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ABSTRACT

We use the method of characteristic sets with respect to two term or-

derings to prove the existence and obtain a method of computation

of a bivariate dimension polynomial associated with a non-reflexive

difference-differential ideal in the algebra of difference-differential

polynomials with several basic derivations and one translation. As

a consequence, we obtain a new proof and a method of computation

of the dimension polynomial of a non-reflexive prime difference

ideal in the algebra of difference polynomials over an ordinary dif-

ference field. We also discuss applications of our results to systems

of algebraic difference-differential equations.
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1 INTRODUCTION

The role of dimension polynomials in differential and difference

algebra is similar to the role of Hilbert polynomials in commutative

algebra and algebraic geometry. An important feature of such po-

lynomials is that they describe in exact terms the freedom degree

of a continuous or discrete dynamic system as well as the number

of arbitrary constants in the general solution of a system of partial

algebraic differential or difference equations. The notion of a dif-

ferential dimension polynomial was introduced by E. Kolchin [6]

who proved the following fundamental result.

Theorem 1.1. Let K be a differential field (Char K = 0), that is,

a field considered together with the action of a set ∆ = {δ1, . . . ,δm }
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of mutually commuting derivations of K into itself. Let Θ denote

the free commutative semigroup of all power products of the form

θ = δ
k1
1 . . . δ

km
m (ki ≥ 0), let ord θ =

∑m
i=1 ki , and for any r ≥ 0,

let Θ(r ) = {θ ∈ Θ | ord θ ≤ r }. Furthermore, let L = K ⟨η1, . . . ,ηn⟩∆
be a differential field extension of K generated by a finite set η =

{η1, . . . ,ηn }. (As a field, L = K({θηj |θ ∈ Θ, 1 ≤ j ≤ n}). )

Then there exists a polynomial ωη |K (t) ∈ Q[t] such that

(i) ωη |K (r ) = trdeдKK({θηj |θ ∈ Θ(r ), 1 ≤ j ≤ n}) for all suffi-

ciently large r ∈ Z;

(ii) degωη |K ≤ m and ωη |K (t) can be written as ωη |K (t) =
m
∑

i=0

ai

(

t + i

i

)

where a0, . . . ,am ∈ Z;

(iii) d = degωη |K , am and ad do not depend on the choice of the

system of ∆-generators η of the extension L/K (clearly, ad , am if and

only ifd < m, that is am = 0). Moreover, am is equal to the differential

transcendence degree of L over K , that is, to the maximal number of

elements ξ1, . . . , ξk ∈ L such that the set {θξi |θ ∈ Θ, 1 ≤ i ≤ k} is

algebraically independent over K .

The corresponding dimension polynomials of difference and

difference-differential field extensions were introduced in [9] and

[14]. The importance of these characteristics is determined by at

least three factors. First, for a wide class of algebraic differential

(respectively, difference or difference-differential) equations, the di-

mension polynomial of the corresponding field extension expresses

the strength of the system of equations in the sense of A. Einstein.

In the case of a system of partial differential equations, this concept,

introduced in [2] as an important qualitative characteristic of a sy-

stem, was expressed by a certain differential dimension polynomial

in [16]; the corresponding algebraic interpretations of the strength

of systems of difference and difference-differential equations were

obtained in [8, Sect. 6.4] and [12, Sect. 7.7]. Second, the dimen-

sion polynomial associated with a finitely generated differential,

difference or difference-differential field extension carries certain

birational invariants, that is, numbers that do not change when

we switch to another finite system of generators of the extension.

These invariants are closely connected with some other impor-

tant characteristics; for example, one of them is the differential

(respectively, difference or difference-differential) transcendence

degree of the extension. Finally, properties of dimension polyno-

mials associated with prime differential (respectively, difference or

difference-differential) ideals provide a powerful tool in the dimen-

sion theory of the corresponding rings (see, for example, [4], [5],

[8, Ch.7], and [15]).

In this paper we adjust a generalization of the Ritt-Kolchin met-

hod of characteristic sets developed in [13] to the case of (non-

inversive) difference-differential polynomials with one translation
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and apply this method to prove the existence and outline a method

of computation of a bivariate dimension polynomial associated

with a non-reflexive difference-differential polynomial ideal. Our

main result (Theorem 4.2) can be viewed as an essential genera-

lization (in the case of one translation) of the existing theorems

on bivariate dimension polynomials of difference-differential and

difference field extensions, see [10, Theorem 5.4] and [12, Theo-

rems 4.2.16 and 4.2.17]. The latter theorems deal with extensions

that arise from factor rings of difference-differential (or difference)

polynomial rings by reflexive difference-differential (respectively,

difference) prime ideals. Our paper extends these results to the case

when the prime ideals are not necessarily reflexive, so the induced

translations of the factor rings are not necessarily injective.

We also discuss the relationship between the obtained difference-

differential dimension polynomial and the concept of strength of a

system of algebraic difference-differential equations in the sense of

A. Einstein. Furthermore, as a consequence of our main result, we

obtain a new proof and a method of computation of the dimension

polynomial of a non-reflexive prime difference ideal in the algebra

of difference polynomials over an ordinary difference field. The

existence of such a polynomial was first established in [3, Section

4.4], an alternative proof was obtained in [17, Section 5.1]. However,

these proofs are not constructive, while our approach leads to an

algorithm for computing dimension polynomials.

2 PRELIMINARIES

Throughout the paper Z, N, Q and R denote the sets of all integers,

all non-negative integers, all rational numbers and all real numbers,

respectively. For any positive integer p, we set Np = {1, . . . ,p}. By

a ring we always mean an associative ring with unity. Every ring

homomorphism is unitary (maps unity onto unity), every subring

of a ring contains the unity of the ring, and every algebra over

a commutative ring is unitary. Every field considered below is

supposed to have zero characteristic.

If B = A1 × · · · ×Ak is a Cartesian product of k ordered sets with

orders ≤1, · · · ≤k , respectively (k ∈ N, k ≥ 1), then by the product

order on B we mean a partial order ≤P such that (a1, . . . ,ak ) ≤P
(a′1, . . . ,a

′
k
) if and only if ai ≤i a

′
i for i = 1, . . . ,k . In particular, if

a = (a1, . . . ,ak ), a
′
= (a′1, . . . ,a

′
k
) ∈ Nk , then a ≤P a′ if and only

if ai ≤ a′i for i = 1, . . . ,k . We write a <P a
′ if a ≤P a

′ and a , a′.

The proof of the following statement can be found in [7, Chapter

0, Lemma 15].

Lemma 2.1. Let A be an infinite subset of Nm × Nn (m,n ∈ N,

n ≥ 1). Then there exists an infinite sequence of elements ofA, strictly

increasing relative to the product order, in which every element has

the same projection on Nn .

