specification table and predicate transformers provide another characteri-

zation of modular verification [17]. This notion of modular verification uses a static dispatch
predicate transformer semantics (S{[·]}) and the least refined specification table that satisfies ST
({[ST ]}), to avoid quantifying over all extended method environments.

Definition 15 (Modular Verification). Let ST be a specification table. Let Γ be a type con-
text that type checks a command C , i.e., Γ ` C . Let spec be a specification of type Γ  
[Γ , exc :Throwable]. Then C is modularly verified for spec with respect to ST if and only if

S{[Γ ` C ]}({[ST ]}) w {[spec]}.

Supertype abstraction means that one can establish modular correctness using supertype spec-
ifications and static type information. Our TOPLAS paper [17] formalized this in two ways. Weak
supertype abstraction uses the idea of modular verification above.

Definition 16 (Weak supertype abstraction). Let ST be a specification table. Then ST allows
weak supertype abstraction if and only if for every phrase-in-context P and every specification
spec:

(S{[P]}({[ST ]}))⇒ (ST ,P |=D spec).
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We explained the notion of strong supertype abstraction above (Def. 14). Strong supertype
abstraction says that any conclusions drawn using the static dispatch semantics are valid using the
dynamic dispatch semantics. Thus strong supertype abstraction generalizes from any particular
reasoning technique.

Behavioral subtyping is a property of a specification table, as it relates the specifications of
subtypes to their supertypes. There are two notions of behavioral subtyping, corresponding to
exact refinement and downward refinement of specifications.

Behavioral subtyping means that each overriding method in a class K refines the specification
of that method at exact type K (i.e., assuming that the type of this is equal to K ).

Definition 17 (Behavioral Subtyping). Let ST be a specification table. Then ST has behavioral
subtyping if and only if for all reference types U , method names m ∈ Meths(U ) and classes K :

(K ≤ U )⇒ (ST (K ,m) wK ST (U ,m)).

Robust Behavioral subtyping means that each overriding method in a class K downward
refines the specification of that method at type K (i.e., assuming that K is an upper bound on the
type of this).

Definition 18 (Robust Behavioral Subtyping). Let ST be a specification table. Then ST has ro-
bust behavioral subtyping if and only if for all reference types U , method names m ∈ Meths(U )
and classes K :

(K ≤ U )⇒ (ST (K ,m) w∗K ST (U ,m)).

Note that in neither case is there any necessary relationship between specifications in inter-
faces. Although JML insists that overriding methods in interfaces (downward) refine the specifi-
cations in the interfaces that they override, this is not needed for such specifications that appear
in interfaces. What is needed is that overriding methods in classes refine all specifications in their
supertypes (including interfaces).

Practical examples seem to have robust behavioral subtyping, which corresponds to what JML
enforces. Even Parkinson and Bierman’s Cell and DCell examples [25], which make liberal
use of a selftype primitive in specifications, exhibit robust behavioral subtyping [17, Ex 8.5].

Since downward refinement is stronger than exact refinement, robust behavioral subtying im-
plies behavioral subtyping [17].

The main result in our TOPLAS paper is the following theorem [17, Theorem 8.15].

Theorem 2. Let ST be a specification table that is satisfiable. Then the following are equivalent:

1. ST has behavioral subtyping,
2. ST allows strong supertype abstraction, and
3. ST allows weak supertype abstraction.

6 Specification Inheritance

Because supertype abstraction is desirable for modular reasoning about OO programs, and be-
cause the validity of supertype abstraction is equivalent to specifications having behavioral sub-
typing, it is desirable to have a way to either: (a) check that specifications have behavioral sub-
typing, or (b) construct specifications with behavioral subtyping. Some authors (e.g., Findler and
Felleisen [8]) take the view that it is the responsibility of the specifier to ensure behavioral sub-
typing, and thus that tools should check that what has been specified satisfies some definition
of behavioral subtyping. An advantage of this approach is that specifiers will know exactly what
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specifications are being used for each type. A disadvantage is that writing such specifications may
be more work than with the other approach.

