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Dimension Polynomials and the Einstein’s Strength of Some
Systems of Quasi-linear Algebraic Difference Equations
Alexander Evgrafov', Alexander Levin?

We present a difference algebraic technique for the evaluation of the Einstein’s strength
of quasi-linear partial difference equations and some systems of such equations. Our ap-
proach is based on the properties of difference dimension polynomials that express the Ein-
stein’s strength and on the characteristic set method for computing such polynomials. The
obtained results are applied to the comparative analysis of difference schemes for some chem-
ical reaction-diffusion equations.
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1 Preliminaries

Let K be an inversive difference field with a basic set of automorphisms o = {a1, ..., }
and I" the free commutative group generated by o. If v = o/f '...akfm €T, then the number
ordy = I, |k;| is called the order of y; if r € N, we set I'(r) = {y € I'| ordy < r}.
In what follows we denote the set {a, ..., am, ozl_l, ...,a1} by o* and use the prefix o*-
instead of “inversive difference”. A reflexive difference ideal will be refer to as a o*-ideal.

Let R = K{yi1,...,yn}" be the ring of o*-polynomials in n o*-indeterminates over
K. (Asaring, R = K[{yyi|y € T, 1 < i < n}]) An n-tuple £ = (&,...,&,) with
coordinates in some o*-overfield K’ of K is said to be a solution of the set of o*-polynomials
F ={f;|j € J} C R orasolution of the system of algebraic difference equations

if F' is contained in the kernel of the natural difference K -homomorphism (“substitution”)
R — K’ (y; — &). The system (1) is called prime if the oc*-ideal P generated by the set I’
in R (it is denoted by [F]*) is prime. In this case the quotient field L of R/P has a natural
structure of a finitely generated o*-field extension of K: L = K(n,...,n,)* where n; is
the canonical image of y; in L. (As afield, L = K({y(n;) |y € T, 1 < i < n}).) Asitis
proven in [3, Section 6.4], there exists a polynomial ¢, (t) € Q[t] such that

bp (1) = tr.degr K({yn;|y € I'(r), 1 < j < n}) for all sufficiently large r € Z.

This polynomial is called the o*-dimension polynomial of the o*-field extension L/K
associated with the system of o*-generators 7 = {n1,...,n,}. It is also said to be the o*-
dimension polynomial of system (1). We refer to [3, Chapter 6] and [4, Chapters 4 and 7] for
properties, invariants, and methods of computation of o*-dimension polynomials.

Let us consider a system of equations in finite differences with respect to unknown func-
tions of m real (or complex) variables zi,...,x,, that induces a prime system of alge-
braic difference equations. (The m basic automorphisms are defined by the shifts of the



arguments: for any function g(z1,...,%m), @; : g(x1,...,Tm) — g(x1,...,Ti—1,2; +
hi,Tit1,...,Ty) where hy, ..., h,, are some real (or complex) numbers.) It is shown in [4,
Section 7.7] that the o*-dimension polynomial of such a system expresses its strength in the
sense of A. Einstein. This important characteristic of the system is a difference counterpart
the concept of strength of a system of PDEs introduced in [1], see [4, Section 7.7] for details.

2 Autoreduced sets of quasi-linear o*-polynomials.
Computation of the Einstein’s Strength

With the above notation, let 'Y = {~y;|y € ', 1 < i < n} C R; the elements of this set are
called terms. The order ord u of a term u = ~yy; is defined as the order of .

In what follows we consider the set Z™ as the union of 2" orthants ng) 1<y <2m),
that is, Cartesian products of m factors each of which is either N = {k € Z, k > 0} or
Z. ={keZk <0} WesetD; = {a¥ .. .afm € T|(k1,...,kn) € Z§m)} and
CY); ={vyi|lv€T;,1 <i<n} sothatl'Y = U?;(Fy)j- Atermov € I'Y is called a
transform of a term u € I'Y if u and v belong to the same set (I'Y"); and v = ~yu for some
v € I';. We also fix an orderly ranking on I'Y, that is, a well-ordering < of I'Y such that
(@) Ifue (I'Y);andy € T'y, then u < ~yu; (ii) If u,v € (TY),;, v < vandy € T';, then
yu < vv; (iii) If u,v € T'Y and ord u < ord v, then v < v.