NUMERICAL POLYNOMIALS OF SUBSETS OF Nm × Z

Definition 2.2. Apolynomial f (t1, . . . , tp ) inp variables t1, . . . , tp
(p ∈ N, p ≥ 1) with rational coefficients is called numerical if

f (t1, . . . , tp ) ∈ Z for all sufficiently large p-tuples (t1, . . . , tp ) ∈ Z
p

(that is, there exist integers s1, . . . , sp such that f (r1, . . . , rp ) ∈ Z

whenever (r1, . . . , rp ) ∈ Z and ri ≥ si for all i = 1, . . . ,p.)

Obviously, every polynomial with integer coefficients is numeri-

cal. As an example of a numerical polynomial in p variables with

non-integer coefficients (p ∈ N,p ≥ 1) one can consider a polyno-

mial

p
∏

i=1

(

ti

mi

)

wherem1, . . . ,mp ∈ N. (As usual,

(

t

k

)

(k ∈ Z, k ≥ 1)

denotes the polynomial
t(t − 1) . . . (t − k + 1)

k!
in one variable t ,

(

t

0

)

= 1, and

(

t

k

)

= 0 if k < 0.) It can be shown (see [8, Corol-

lary 2.1.5]) that a numerical polynomial f (t1, . . . , tp ) in p variables

can be expressed as a linear combination of products of the form
(

t1 + i1

i1

)

. . .

(

tp + ip

ip

)

with integer coefficients (i1, . . . , ip ∈ N).

In the rest of the section we deal with subsets of Nm+1 (m is a

positive integer) treated as a Cartesian product Nm × N (so that

the last coordinate has a special meaning). If a = (a1, . . . ,am+1) ∈

Nm+1, we set ord1 a =

m
∑

i=1

ai and ord2 a = am+1. Furthermore, we

treat Nm+1 as a partially ordered set with respect to the product

order ≤P .

If A ⊆ Nm+1, then VA will denote the set of all elements v ∈

Nm+1 such that there is no a ∈ A with a ≤P v . Clearly, v =

(v1, . . . ,vm+1) ∈ VA if and only if for any element (a1, . . . ,am+1) ∈

A, there exists i ∈ N, 1 ≤ i ≤ m + 1, such that ai > vi . Furthermore,

for any r , s ∈ N, we set

A(r , s) = {x = (x1, . . . ,xm+1) ∈ A | ord1 x ≤ r , ord2 x ≤ s}.

The following theorem is a direct consequence of the corre-

sponding statement proved in [8, Chapter 2]; it generalizes the

well-known Kolchin’s result on the univariate numerical polyno-

mials associated with subsets of Nm (see [7, Chapter 0, Lemma

17]).

Theorem 2.3. Let A be a subset of Nm+1. Then there exists a

numerical polynomial ωA(t1, t2) with the following properties:

(i) ωA(r , s) = Card VA(r , s) for all sufficiently large (r , s) ∈ N2.

(As in Definition 2.2, it means that there exist r0, s0 ∈ N such that

the equality holds for all integers r ≥ r0, s ≥ s0; as usual, CardM

denotes the number of elements of a finite setM).

(ii) degt1 ωA ≤ m and degt2 ωA ≤ 1 (so the total degree degωA
of the polynomial does not exceedm + 1).

(iii) deg ωA =m+1 if and only ifA = ∅. In this caseωA(t1, t2) =
(t1+m
m

)

(t2 + 1).

(iv) ωA is a zero polynomial if and only if (0, . . . , 0) ∈ A.

Definition 2.4. The polynomial ωA(t1, t2) whose existence is sta-

ted by Theorem 2.4 is called the dimension polynomial of the set

A ⊆ Nm+1 associated with the orders ord1 and ord2.

A closed-form formula for ωA(t1, t2) can be found in [8, Proposi-

tion 2.2.11].

BASIC NOTATION AND TERMINOLOGY ON

DIFFERENCE-DIFFERENTIAL RINGS AND FIELDS

By a difference-differential ring we mean a commutative ring

R considered together with finite sets ∆ = {δ1, . . . ,δm } and Σ =

{σ1, . . . ,σn } of derivations and injective endomorphisms of R, re-

spectively, such that any two mappings of the set ∆
⋃

Σ commute.

In what follows, we consider a special case when the set Σ consists

of a single endomorphism σ called a translation. The set ∆
⋃

{σ }
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will be referred to as a basic set of the difference-differential ring R,

which is also called a ∆-σ -ring. If R is a field, it is called a difference-

differential field or a ∆-σ -field. We will often use prefix ∆-σ - instead

of the adjective ždifference-differentialž.

Let T be the free commutative semigroup generated by the set

∆
⋃

{σ }, that is, the semigroup of all power products

τ = δ
k1
1 . . . δ

km
m σ l (ki , l ∈ N).

The numbers ord∆ τ =

m
∑

i=1

ki and ordσ τ = l are called the orders

of τ with respect to ∆ and σ , respectively. For every r , s ∈ N, we set

T (r , s) = {τ ∈ T | ord∆ τ ≤ r , ordσ τ ≤ s}.

Furthermore, Θ will denote the subsemigroup of T generated by

∆, so every element τ ∈ T can be written as τ = θσ l where θ ∈ Θ,

l ∈ N. If r ∈ N, we set Θ(r ) = {θ ∈ Θ | ord∆ θ ≤ r }.

A subring (ideal) R0 of a ∆-σ -ring R is called a difference-differential

(or ∆-σ -) subring of R (respectively, a difference-differential (or ∆-

σ -) ideal of R) if R0 is closed with respect to the action of any

operator of ∆
⋃

σ . In this case the restriction of a mapping from

∆
⋃

σ on R0 is denoted by the same symbol. If a prime ideal P of

R is closed with respect to the action of ∆
⋃

σ , it is called a prime

difference-differential (or ∆-σ -) ideal of R.

If R is a ∆-σ -field and R0 a subfield of R which is also a ∆-σ -

subring of R, then R0 is said to be a ∆-σ -subfield of R; R, in turn, is

called a difference-differential (or ∆-σ -) field extension or a ∆-σ -

overfield of R0. In this case we also say that we have a ∆-σ -field

extension R/R0.

If R is a ∆-σ -ring and S ⊆ R, then the intersection of all ∆-

σ -ideals of R containing the set S is, obviously, the smallest ∆-σ -

ideal of R containing S . This ideal is denoted by [S]; as an ideal,

it is generated by all elements τη where τ ∈ T , η ∈ S . (Here and

below we frequently write τη for τ (η) (τ ∈ T , η ∈ R). ) If the set

S is finite, S = {η1, . . . ,ηp }, we say that the ∆-σ -ideal I = [S] is

finitely generated (in this case we write I = [η1, . . . ,ηp ]) and call

η1, . . . ,ηp difference-differential (or ∆-σ -) generators of I . A ∆-σ -

ideal I of a ∆-σ -ring R is called reflexive if the inclusion σk (a) ∈ I

(k ∈ N, a ∈ R) implies that a ∈ I . For any ∆-σ -ideal I of R, the set

I∗ = {a ∈ R | σk (a) ∈ I for some k ∈ N} is the smallest reflexive

∆-σ -ideal containing I ; it is called the reflexive closure of I in R.