JML uses specification inheritance to force all subtypes to be behavioral subtypes [7,16],
which implicitly constructs specifications with behavioral subtyping. An advantage of this ap-
proach is that behavioral subtying is automatic. A disadvantage is that specifiers need to be aware
of how specifications are automatically constructed.

In this section we will explain the formal model of specification inheritance developed in our
prior work [17] and how it forces behavioral subtyping.

6.1 Joining Specifications

The idea of specification inheritance is that the obligations for a method should be inherited from
supertypes in a way that is similar to the way code is inherited. This makes the construction of
new subtypes easier, approaching the ease of constructing new subclasses in code.

The approach that is adopted in JML is due to Alan Wills, whose mechanism for Smalltalk
[32] combines method specifications from supertypes. The basic idea is simple: all the specifi-
cations from all supertypes are combined so that an implementation that satisfies the combined
specification also satisfies each inherited specification (considered separately). In JML a method
specification may have several “specification cases,” each of which can be formally modeled with
a general specification. Methods must correctly implement each of these specification cases [33].
Conversely, a client, when calling a method, may choose any of a method’s specification cases to
use when verifying a call to the method (by checking the precondition of that case and assuming
its postcondition).

Example 15. Consider the method pick, specified in both the interface IntSet and the subtype
Interval. The specifications of this method from Intset (see Fig. 1) and from Interval
(see Fig. 6) are combined by JML into the specification shown in Fig. 17. This combined speci-
fication has two specification cases, separated by also. The first specification case is the spec-
ification inherited from IntSet. The second specification case is the one added for the type
Interval.

//@ requires size() > 0;
//@ assignable state;
//@ ensures contains(\result);
//@ also
//@ requires lb <= ub;
//@ assignable state;
//@ ensures lb == \old(lb) && ub == \old(ub);
//@ ensures \result == (int)lb;
public int pick() { /* ... */ }

Fig. 17. The combined specification (for the class Interval) of the method pick.

This textual combination form is the source of the also that must precede added specifica-
tions in overriding methods in JML [19].

To connect the idea of specification inheritance to the formal model developed so far, we need
a way to combine several method specifications into one specification. This will also serve to
explain the meaning of how method specifications are combined. As with behavioral subtyping,
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however, one must be careful about typing. However, unlike the typing of specification refinement
related to behavioral subtyping, for specification inheritance the problem is not the type of this,
which can be handled by a (downward) restriction, but the type of the result.

Example 16. Imagine a method in a supertype T has a general specification (J , pre ′, post ′) of
type Γ  Γ ′. A subtype K can also write a specification for the same method, (I , pre, post)
of type ∆  ∆′. The type system ensures that (∆  ∆′) ≤ ([Γ | this :K ]  Γ ′), (i.e.,
[Γ | this :K ] ≤ ∆ and ∆′ ≤ Γ ′).

Suppose I ∩ J = ∅ and we combined these disjoint partial specifications to form the general
specification (I ∪ J , pre ∪ pre ′�∗K , post ∪ post ′) for the subtype’s method. This nearly formal-
izes the idea of combining specification cases [7,32], since a call can satisfy the precondition by
choosing either i ∈ I or j ∈ J such that pre(i) or pre ′(j )�∗K holds, and then, given the choice
for i or j , the corresponding postcondition can be assumed. Coversely, an implementation must
satisfy all these partial specifications, due to the definition of satisfaction of a general specification
by a predicate transformer (Def. 6), which requires the transformer to satisfy the specification for
each index.

However, this specification should have a type appropriate for the subtype, i.e., ∆  ∆′.
For the arguments, [Γ | this :K ] ≤ ∆, so for any j ∈ J , pre ′(j )�∗K ∈ State(∆), which
works. However, for the result ∆′ 6≤ Γ ′, since for some j ∈ J , post ′(j ) may not be contained in
State(∆′), so the postcondition cannot be inherited in this way.