If A € R, then the greatest (with respect to <) term in A is called the leader of A; it is
denoted by u 4. If d = deg,, , A and A is written as a polynomial in u 4, then the coefficient
of u4 is called the initial of A and is denoted by I4. If d = 1 then the o*-polynomial A is
called quasi-linear.

Let A, B € R. The o*-polynomial A is said to be reduced with respect to B if A does not
contain any power of a transform yup whose exponent is greater than or equal to deg,, , B.
If AC R\ K, then a o*-polynomial A € R, is said to be reduced with respect to A if A is
reduced with respect to every element of A. A set A C R is said to be autoreduced if either
A =0 or A K = () and the elements of A are reduced with respect to each other. As it
is shown in [3, Section 3.4], distinct elements of an autoreduced set A have distinct leaders
and every autoreduced set is finite. Furthermore, if A € R, then there exists a o*-polynomial
B € R such that B is reduced with respect to A and I B = A(mod|.A]*) where I is a product
of transforms of initials of elements of A. (We say that A reduces to B modulo A.)

Let A, B € R. We say that A has higher rank than B and write tk A > rk B if either
A¢ K, Be K,orugp < ua,orus = ug and deg,,, B < deg, , A. If us = up and
deg,, A = deg, , B, we say that A and B have the same rank and write tk A = rk B.
Assuming that elements of an autoreduced set in R are arranged in the order of increasing
rank, we compare such sets as follows: if A = {A,..., Ay} and B = {B1,..., By}, then A
is said to have lower rank than B if either there exists k € N, 1 < k < min{p, ¢}, such that
rk A; =rk B; fori < kandrk Ay <tk Bg,orp > qgandrk A; =rkB; fori =1,...,q.

By [3, Proposition 3.4.30], every nonempty family of autoreduced sets contains an au-
toreduced set of lowest rank. If P is an ideal of R, then an autoreduced subset of P of lowest
rank is called a characteristic set of P. Basic properties of characteristic sets are described in
[4, Section 2.4]. In particular, it is shown that if P is generated by the o*-polynomials in the
left-hand sides of a prime system of difference equations (1) and A is a characteristic set of
P, then the o*-dimension polynomial of the system is determined by the leaders of elements
of A. Therefore, the strength of a prime system of difference equations is determined by a
characteristic set of the associated o*-ideal in the ring of ¢*-polynomials.



An autoreduced subset A of R consisting of quasi-linear o*-polynomials is called coher-
ent if it satisfies the following two conditions: (i) If A € A and v € T, then v A reduces to
zero modulo A; (i) If A, B € Aand v = y3u4 = 7oup is a common transform of u 4 and
up, then the o*-polynomial (y215)(v1A4) — (7114)(72B) reduces to zero modulo A.

The following two statements are the main results that allow one to evaluate the Ein-
stein’s strength of difference equations that arise from difference schemes for some chemical
reaction-diffusion equations arising in many problems of transfusion, see [2].

Theorem 1. If a characteristic set A of some o*-ideal in R consists of quasi-linear o*-
polynomials, then A is a coherent autoreduced set. Conversely, if A is a coherent autoreduced
set consisting of quasi-linear o*-polynomials, then it is a characteristic set of [ A]*.

Theorem 2. Let < be a preorder on R such that Ay < As iff ua, is a transform of u a,. Let
A be a quasi-linear o*-polynomial and T A = {yA |~ € T'}. Then the o*-ideal [ A]* is prime
and all minimal (with respect to <) elements of I' A form a characteristic set of [ A]*.

Using the last two theorems and the expression of the o*-dimension polynomial given in
[3, Theorem 6.4.8], we obtain o*-dimension polynomials that express the Einstein’s strength
of difference schemes for some quasi-linear reaction-diffusion PDEs (e. g., the Murray’s
equation and its particular cases), the system of PDEs of chemical reaction kinetics with
the diffusion phenomena and the mass balance PDEs of chromatography. The results of the
corresponding computations allow one to do comparative analysis of alternative difference
schemes from the point of view of their strength.
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