If K0 is a ∆-σ -subfield of a ∆-σ -field K and S ⊆ K , then the

intersection of all ∆-σ -subfields of K containing K0 and S is the uni-

que ∆-σ -subfield of K containing K0 and S and contained in every

∆-σ -subfield of K containing K0 and S . It is denoted by K0⟨S⟩. If S

is finite, S = {η1, . . . ,ηn }, then K is said to be a finitely generated

∆-σ -extension of K0 with the set of ∆-σ -generators {η1, . . . ,ηn }.

In this case we write K = K0⟨η1, . . . ,ηn⟩. As a field, K0⟨η1, . . . ,ηn⟩

coincides with the field K0({τηi |τ ∈ T , 1 ≤ i ≤ n}).

Let R and S be two difference-differential rings with the same

basic set ∆
⋃

{σ }, so that elements of ∆ and σ act on each of the

rings as derivations and an endomorphism, respectively, and every

twomapping of the set∆
⋃

{σ } commute. A ring homomorphismϕ :

R −→ S is called a difference-differential (or ∆-σ -) homomorphism

if ϕ(αa) = αϕ(a) for any α ∈ ∆
⋃

{σ }, a ∈ R. In this case Kerϕ is a

reflexive ∆-σ -ideal of R. Furthermore, if J is a reflexive ∆-σ -ideal

of ∆-σ -ring R, then the factor ring R/J has a natural structure of

a ∆-σ -ring such that the canonical epimorphism R → R/J is a

∆-σ -homomorphism.

If K is a ∆-σ -field and Y = {y1, . . . ,yn } is a finite set of symbols,

then one can consider a countable set of symbols TY = {τyj |τ ∈

T , 1 ≤ j ≤ n} and the polynomial ring R = K[{τyj |τ ∈ T , 1 ≤ j ≤

n}] in the set of indeterminatesTY over the fieldK . This polynomial

ring is naturally viewed as a ∆-σ -ring where α(τyj ) = (ατ )yj for

any α ∈ ∆
⋃

{σ }, τ ∈ T , 1 ≤ j ≤ n, and the elements of ∆
⋃

{σ } act

on the coefficients of the polynomials of R as they act in the field

K . The ring R is called the ring of difference-differential (or ∆-σ -)

polynomials in the set of difference-differential (∆-σ -) indetermi-

nates y1, . . . ,yn over K . This ring is denoted by K{y1, . . . ,yn } and

its elements are called difference-differential (or ∆-σ -) polynomi-

als. If f ∈ K{y1, . . . ,yn } and η = (η1, . . . ,ηn ) is an n-dimensional

vector with coordinates in some ∆-σ -overfield of K , then f (η) (or

f (η1, . . . ,ηn ) ) denotes the result of the replacement of every entry

τyi in f by τηi (τ ∈ T , 1 ≤ i ≤ n).

A ∆-σ -ideal in the ring K{y1, . . . ,yn } is called linear if it is

generated (as a ∆-σ -ideal) by homogeneous linear ∆-σ -polynomials

(i. e., ∆-σ -polynomials of the form
∑d
i=1 aiτiyki where ai ∈ K ,

τi ∈ T , 1 ≤ ki ≤ n).

Let R be a ∆-σ -ring and U a family of elements of some ∆-

σ -overring of R. We say that U is ∆-σ -algebraically) dependent

over R, if the family TU = {τu | τ ∈ T , u ∈ U} is algebraically

dependent over R (that is, there exist elements u1, . . . ,uk ∈ TU

and a nonzero polynomial f in k variables with coefficients in R

such that f (u1, . . . ,uk ) = 0). Otherwise, the family U is said to be

∆-σ -algebraically independent over R.

If K is a ∆-σ -field and L a ∆-σ -field extension of K , then a set

B ⊆ L is said to be a ∆-σ -transcendence basis of L over K if B is

∆-σ -algebraically independent over K and every element a ∈ L is

∆-σ -algebraic over K ⟨B⟩ (it means that the set {τa | τ ∈ T } is alge-

braically dependent over the field K ⟨B⟩). If L is a finitely generated

∆-σ -field extension of K , then all ∆-σ -transcendence bases of L

over K are finite and have the same number of elements (one can

easily obtain this result by mimicking the proof of Proposition 4.1.6

of [12]). This number is called the ∆-σ -transcendence degree of L

over K (or the ∆-σ -transcendence degree of the extension L/K ); it

is denoted by ∆-σ -tr. degK L.

LetK be a∆-σ -fieldK and L a finitely generated∆-σ -extension of

K with a set of ∆-σ -generators η = {η1, . . . ,ηn }, L = K ⟨η1, . . . ,ηn⟩.

Then there exists a natural ∆-σ -homo-

morphism Φη of the ring of ∆-σ -polynomials K{y1, . . . ,yn } onto

the ∆-σ -subring K{η1, . . . ,ηn } of L such that Φη (a) = a for any

a ∈ K and Φη (yj ) = ηj for j = 1, . . . ,n. If A is a ∆-σ -polynomial

in K{y1, . . . ,yn }, then the element Φη (A) is called the value of A

at η and is denoted by A(η). Obviously, the kernel P of the ∆-σ -

homomorphism Φη is a prime reflexive ∆-σ -ideal of K{y1, . . . ,yn }.

This ideal is called the defining ideal of η. If we consider the quotient

field Q of the factor ring K{y1, . . . ,yn }/P as a ∆-σ -field (where

δ (uv ) =
vδ (u)−uδ (v)

v2 and σ (uv ) =
σ (u)
σ (v)

for any u,v ∈ R̄, δ ∈

∆), then this quotient field is naturally ∆-σ -isomorphic to the

field L. The ∆-σ -isomorphism of Q onto L is identical on K and

maps the canonical images of the ∆-indeterminates y1, . . . ,yn in

K{y1, . . . ,yn }/P to the elements η1, . . . ,ηn , respectively.
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3 REDUCTION OF ∆-σ -POLYNOMIALS.

CHARACTERISTIC SETS

Let K be a difference-differential field with a basic set ∆
⋃

{σ }

(∆ = {δ1, . . . ,δm } is a set of derivations, σ is an endomorphism

of K). Let R = K{y1, . . . ,yn } be the ring of ∆-σ -polynomials in

the set of ∆-σ -indeterminates y1, . . . ,yn over K and let TY denote

the set of all elements τyi ∈ R (τ ∈ T , 1 ≤ i ≤ n) called terms. If

u = τyi ∈ TY , then the numbers ord∆ τ and ordσ τ are called the

orders of the term u with respect to ∆ and σ , respectively.