The problem shown in the above example is the type of the method’s result. In a method
specification, the domain of the result context always contains just res and exc. The type of exc
is always Throwable, so that does not cause any difficulties. The problem is that in a supertype’s
method, the type of res may be a supertype of the type of the result type in the subtype’s method,
so post ′ needs to be strengthened to make the result have the type needed (∆′(res)). (Note that
if one writes code in the subtype for an overriding method, the type checker will ensure that the
result has the declared type, but that type might be a subtype of the declared type of the result in
the method being overridden.)

To solve this problem, our earlier work [17] used an operator e, defined as follows.

Definition 19 (Restricting Postconditions). Let X be a set of states of type State(Γ ′) and let
post ′ be a J -indexed family of predicates of type State(Γ ′). Then (post ′ e X ) is the J -indexed
family of predicates defined by:

(post ′ eX )(j )
def
= (post ′(j ) ∩X ).

This operator can be used to define the join of two general specifications with disjoint index
sets.

Definition 20 (Inheriting Join of Specifications). Suppose I and J are disjoint non-empty sets.
Let (I , pre, post) :∆  ∆′ where ∆(this) = T , and (J , pre ′, post ′) :Γ  Γ ′ be general
specifications such that ∆  ∆′ ≤ [Γ | this :T ]  Γ ′. Then the inheriting join of these
specifications, a general specification of type ∆ ∆′ is defined by:

(I , pre, post) t (J , pre ′, post ′)
def
= (I ∪ J , pre ∪ (pre ′�∗T ), post ∪ (post ′ e State(∆′)).

To illustrate this using the pick method’s specifications as in Ex. 15, a formal model of those
specifications is needed. Since the pick method’s specification involves pure method calls, we
define the following notation for evaluating Boolean expressions to help shorten the presentation
of these models.

beval[[Γ ` E ]](r , h, s)
def
= lets (r ′, h ′, s ′) = D[[Γ ` E :boolean]](r , h, s)

in if s ′(exc) = null then s ′(res) else ⊥
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The result of beval[[Γ ` E ]] in a given state will thus be either true or false (or ⊥).
To deal with index sets that may have a non-empty intersection, we define [17]:

I + J
def
= {(i , 0) | i ∈ I } ∪ {(j , 1) | j ∈ J}.

with injections inl : I → (I + J ) and inr : J → (I + J ) defined by inl(i) = (i , 0) and inr(j ) =
(j , 1).

Example 17. Consider the two specification cases for the pick method in Fig. 17.
Ignoring the assignable clauses, the first specification case (from IntSet) can be thought of

as the general specification of type Γis  Γir , (State(Γis), preis , postis), where the context Γis

is [this :IntSet], Γir = [res :int,exc :Throwable], and

preis(r , h, s)
def
= {(r , h, s) | beval[[Γis ` this.size()>0]](r , h, s)}

postis(r , h, s)
def
= {(r ′, h ′, s ′) | s ′(res) = n, s ′′ = [s , res :n], Γisr = [Γis , res :int],

beval[[Γisr ` this.contains(res)>0]](r , h, s ′′)}

The second specification case (from Interval) can modeled as the general specification of
type Γiv  Γir , (State(Γiv ), preiv , postiv ), where the context Γiv is [this :Interval], Γir is
as above, and (assuming long2int converts a value from a long to an int):

preiv (r , h, s)
def
= {(r , h, s) | s(this) = ot , (h(ot))(lb) ≤ (h(ot))(ub)}

postiv (r , h, s)
def
= {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(lb) = (h(ot))(lb),

(h ′(ot))(ub) = (h(ot))(ub),
s ′(res) = long2int((h ′(ot))(lb))}

So the inheriting join of the above two general specifications is

(State(Γiv ) + State(Γis),
(preiv ◦ inl−1) ∪ (preis�∗Interval ◦ inr−1),
(postiv ◦ inl−1) ∪ (postis ◦ inr−1)).

