
Fault-Tolerant Consensus with an Abstract MAC

Layer

Calvin Newport
Georgetown University

cnewport@cs.georgetown.edu

Peter Robinson
McMaster University

peter.robinson@mcmaster.ca

Abstract

In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce

two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures

the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms

work for any number of failures, require no advance knowledge of the network participants or network

size, and guarantee termination with high probability after a number of broadcasts that are polynomial in

the network size. Our first algorithm satisfies the standard agreement property, while our second trades a

faster termination guarantee in exchange for a looser agreement property in which most nodes agree on

the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition

to our main upper bound results, we explore the gap between the abstract MAC layer and the standard

asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the

absence of information regarding the network participants, even if we assume no faults, allow randomized

solutions, and provide the algorithm a constant-factor approximation of the network size.
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1 Introduction

Consensus provides a fundamental building block for developing reliable distributed systems [23–25].

Accordingly, it is well studied in many different system models [36]. Until recently, however, little

was known about solving this problem in distributed systems made up of devices communicating

using commodity wireless cards. Motivated by this knowledge gap, this paper studies consensus in

the abstract MAC layer model, which abstracts the basic behavior and guarantees of standard wireless

MAC layers. In recent work [41], we proved deterministic fault-tolerant consensus is impossible

in this setting. In this paper, we describe and analyze the first known randomized fault-tolerant

consensus algorithms for this well-motivated model.

The Abstract MAC Layer. Most existing work on distributed algorithms for wireless networks

assumes low-level synchronous models that force algorithms to directly grapple with issues caused

by contention and signal fading. Some of these models describe the network topology with a graph
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(c.f., [8,16,20,28,32,38]), while others use signal strength calculations to determine message behavior

(c.f., [17, 21, 26, 27, 37, 39]).

As also emphasized in [41], these models are useful for asking foundational questions about

distributed computation on shared channels, but are not so useful for developing algorithmic strategies

suitable for deployment. In real systems, algorithms typically do not operate in synchronous rounds

and they are not provided unmediated access to the radio. They must instead operate on top of a

general-purpose MAC layer which is responsible for many network functions, including contention

management, rate control, and co-existence with other network traffic.

Motivated by this reality, in this paper we adopt the abstract MAC layer model [34], an asyn-

chronous broadcast-based communication model that captures the basic interfaces and guarantees

provided by common existing wireless MAC layers. In more detail, if you provide the abstract

MAC layer a message to broadcast, it will eventually be delivered to nearby nodes in the network.

The specific means by which contention is managed—e.g., CSMA, TDMA, uniform probabilistic

routines such as DECAY [8]—is abstracted away by the model. At some point after the contention

management completes, the abstract MAC layer passes back an acknowledgment indicating that it

is ready for the next message. This acknowledgment contains no information about the number or

identities of the message recipient.

(In the case of the MAC layer using CSMA, for example, the acknowledgment would be generated

after the MAC layer detects a clear channel. In the case of TDMA, the acknowledgment would be

generated after the device’s turn in the TDMA schedule. In the case of a probabilistic routine such as

DECAY, the acknowledgment would be generated after a sufficient number of attempts to guarantee

successful delivery to all receivers with high probability.)

The abstract MAC abstraction, of course, does not attempt to provide a detailed representation

of any specific existing MAC layer. Real MAC layers offer many more modes and features then is

captured by this model. In addition, the variation studied in this paper assumes messages are always

delivered, whereas more realistic variations would allow for occasional losses.

This abstraction, however, still serves to capture the fundamental dynamics of real wireless

application design in which the lower layers dealing directly with the radio channel are separated

from the higher layers executing the application in question. An important goal in studying this

abstract MAC layer, therefore, is attempting to uncover principles and strategies that can close the

gap between theory and practice in the design of distributed systems deployed on standard layered

wireless architectures.

Our Results. In this paper, we studied randomized fault-tolerant consensus algorithms in the abstract

MAC layer model. In more detail, we study binary consensus and assume a single-hop network

topology. Notice, our use of randomization is necessary, as deterministic consensus is impossible in

the abstract MAC layer model in the presence of even a single fault (see our generalization of FLP

from [41]).