We will consider two total orders <∆ and <σ on the set of all

terms TY defined as follows:

If u = δ
k1
1 . . . δ

km
m σpyi and v = δ

l1
1 . . . δ

lm
m σqyj (1 ≤ i, j ≤ n),

then u <∆ v (respectively, u <σ v) if the (m + 3)-tuple (ord∆ u,

ordσ u,k1, . . . ,km , i) is less than the (m + 3)-tuple (ord∆ v, ordσ v,

l1, . . . , lm , j) (respectively, the (m+3)-tuple (ordσ u, ord∆ u,k1, . . . ,

km , i) is less than the (m + 3)-tuple (ordσ v, ord∆ v, l1, . . . , lm , j))

with respect to the lexicographic order on Nm+3. We write u ≤∆ v

if either u <∆ v or u = v; the relation ≤σ is defined in the same

way.

An element τ ∈ T is said to be divisible by an element τ ′ ∈ T if

τ = τ ′′τ ′ for some τ ′′ ∈ T . In this case we write τ ′ | τ and τ ′′ =
τ

τ ′
.

The least common multiple of elements τ1, . . . ,τp ∈ T , where

τi = δ
ki1
1 . . . δ

kim
m σ li (1 ≤ i ≤ p) is defined as τ = δ

d1
1 . . . δ

dm
m σ l

with dj = max{k1j , . . . ,kpj } (1 ≤ j ≤ m), l = max{l1, . . . , lp }; it is

denoted by lcm{τ1, . . . ,τp }.

If u = τ1yi , v = τ2yj ∈ TY , we say that u divides v and write

u |v if and only if i = j and τ1 | τ2. In this case the ratio
v

u
is defined

as
τ2

τ1
. If u1 = τ1yi , . . . ,up = τpyi are terms with the same ∆-σ -

indeterminate yi , then the least common multiple of these terms,

denoted by lcm(u1, . . . ,up ), is defined as lcm(τ1, . . . ,τp )yi .

The following statement is a consequence of Lemma 2.1.

Lemma 3.1. Let S be any infinite set of terms in K{y1, . . . ,yn }.

Then there exists an infinite sequence of terms u1, u2, . . . in S such

that uk |uk+1 for every k = 1, 2, . . . .

If A ∈ K{y1, . . . ,yn } \ K , then the highest with respect to the

orderings <∆ and <σ terms that appear in A are called the ∆-

leader and the σ -leader of A; they are denoted by uA and vA, re-

spectively. If A is written as a polynomial in one variable vA, A =

Id (vA)
d
+ Id−1(vA)

d−1
+ · · · + I0 (∆-σ -polynomials Id , Id−1, . . . , I0

do not containvA), then Id is called a leading coefficient ofA; the par-

tial derivative ∂A/∂vA = dId (vA)
d−1
+ (d−1)Id−1(vA)

d−2
+ · · ·+ I1

is called a separant of A. The leading coefficient and the separant

of a ∆-σ -polynomial A are denoted by IA and SA, respectively.

Definition 3.2. Let A and B be two ∆-σ -polynomials in the ring

K{y1, . . . ,yn }. We say that A has lower rank than B and write

rkA < rkB if either A ∈ K , B < K , or (vA, degvA A, ord∆ uA) is less

than (vB , degvB B, ord∆ uB ) with respect to the lexicographic order

(where the termsvA andvB are compared with respect to the order

<σ and the other coordinates are compared with respect to the

natural order on N). If the two vectors are equal (or A,B ∈ K), we

say that the ∆-σ -polynomials A and B are of the same rank and

write rkA = rkB.

Definition 3.3. If A,B ∈ K{y1, . . . ,yn }, then B is said to be redu-

ced with respect to A if

(i) B does not contain terms τvA such that ord∆ τ > 0 and

ord∆(τuA) ≤ ord∆uB .

(ii) If B contains a term τvA where ord∆ τ = 0, then either

ord∆ uB < ord∆ uA or ord∆ uA ≤ ord∆ uB and

degτvA B < degvA A.

If B ∈ K{y1, . . . ,yn }, then B is said to be reduced with respect

to a set A ⊆ K{y1, . . . ,yn } if B is reduced with respect to every

element of A.

Remark 3.4. It follows from the last definition that a∆-σ -polynomial

B is not reduced with respect to a ∆-σ -polynomial A (A < K) if either

B contains some term τvA such that ord∆ τ > 0 and ord∆(τuA) ≤

ord∆ uB or B containsσ ivA for some i ∈ N and in this case ord∆ uA ≤

ord∆ uB and degvA A ≤ degσ ivA B.

Definition 3.5. A set of ∆-σ -polynomials A in K{y1, . . . ,yn }

is called autoreduced if A
⋂

K = ∅ and every element of A is

reduced with respect to any other element of this set.

Proposition 3.6. Every autoreduced set of ∆-σ -polynomials in

the ring K{y1, . . . ,yn } is finite.

Proof. Suppose that A is an infinite autoreduced subset of

K{y1, . . . ,yn }. Then there is an infinite subsetA
′ ofA such that all

∆-σ -polynomials in A ′ have distinct σ -leaders. Indeed, otherwise

there exists an infinite set A1 ⊆ A such that all ∆-σ -polynomials

in A1 have the same σ -leader v . It follows that the infinite set

{ord∆ uA |A ∈ A1} contains a nondecreasing infinite sequence

ord∆ uA1
≤ ord∆ uA2

≤ . . . . Since the sequence {degv Ai |i =

1, 2, . . . } cannot be strictly decreasing, there exists two indices

i and j such that i < j and degv Ai ≤ degv Aj . We obtain that Aj is

not reduced with respect to Ai that contradicts the fact that A is

an autoreduced set.

Thus, we can assume that all leaders of our infinite autoreduced

set A are distinct. By Lemma 3.1, there exists an infinite sequence

B1,B2, . . . of elements ofA such thatvBi |vBi+1 for all i = 1, 2, . . . .

(Also, since the leaders of elements of our sequence are distinct,
vBi+1
vBi

, 1.)

Let ki = ordσ vBi and li = ord∆ uBi . Since uBi is the ∆-leader of

Bi , li ≥ ki (i = 1, 2, . . . ), so that the infinite set {li−ki | i ∈ N, i ≥ 1}

contains a nondecreasing sequence li1 − ki1 , li2 − ki2 , . . . . Then

ord∆(
vBi2
vBi1

uBi1 ) = ki2 − ki1 + li1 ≤ ki2 + li2 − ki2 = li2 = ord∆ uBi2 .

It follows that Bi2 contains a term τvBi1 = vBi2 such that ord∆ τ >

0 and ord∆(τuBi1 ) ≤ ord∆ uBi2 . Thus, the ∆-σ -polynomial Bi2 is

reduced with respect to Bi1 that contradicts the fact that A is an

autoreduced set. �

The proof of the following statement is similar to the proof of

the reduction theorem for difference-differential polynomials in the

case of classical autoreduced sets, see [1].

Proposition 3.7. LetA = {A1, . . . ,Ap } be an autoreduced set in

the ring of∆-σ -polynomialsK{y1, . . . ,yn } and letB ∈ K{y1, . . . ,yn }.