This general specification has type Γiv  Γir . The e operator is not needed to form the postcon-
dition in this case, as the same result context, Γir , is used for both specifications.

Thus the precondition of the join is equivalent to the following.

pre((r , h, s), 0) = {(r , h, s) | s(this) = ot , (h(ot))(lb) ≤ (h(ot))(ub)}
pre((r , h, s), 1) = {(r , h, s) | selftype(r , h, s) ≤ Interval,

beval[[Γis ` this.size()>0]](r , h, s)}

Similarly the postcondition of the join is equivalent to the following.

post((r , h, s), 0) = {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(lb) = (h(ot))(lb),
(h ′(ot))(ub) = (h(ot))(ub),
s ′(res) = long2int((h ′(ot))(lb))}

post((r , h, s), 1) = {(r ′, h ′, s ′) | s ′(res) = n, s ′′ = [s , res :n], Γisr = [Γis , res :int],
beval[[Γisr ` this.contains(res)>0]](r , h, s ′′)}

As in the above example, it is possible to combine the index sets of general specifications as
if they were disjoint, by using the operator + as shown above [17]. Thus the inheriting join can
always be used to combine general specifications.

The inheriting join is a “join” in the sense of lattice theory, as it is the least upper bound in the
refinement ordering.
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Lemma 1. Suppose I and J are disjoint sets (I , pre, post) is a general specification of type
∆ ∆′, ∆(this) = T , and (J , pre ′, post ′) is a general specification of type Γ  Γ ′ such that
∆ ∆′ ≤ [Γ | this :T ] Γ ′. Then the inheriting join (I , pre, post) t (J , pre ′, post ′) is the
least upper bound of (I , pre, post) and (J , pre ′, post ′eState(∆′)) with respect to the refinement
ordering for specifications of type ∆ ∆′. That is, for all spec :∆ ∆′,

spec w (I , pre, post) t (J , pre ′, post ′)

if and only if the following both hold:

spec w (I , pre, post),
spec w (J , pre ′, post ′ e State(∆′)).

As the above lemma states, the join of two specifications refines both of them. However,
satisfying two specifications simultaneously may be impossible.

Example 18. Consider the following JML specification, which has two specification cases.

//@ ensures \result == lb;
//@ also
//@ ensures \result == ub;
public abstract /*@ pure @*/ int pick();

These specification cases can be modeled formally as follows. Let the type context Γiv =
[this :Interval]. The first specification case is then modeled as (State(Γiv ), true, postlb),
where

postlb(r , h, s) = {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(lb) = s ′(res),
(h ′(ot))(lb) = (h(ot))(lb), (h ′(ot))(ub) = (h(ot))(ub)}

The second specification case is similarly modeled as (State(Γiv , true, postub), where

postub(r , h, s) = {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(ub) = s ′(res),
(h ′(ot))(lb) = (h(ot))(lb), (h ′(ot))(ub) = (h(ot))(ub)}

Since the index sets are the same (State(Γiv )), the join is the specification

(State(Γiv ) + State(Γiv ), true ◦ inl−1 ∪ true ◦ inr−1, postlb ◦ inl−1 ∪ postub ◦ inr−1).

This is equivalent to the general specification (State(Γiv )×{0, 1}, true, postc), where the family
of postconditions postc is equivalent to the following.

postc((r , h, s), 0) = {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(lb) = s ′(res),
(h ′(ot))(lb) = (h(ot))(lb), (h ′(ot))(ub) = (h(ot))(ub)}

postc((r , h, s), 1) = {(r ′, h ′, s ′) | s(this) = ot , (h ′(ot))(ub) = s ′(res),
(h ′(ot))(lb) = (h(ot))(lb), (h ′(ot))(ub) = (h(ot))(ub)}