Then there exist a ∆-σ -polynomial B0 and nonnegative integers ki , li
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(1 ≤ i ≤ p) such that B0 is reduced with respect to A, rkB0 ≤ rkB,

and

p
∏

i=1

I
ki
Ai
S
li
Ai
B ≡ B0 (mod[A]).

With the notation of the last proposition, we say that the ∆-σ -

polynomial B reduces to B0 modulo A.

Throughout the rest of the paper, while considering an autore-

duced set A = {A1, . . . ,Ap } in the ring K{y1, . . . ,yn } we always

assume that its elements are arranged in order of increasing rank,

rk A1 < · · · < rk Ap .

Definition 3.8. If A = {A1, . . . ,Ap }, B = {B1, . . . ,Bq } are two

autoreduced sets of ∆-σ -polynomials K{y1, . . . ,yn }, we say that

A has lower rank than B if one of the following two cases holds:

(1) There exists k ∈ N such that k ≤ min{p,q}, rkAi = rkBi for

i = 1, . . . ,k − 1 and rkAk < rkBk .

(2) p > q and rkAi = rkBi for i = 1, . . . ,q.

If p = q and rkAi = rkBi for i = 1, . . . ,p, thenA is said to have

the same rank as B. In this case we write rkA = rkB.

Repeating the arguments of the proof of the corresponding result

for autoreduced sets of differential polynomials (see [7, Chapter I,

Proposition 3]) we obtain the following statement.

Proposition 3.9. In every nonempty family of autoreduced sets

of differential polynomials there exists an autoreduced set of lowest

rank.

This statement shows that if J is a ∆-σ -ideal (or even a subset)

of the ring of ∆-σ -polynomials K{y1, . . . ,yn }, then J contains an

autoreduced subset of lowest rank.(Clearly, the set of all autoredu-

ced subsets of J is not empty: if A ∈ J , then {A} is an autoreduced

subset of J .)

Definition 3.10. If J is a subset (in particular, a ∆-σ -ideal) of the

ring of ∆-σ -polynomialsK{y1, . . . ,yn }, then an autoreduced subset

of J of lowest rank is called a characteristic set of J .

Proposition 3.11. Let A = {A1, . . . ,Ap } be a characteristic set

of a nonempty subset J of the ring of ∆-σ -polyno-

mials R = K{y1, . . . ,yn }. Then an element B ∈ J is reduced with

respect to A if and only if B = 0.

Proof. First of all, note that if B , 0 and rkB < rkA1, then {B}

is an autoreduced set and rk{B} < rkA that contradicts the fact

thatA is a characteristic set of J . Let rkB > rkA1 and letA1, . . . ,Aj

(1 ≤ j ≤ p) be all elements of A whose rank is lower that the rank

of B. Then the set A ′
= {A1, . . . ,Aj ,B} is autoreduced. Indeed,

the ∆-σ -polynomials A1, . . . ,Aj are reduced with respect to each

other and B is reduced with respect to the set {A1, . . . ,Aj }, since

B is reduced with respect to A. Furthermore, each Ai (1 ≤ i ≤ j) is

reduced with respect to B because rkAi < rkB. By the choice of B,

if j < p, then rkB < rkAj+1, so rkA
′ < rkA; if j = p, then we still

have the inequality rkA ′ < rkA by the second part of Definition

3.8. It follows that A is not a characteristic set of J , contrary to our

assumption. Thus, B = 0. �

Definition 3.12. Let A = {A1, . . . ,Ap } be an autoreduced set in

the ring K{y1, . . . ,yn } such that all ∆-σ -polyno-

mialsAi (1 ≤ i ≤ p) are linear. Then the setA is said to be coherent

if it satisfies the following two conditions.

(i) τAi reduces to zero modulo A for any τ ∈ T , 1 ≤ i ≤ p.

(ii) For every Ai , Aj ∈ A , 1 ≤ i < j ≤ p, letw = lcm{vAi ,vAj
}

and τ ′ =
w

vAi
, τ ′′ =

w

vAj

. Then (τ ′′IAj
)(τ ′Ai ) − (τ ′IAi )(τ

′′Aj )

reduces to zero modulo A.

The proof of the following statement can be obtained by mi-

micking the proof of the corresponding result for autoreduced sets

of difference polynomials, see [8, Theorem 6.5.3].

Proposition 3.13. Every characteristic set of a linear ∆-σ -ideal in

the ring of ∆-σ -polynomials K{y1, . . . ,yn } is a coherent autoreduced

set. Conversely, if A is a coherent autoreduced set in K{y1, . . . ,yn }

consisting of linear ∆-σ -polynomials, then A is a characteristic set of

the linear ∆-σ -ideal [A].

4 DIMENSION POLYNOMIALS. THE MAIN

THEOREM

LetK be a ∆-σ -field (as before ∆ = {δ1, . . . ,δm } is a set of mutually

commuting derivations of K and σ is an endomorphism of K that

commutes with every δi ). Let R = K{y1, . . . ,yn } be the ring of ∆-

σ -polynomials over K and P a prime ∆-σ -ideal of R. Let P∗ denote

the reflexive closure of P in R (as we have mentioned, P∗ is also a

prime ∆-σ -ideal of R) and for every r , s ∈ N, let Rr s = K[{τyi | τ ∈

T (r , s), 1 ≤ i ≤ n}]. In other words, Rr s is a polynomial ring over

K in indeterminates τyi such that ord∆ τ ≤ r and ordσ τ ≤ s . Let

Pr s = P
⋂

Rr s , P
∗
r s = P

∗⋂Rr s , and let L, L∗, Lr s and L
∗
r s denote

the quotient fields of the integral domains R/P , R/P∗, Rr s/Pr s and

Rr s/P
∗
r s , respectively. If ηi denotes the canonical image of yi in

Rr s/P
∗
r s , then L

∗ is a ∆-σ -field extension of K , L∗ = K ⟨η1, . . . ,ηn⟩,

and L∗r s = K({τηi | τ ∈ T (r , s), 1 ≤ i ≤ n}).

The following statement is an analog of the theorem on the

dimension polynomial of an inversive difference-differential field

extension proved in [13].

Theorem 4.1. With the above notation, there exists a numerical

polynomial ϕP ∗ (t1, t2) ∈ Q[t1, t2] such that

(i) ϕP ∗ (r , s) = tr. degK L∗r s for all sufficiently large pairs (r , s) ∈

N2.

(ii) The polynomial ϕP ∗ (t1, t2) is linear with respect to t2 and

degt1 ϕP ∗ ≤ m, so this polynomial can be written as

ϕP ∗ (t1, t2) = ϕ
(1)
P ∗ (t1)t2 + ϕ

(2)
P ∗ (t1)

where ϕ
(1)
P ∗ (t1) and ϕ

(2)
P ∗ (t1) are numerical polynomials in one variable

that, in turn, can be written as

ϕ
(1)
P ∗ (t1) =

m
∑

i=0

ai

(

t1 + i

i

)

and ϕ
(2)
P ∗ (t1) =

m
∑

i=0

bi

(

t1 + i

i

)

with ai , bi ∈ Z (1 ≤ i ≤ m). Furthermore, am = ∆-σ -tr. degK L∗.

Proof. Let A = {A1, . . . ,Ap } be a characteristic set of the ∆-σ -

ideal P∗ and for any r , s ∈ N, let

Ur s = {u ∈ TY | ord∆ u ≤ r , ordσ u ≤ s and either u is not

a multiple of any vAi or u is a multiple of some σ -leader of an

element of A and for every τ ∈ T ,A ∈ A such that u = τvA, one

has ord∆(τuA) > r }.
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Using our concept of an autoreduced and the arguments of the

proof of Theorem 6 in [7, Chapter II], we obtain that the setUr s (η) =

{u(η) |u ∈ Ur s } is a transcendence basis of L
∗
r s over K . In order to

evaluate the number of elements ofUr s (and therefore, tr. degK L∗r s ),

let us consider the sets U ′
r s = {u ∈ TY | ord∆ u ≤ r , ordσ u ≤ s

and u is not a multiple of any vAi } andU
′′
r,s = {u ∈ TY | ord∆ u ≤

r , ordσ u ≤ s and there exist A ∈ A such that u = τvA and

ord∆(τuA) > r }. Clearly,U
′
r s

⋂

U ′′
r,s = ∅ andUr,s = U

′
r,s

⋃

U ′′
r,s .

By Theorem 2.3, there exists a numerical polynomial in two va-

riables ϕ(1)(t1, t2) such that ϕ(1)(r , s) = CardU ′
r s for all sufficiently

large (r , s) ∈ N2, degt1 ϕ
(1) ≤ m, and degt2 ϕ

(1) ≤ 1. Furthermore,

repeating the arguments of the proof of Theorem 4.2 of [11] (con-

sidered in the case of one translation) we obtain that there exists

a bivariate numerical polynomial ϕ(2)(t1, t2) such that ϕ(2)(r , s) =

CardU ′′
r s for all sufficiently large (r , s) ∈ N2 and ϕ(2)(t1, t2) is an

alternating sum of bivariate numerical polynomials of subsets of

Nm+1 described in section 2. Each such a polynomial can be repre-

sented in the form (2), so degt1 ϕ
(2) ≤ m and degt2 ϕ

(2) ≤ 1. Clearly

the polynomial ϕP ∗ (t1, t2) = ϕ(1)(t1, t2) + ϕ
(2)(t1, t2) satisfies all

conditions of the theorem. The fact that am = ∆-σ -tr. degK L∗ can

be established in the same way as in the last part of the proof of

Theorem 3.1 in [13]. �

Note that in the case when σ is an automorphism of K , the sta-

tement of the last theorem was proved in [10] with the use of a

theorem on the multivariate dimension polynomial of a difference-

differential module and properties of modules of Kähler differenti-

als.

The following theorem is the main result of the paper.

Theorem 4.2. With the notation introduced at the beginning of

this section, there exists a bivariate numerical polynomialψP (t1, t2)

such that

(i) ψP (r , s) = tr. degK Lr s for all sufficiently large pairs (r , s) ∈

N2.

(ii) The polynomial ψP (t1, t2) is linear with respect to t2 and

degt1 ψP ≤ m, so it can be written as

ψP (t1, t2) = ψ
(1)
P

(t1)t2 +ψ
(2)
P

(t1)

whereψ
(1)
P

(t1) andψ
(2)
P

(t1) are numerical polynomials in one variable.

Proof. We start with the proof for the case∆ = ∅. In this case we

will use the above notation and conventions just replacing the prefix

∆-σ - by σ - (and ždifference-differentialž by ždifferencež). Let A =

{A1, . . . ,Ap } be a characteristic set of the σ -ideal P
∗ (the reflexive

closure of the prime σ -ideal P of the ring of σ -polynomials R =

K{y1, . . . ,yn }) and let vj denote the σ -leader of Aj (j = 1, . . . ,p).

Let ηi = yi + P (1 ≤ i ≤ n), L = K({σkηi | k ∈ N, 1 ≤ i ≤ n}) (the

quotient field of R/P ) and Ls = K({σ
kηi | 0 ≤ k ≤ s, 1 ≤ i ≤ n}).

For every j = 1, . . . ,p, let sj be the smallest nonnegative integer

such that σ sj (Aj ) ∈ P . Furthermore, let

V = {u ∈ TY |u , σ ivj for any i ∈ N, 1 ≤ j ≤ p},

Vr = {v ∈ V | ordσ v ≤ r } (r ∈ N), V (η) = {u(η) |u ∈ V },W =

{σkvj | 1 ≤ j ≤ p, 0 ≤ k ≤ sj − 1}, and W (η) = {u(η) |u ∈W }.

It is easy to see that the set V (η) is algebraically independent

overK . Indeed, suppose there existv1, . . . ,vl ∈ V and a polynomial

f (X1, . . . ,Xl ) in l variables with coefficients in the field K such

that f (v1(η), . . . ,vl (η)) = 0. Then f (v1, . . . ,vl ) ∈ P ⊆ P∗ and

f (v1, . . . ,vl ) is reduced with respect to the characteristic set A

(this σ -polynomial does not contain any transforms of the leaders

of elements of A). Therefore, f = 0, so the set V (η) is algebraically

independent over K .

Now we notice that every element of the field L is algebraic over

its subfield K (V (η)
⋃

W (η)).

Indeed, since L = K(V (η)
⋃

W (η)
⋃

{σkvj (η) | 1 ≤ j ≤ p,

k ≥ si }), it is sufficient to prove that every element σkvj (η) with

k ≥ sj (1 ≤ i ≤ p) is algebraic over K (V (η)
⋃

W (η)).

Since σ sjAj ∈ P , we have σ
sjAj (η) = 0, hence σkAj (η) = 0 for

all k ≥ sj . If one writes Aj as a polynomial in vj ,

Aj = I
(j)
qj v

qj
j + I

(j)
qj−1

v
qj−1

j + · · · + I
(j)
0

(I
(j)
qj , . . . , I

(j)
0 do not contain vj ) and k ≥ sj , then

σkAj (η) =
(

σk I
(j)
qj (η)

)

vj (η)
qj +

(

σk I
(j)
qj−1

(η)
)

vj (η)
qj−1 +

· · · + σk I
(j)
0 (η) = 0.

Note that I
(j)
qj < P∗, since I

(j)
qj is an initial of an element of the

characteristic set of P∗ and therefore is reduced with respect to

this set (by Proposition 3.11, the inclusion I
(j)
qj ∈ P∗ would im-

ply I
(j)
qj = 0). Since the σ -ideal P∗ is reflexive, σk I

(j)
qj < P

∗, hence

σk I
(j)
qj (η) , 0. It follows that σkvj (η) is algebraic over the field

K
(

V (η)
⋃

W (η)
⋃

{u(η) |u <σ σkui }
)

(the term ordering <σ was

defined at the beginning of section 3). By induction on the well-

ordered (with respect to <σ ) set of terms TY we obtain that all ele-

mentsσkvj (η) (1 ≤ j ≤ p,k ∈ N) are algebraic overK (V (η)
⋃

W (η)),

so L is algebraic over this field as well.