However, postc is unsatisfiable. Why? Because an implementation will need to produce a state
with a fixed value for res; if it makes res be the value of lb, then it will not satisfy postc when
the state passed is paired with 1, but in the formal model it must satisfy postc for all indexes, as
the precondition is always satisfied. (One might think of the 0 or 1 passed in a pair with a state
as an input that the program cannot observe.) Thus, if the values of lb and ub can be different,
then it will not be possible to write a correct implementation of this specification, since the result
cannot simultaneously have two different values.
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In more detail, recall that an implementation is modeled as a state transformer, ϕ, which is a
function. To satisfy a general specification, such as (State(Γiv )×{0, 1}, true, postc), ϕ must be
such that for each ((r , h, s), j ) ∈ State(Γiv )× 0, 1, if σ |= true then ϕ(σ) |= postc((r , h, s), j ).
However, ifϕ(σ) |= postc((r , h, s), 0), so that res is lb’s value, thenϕ(σ) 6|= postc((r , h, s), 1),
assuming that ub’s value is different.

Expressed in JML, the join of two specification cases

//@ requires pre_1;
//@ ensures post_1;

and

//@ requires pre_2;
//@ ensures post_2;

is the JML specification

//@ requires pre_1 || pre_2;
/*@ ensures (\old(pre_1) ==> post_1)
@ && (\old(pre_2) ==> post_2); @*/

This combined specification [7,16,19,33], requires the implementation to satisfy both of the sep-
arate specification cases (which corresponds to the formal requirement that the specification be
satisfied at all indexes). Note that if both pre_1 and pre_2 are true, then both post_1 and
post_2 must hold.

Thus in JML, and in the formal model, the join of two specifications may be unsatisfiable. An-
other way of looking at this is that joining specifications can only add more constraints to a spec-
ification, and that may result in a specification that cannot be correctly implemented [7,16,17].

6.2 Constructing the Specification Table

Overall, the goal of specification inheritance, in our formal model, is to construct a specification
table that has behavioral subtyping. Thus we can state the goals of a technique for constructing a
specification table as follows [17]:

1. It should refine the written specifications,
2. It should have behavioral subtyping.
3. It should be the least refined specification table with these properties.
4. It should provide the most complete modular verification in the sense whenever conclusions

are modularly correct, then these conclusions can be verified using the technique.

Our TOPLAS paper [17] discussed several technical approaches to constructing a specification
table and compared each against the above goals.

Refinement for specification tables is defined pointwise, that is,

ST ′ w ST
def
= (∀T ,m · ST ′(T ,m) w ST (T ,m)). (8)

From this definition, it follows that if ST ′ w ST , then for all phrases-in-context P ,

ST ′,P |=S spec ⇒ ST ,P |=S spec.

One way to formalize the construction of a specification tables with behavioral subtyping is to
define a function that takes a specification table argument and returns a specification table based
on the argument, which has behavioral subtyping.



38 G. T. Leavens and D. A. Naumann

Definition 21 (Robust Class Inheritance). Let ST be a specification table. Then the specifica-
tion table rki(ST ) is defined for class names K and interface names I by:

(rki(ST ))(K ,m)
def
= t{ST (T ,m)�∗K | m ∈ Meths(T ),K ≤ T}

(rki(ST ))(I ,m)
def
= ST (I ,m)

The following is closest to what JML does.

Definition 22 (Robust Ref Type Inheritance). Let ST be a specification table. Then the speci-
fication table rrti(ST ) is defined for reference types U by:

(rrti(ST ))(U ,m)
def
= t{ST (T ,m)�∗U | m ∈ Meths(T ),U ≤ T}

A variant of the above uses exact restriction instead of a downward restriction.

Definition 23 (Exact Ref Type Inheritance). Let ST be a specification table. Then the specifi-
cation table erti(ST ) is defined for reference types U by:

(erti(ST ))(U ,m)
def
= t{ST (T ,m)�U | m ∈ Meths(T ),U ≤ T}

In our prior work, we showed that both of the robust flavors of inheritance produce speci-
fication tables that refine the original table: rki(ST ) w ST and rrti(ST ) w ST . However, it
is not the case that erti(ST ) refines ST , because in general exact restrictions do not produce
refinements.