Let {w1, . . . ,wq } be a maximal subset ofW such that the set

{w1(η), . . . ,wq (η)} is algebraically independent overK (V (η)). Then

V (η)
⋃

{w1(η), . . . ,wq (η)} is a transcendence basis of the field L

over K . Furthermore, since the setW (η) is finite, there exists r0 ∈ N

such that

(i)w1, . . . ,wq ∈ Rr0 ;

(ii) r0 ≥ max{ordσ vj + sj | 1 ≤ j ≤ p};

(iii) Every element ofW (η) is algebraic over the field

K
(

Vr0 (η)
⋃

{w1(η), . . . ,wq (η)}
)

.

Let r ≥ r0, Rr = K[{σkyi | 1 ≤ i ≤ n, 0 ≤ k ≤ r }], and Pr =

P
⋂

Rr . Let Lr denote the quotient field of the integral domain

Rr /Pr and ζ
(r )
i = yi + Pr ∈ Rr /Pr ⊆ Lr (1 ≤ i ≤ n). Furthermore,

let ζ (r ) = {ζ
(1)
1 , . . . , ζ

(1)
n }, and Vr (ζ

(r )) = {v(ζ (r )) |v ∈ Vr }. We are

going to prove that

Br = Vr (ζ
(r ))

⋃

{w1(ζ
(r )), . . . ,wq (ζ

(r ))}

is a transcendence basis of Lr over K .

Repeating the arguments of the proof of Theorem 4.1 (applied to

Vr (ζ
(r )) instead ofV (η)) we obtain thatVr (ζ

(r )) is algebraically inde-

pendent overK . Let us show that the elementsw1(ζ
(r )), . . . ,wq (ζ

(r ))

are algebraically independent over the field K(Vr (ζ
(r ))). Suppose

that д(w1(ζ
(r )), . . . ,wq (ζ

(r ))) = 0 for some polynomial д in q
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indeterminates with coefficients in K
(

Vr (ζ
(r ))

)

. Then there ex-

ist elements z1, . . . , zd ∈ Vr such that all coefficients of f lie in

K(z1(ζ
(r )), . . . , zd (ζ

(r )) ). Multiplying f by the common denomina-

tor of these coefficients we obtain a nonzero polynomial д in d + q

indeterminates such that

д(z1(ζ
(r )), . . . , zd (ζ

(r )),w1(ζ
(r )), . . . ,wq (ζ

(r ))) = 0,

hence д(z1, . . . , zd ,w1, . . . ,wq ) ∈ Pr ⊆ P .

Considering the image of д under the natural homomorphism

R → R/P ⊆ L we obtain that д(z1(η), . . . , zd (η),

w1(η), . . . ,wq (η)) = 0 where zi (η) ∈ K (V (η)), 1 ≤ i ≤ d . Since

V (η)
⋃

{w1(η), . . . ,wq (η)} is a transcendence basis of L/K , д = 0,

a contradiction. Therefore, the elementsw1(ζ
(r )), . . . ,wq (ζ

(r )) are

algebraically independent over K
(

Vr (ζ
(r ))

)

, so that the set Br is

algebraically independent over K .

Now let r ≥ r0 and let u = σ lyi where 0 ≤ l ≤ r (1 ≤ i ≤ n).

If u is not a transform of any vk (1 ≤ k ≤ p), then u ∈ Vr and

u(ζ ) ∈ Vr (ζ ).

If u = σ jvk where 0 ≤ j ≤ sk − 1 (in this case ordσ u < r ),

then u ∈ W , hence the element u(η) is algebraic over the field

K
(

Vr (η)
⋃

{w1(η), . . . ,wq (η)}
)

. As above, we obtain the existence

of a nonzero polynomialh ind+q+1 variables (d ∈ N) and elements

z1, . . . , zd ∈ Vr such that h(z1, . . . , zd ,w1, . . . ,wq ,u) ∈ Pr . Then

h(z1(ζ
(r )), . . . ,

zd (ζ
(r )),w1(ζ

(r )), . . . ,wq (ζ
(r )),u(ζ (r )) ) = 0 hence u(ζ (r )) is alge-

braic over the field K(Br ).

Suppose that u = σ jvk where sk ≤ j ≤ r − ordvk (1 ≤ k ≤ p).

Then σ jAk ∈ Pr , hence σ
jAk (ζ

(r )) = 0. If one writes Ak as a

polynomial of vk ,

Ak = Ikdkv
dk
k
+ · · · + Ik1vk + Ik0

(Ii j do not contain vk and all terms in Ii j are lower than vk with

respect to <σ ), then σ
j Ikdk < P

∗, since Ikdk is the initial of an

element of a characteristic set of P∗ and the ideal P∗ is reflexive.

Therefore, σ j Ikdk (ζ
(r )) , 0, so the equality σ jAk (ζ

(r )) = 0 shows

that the element u(ζ (r )) = σ jvk (ζ
(r )) is algebraic over the field

K
(

Vr (ζ
(r ))

⋃

{v(ζ (r )) |v ∈ TY , v <σ u}
)

.

Using the induction on the well-ordered (with respect to the or-

der <σ ) set TY we obtain that u(ζ (r )) is algebraic over the field

K
(

Vr (ζ
(r ))

⋃

{σ jvk (ζ
(r )) | 1 ≤ k ≤ d, 0 ≤ j ≤ sk − 1}

)

, which, as

we have seen, is algebraic over K(Br ). It follows that u(ζ
(r )) is

algebraic over K(Br ) for every term u with ordσ u ≤ r . Therefore,

Br is a transcendence basis of Lr over K .

Now we are going to complete the proof of the theorem conside-

ring the case when Card∆ =m > 0. In this case, the field Lr s can be

treated as the subfield K({θσ jξi | θ ∈ Θ(r ), 0 ≤ j ≤ s, 1 ≤ i ≤ n}) of

the differential (∆-) overfield K ⟨{σ jξi | 0 ≤ j ≤ s, 1 ≤ i ≤ n}⟩∆ of

K . (ξi is the canonical image of yi in Rr s/Pr s ; the index ∆ indicates

that we consider a differential, not a difference-differential, field

extension.)

By the Kolchin’s theorem (Theorem 1.1), for any s ∈ N, there ex-

ists a numerical polynomial χs (t) =
∑m
i=0 ai (s)

(t+i
i

)

in one variable

t such that χs (r ) = tr. degK Lr s for all sufficiently large r ∈ N and

ai (s) ∈ Z (0 ≤ i ≤ m).

On the other hand, the first part of the proof (with the use of

the finite set of σ -indeterminates {Θ(r )yi | θ ∈ Θ(r ), 1 ≤ i ≤ n}

instead of {y1, . . . ,yn }) shows that tr. degK Lr s = CardVr s + λ(r )

where Vr s = {u = τyi ∈ TY | τ ∈ T (r , s) and u , τ ′vj for any

τ ′ ∈ T , 1 ≤ j ≤ p}. (vj denotes the σ -leader of the element Aj

of a characteristic set A = {A1, . . . ,Ap } of the reflexive closure

P∗ of P .) Since the setW in the first part of the proof is finite and

depends only on the σ -orders of terms ofAj , 1 ≤ j ≤ p, the number

of elements of the corresponding set in the general case depends

only on r ; we have denoted it by λ(r ).

By Theorem 2.3, there exist r0, s0 ∈ N and a bivariate numerical

polynomial ω(t1, t2) such that ω(r , s) = CardVr s for all r ≥ r0, s ≥

s0, degt1 ω ≤ m and degt2 ω ≤ 1. Thus, tr. degK Lr s = ω(r , s) +

λ(r ) for all r ≥ r0, s ≥ s0. At the same time, we have seen that

tr. degK Lr s0 = χs0 (r ) =
∑m
i=0 ai (s0)

(

r + i

i

)

for all sufficiently large

r ∈ N (ai (s0) ∈ Z). It follows that λ(r ) is a polynomial of r for

all sufficiently large r ∈ N, say, for all r ≥ r1. Therefore, for any

s ≥ s0, r ≥ max{r0, r1}, tr. degK Lr s = ω(r , s) + λ(r ) is expressed

as a bivariate numerical polynomial in r and s . �

Definition 4.3. The numerical polynomialψP (t1, t2)

whose existence is established by Theorem 4.2 is called the ∆-σ -

dimension polynomial of the ∆-σ -ideal P .

The proof of the last theorem (as well as the proof of Theorem 4.1)

shows that the main step in the computation of a ∆-σ -dimension

polynomial is the construction of a characteristic set in the sense

of section 3. It can be realized by the corresponding generalization

of the Ritt-Kolchin algorithm described in [8, Section 5.5], but the

development and implementation of such a generalization is the

subject of future research.

The following illustrating example uses the notation of the proofs

of Theorems 4.1 and 4.2.

Example 4.4. Let K be a difference-differential (∆-σ -) field with

two basic derivations, ∆ = {δ1,δ2}, and one basic endomorphism σ .

Let K{y} be the ring of ∆-σ -polynomials in one ∆-σ -indeterminate

y over K and let P be a linear (and therefore prime) ∆-σ -ideal of

K{y} generated by the ∆-σ -polynomial A = σ 2y + σδ21y + σδ
2
2y

(that is, P = [A]). Then P∗ = [B], where B = σy + δ21y + δ
2
2y,

and Proposition 3.13 shows that {B} is a characteristic set of the

∆-σ -ideal P∗. With the notation of the proof of Theorem 4.1, we

have U ′
r s = {u ∈ TY | ord∆ u ≤ r , ordσ u ≤ s and u is not a

multiple of σy} and U ′′
r s = {u ∈ TY | ord∆ u ≤ r , ordσ u ≤ s and

there is τ ∈ T such that u = τ (σy) and ord∆(τδ
2
1 ) > r }. Then

CardU ′
r s = Card{δ i1δ

j
2y | i + j ≤ r } =

(

r + 2

2

)

and

CardU ′′
r s = Card{σ iδ

j
1δ

k
2 y | 1 ≤ i ≤ s, r − 2 < j + k ≤ r } =

s

((

r + 2

2

)

−

(

r + 2 − 2

2

))

= (2r + 1)s .

Since σB ∈ P , the proof of Theorem 4.2 shows that ifψP (t1, t2) is

the ∆-σ -dimension polynomial of the ∆-σ -ideal P , then

ψ (r , s) = CardU ′
r s + CardU

′′
r s + Card{σδ

i
1δ

j
2y | i + j ≤ r − 2}
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for all sufficiently large (r , s) ∈ N2. It follows that

ψP (t1, t2) = (2t1 + 1)t2 +

(

t1 + 2

2

)

+

(

t1

2

)

, that is

ψP (t1, t2) = (2t1 + 1)t2 + t
2
1 + t1 + 1.

We conclude with a brief discussion of the connection between

the ∆-σ -dimension polynomial and the concept of strength of a sy-

stem of difference-differential equations in the sense of A. Einstein.

Consider a system of difference-differential equations

Ai (f1, . . . , fn ) = 0 (i = 1, . . . ,q) (1)

withm basic partial derivations and one translation σ over a field K

of functions ofm real variables x1, . . . ,xm treated as a difference-

differential field with basic set of derivations ∆ = {δ1, . . . ,δm }

and one translation σ where δi = ∂/∂xi (1 ≤ i ≤ m) and σ :

f (x) 7→ f (x+h) is a shift of the argument x = (x1, . . . ,xm ) by some

vector h in Rm . (f1, . . . , fn are unknown functions of x1, . . . ,xm ).

We assume that system (3) is algebraic, that is, all Ai (y1, . . . ,yn )

are elements of a ring of ∆-σ -polynomials K{y1, . . . ,yn } over the

functional ∆-σ -field K .

Let us consider a sequence of nodes in Rm that begins at some

initial node P and goes in the direction of the vector h with step

|h |. We say that a node Q has σ -order i (with respect to P) if the

distance between Q and P is i |h |.

Let us consider the values of the unknown functions f1, . . . ,

fn and their partial derivatives of order at most r at the nodes of

σ -order at most s (r and s are positive integers). With the notation

of section 2, we can say that we consider the values τ fi (P) where

τ ∈ T , ord∆ τ ≤ r and ordσ τ ≤ s .

If f1, . . . , fn should not satisfy any system of equations (or any

other condition), these values can be chosen arbitrarily. Because

of the system (and equations obtained from the equations of the

system by partial differentiations and translations in the direction h,

the number of independent values of the functions f1, . . . , fn and

their partial derivatives whose order does not exceed r at the nodes

of σ -order at most s decreases. This number, which is a function of

two variables, r and s , is the žmeasure of strengthž of the system

in the sense of A. Einstein. We denote it by Sr s . Suppose that the

∆-σ -ideal P generated in K{y1, . . . ,yn } by the ∆-σ -polynomials

A1, . . . ,Aq is prime (e. g., the polynomials are linear). Then we say

that the system of difference-differential equations (1) is prime. In

this case, the ∆-σ -dimension polynomialψP (t1, t2) has the property

that ψP (r , s) = Sr s for all sufficiently large (r , s) ∈ N2, so this

dimension polynomial is the measure of strength of the system of

difference-differential equations (1) in the sense of A. Einstein.

An important perspective for the use of the obtained results

is the computation of dimension polynomials (and therefore the

Einstein’s strength) of differential equations with delay that arise

in applications. Examples of the corresponding computation in the

differential and inverse difference cases can be found in [8, Chapters

6 and 9]. Computations of the same kind in the non-inverse case

(based on the results of this paper) is a subject for future work.
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