Both robust flavors of inheritance produce specification tables with robust behavioral sub-
typing, although etri only produces a specification table with behavioral subtyping (not robust
behavioral subtyping). It turns out [17] that if rki(ST ) is satisfiable, then it is the least refinement
of ST that is satisfiable and has robust behavioral subtyping. So rki satisfies our first three goals.
However, rrti also satisfies these first three goals and also provides the most complete modular
verification [17].

7 Conclusions

Supertype abstraction allows for modular reasoning about OO programs that is both powerful
and simple. In combination with rewriting code to use downcasts, it can be used to reach any
conclusions that an exhaustive case analysis could.

Our definition of behavioral subtyping [17] is both necessary and sufficient for sound super-
type abstraction.

Robust behavioral subtyping, which itself implies behavioral subtyping, can be obtained by
specification inheritance.

7.1 Future Work

Our prior work [17] did not give a modular treatment of framing and how to modularly specify
and verify frame conditions in OO programs. Thus an important area of future work is to provide
such a modular treatment of framing with supertype abstraction and behavioral subtyping. This
work would benefit practical tools. Yuyan Bao has been working on solving this problem [5].

An interesting line of future work would be to conduct human studies with programmers to
see what the true advantages and disadvantages of using supertype abstraction are for reasoning
about OO programs.
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Notations

As an aid to the reader, we present a table of defined notations in Fig. 18 on the next page.
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Notation description Location
(P ,Q) simple specification Section 2.2
{P} C {Q} Hoare Triple Section 2.2
σ state Section 2.2
σ |= {P} C {Q} {P} C {Q} is valid in σ Section 2.2
|= {P} C {Q} {P} C {Q} is valid Section 2.2
Impls(P ,Q) set of commands that implement (P ,Q) Section 2.2
(P ′,Q ′) w (P ,Q) Def. Def. 2
CT class table Section 3.2
≤ subtype of relation Section 3.2
res distinguished variable for normal results Section 3.2
exc distinguished variable for exceptions Section 3.2
r reference context Section 3.2
Γ,∆ context (type environment) Section 3.2
s, t store Section 3.2
h heap Section 3.2
σ state Section 3.2
ϕ,ψ state transformers Section 3.2
Γ  Γ ′ state transformer type Section 3.2
η method environment Section 3.2
η̇ extended method environment Section 3.2
D[[·]] dynamic dispatch semantics Section 3.3
S[[·]] static dispatch semantics Section 3.3
(J , pre, post) general specification Def. 4
ϕ |= spec ϕ satisfies spec Section 4.2 and Def. 6
pre�T exact restriction of pre Def. 7
(J , pre, post)�T exact restriction of (J , pre, post) Def. 7
spec�∗T downward restriction of spec Def. 8
spec2 wT spec1 spec2 refines spec1 at exact subtype T Def. 10
spec2 w∗T spec1 spec2 refines spec1 at downward subtype T Def. 10
ST specification table Section 5.1
P phrase in context (typing judgment) Section 5.2
η̇ |= ST η̇ satisfies ST Def. 11
ST , (Γ ` C ) |=D spec C modularly satisfies spec with respect to ST Def. 12
{[(J , pre, post)]} weakest precondition (wp) transformer Section 5.4
{[ST ]} least refined specification table Section 5.4
S{[·]} static dispatch wp predicate transformer Section 5.4
(post eX ) postcondition restriction Def. 19
spec1 t spec2 inheriting join of spec1 and spec2 Def. 20
rki(ST ) robust class inheritance Def. 21
rrti(ST ) robust ref tyep inheritance Def. 22
erti(ST ) exact ref type inheritance Def. 23

Fig. 18. Table of notations used in this paper.
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