To contextualize our results, we note that the abstract MAC layer model differs from standard

asynchronous message passing models in two main ways: (1) the abstract MAC layer model provides

the algorithm no advance information about the network size or membership, requiring nodes to

communicate with a blind broadcast primitive instead of using point-to-point channels, (2) the abstract

MAC layer model provides an acknowledgment to the broadcaster at some point after its message has

been delivered to all of its neighbors. This acknowledgment, however, contains no information about

the number or identity of these neighbors (see above for more discussion of this fundamental feature

of standard wireless MAC layers).

Most randomized fault-tolerant consensus algorithms in the asynchronous message passing model

strongly leverage knowledge of the network. A strategy common to many of these algorithms, for

example, is to repeatedly collect messages from at least n− f nodes in a network of size n with at
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most f crash failures (e.g., [9]). This strategy does not work in the abstract MAC layer model as

nodes do not know n.

To overcome this issue, we adapt an idea introduced in early work on fault-tolerant consensus in

the asynchronous shared memory model: counter racing (e.g., [5, 12]). At a high-level, this strategy

has nodes with initial value 0 advance a shared memory counter associated with 0, while nodes with

initial value 1 advance a counter associated with 1. If a node sees one counter get ahead of the other,

they adopt the initial value associated with the larger counter, and if a counter gets sufficiently far

ahead, then nodes can decide.

Our first algorithm (presented in Section 3) implements a counter race of sorts using the ac-

knowledged blind broadcast primitive provided by the model. Roughly speaking, nodes continually

broadcast their current proposal and counter, and update both based on the pairs received from other

nodes. Proving safety for this type of strategy in shared memory models is simplified by the atomic

nature of register accesses. In the abstract MAC layer model, by contrast, a broadcast message is

delivered non-atomically to its recipients, and in the case of a crash, may not arrive at some recipients

at all.1 Our safety analysis, therefore, requires novel analytical tools that tame a more diverse set of

possible system configurations.

To achieve liveness, we use a technique loosely inspired by the randomized delay strategy

introduced by Chandra in the shared memory model [12] . In more detail, nodes probabilistically

decide to replace certain sequences of their counter updates with nop placeholders. We show that if

these probabilities are adapted appropriately, the system eventually arrives at a state where it becomes

likely for only a single node to be broadcasting updates, allowing progress toward termination.

Formally, we prove that with high probability in the network size n, the algorithm terminates

after O(n3 log n) broadcasts are scheduled. This holds regardless of which broadcasts are scheduled

(i.e., we do not impose a fairness condition), and regardless of the number of faults. The algorithm,

as described, assumes nodes are provided unique IDs that we treat as comparable black boxes (to

prevent them from leaking network size information). We subsequently show how to remove that

assumption by describing an algorithm that generates unique IDs in this setting with high probability.

Our second algorithm (presented in Section 4) trades a looser agreement guarantee for more effi-

ciency. In more detail, we describe and analyze a solution to almost-everywhere agreement [18], that

guarantees most nodes agree on the same value. This new algorithm terminates after O(n2 log4 n log log n)

broadcasts, which is a linear factor faster than our first algorithm (ignoring log factors). The almost-

everywhere consensus algorithm consists of two phases. The first phase is used to ensure that almost

all nodes obtain a good approximation of the network size. In the second phase, nodes use this

estimate to perform a sequence of broadcasts meant to help spread their proposal to the network.

Nodes that did not obtain a good estimate in Phase 1 will leave Phase 2 early. The remaining nodes,

however, can leverage their accurate network size estimates to probabilistically sample a subset

to actively participate in each round of broadcasts. To break ties between simultaneously active

nodes, each chooses a random rank using the estimate obtained in Phase 1. We show that with high

probability, after not too long, there exists a round of broadcasts in which the first node receiving its

acknowledgment is both active and has the minimum rank among other active nodes—allowing its

proposal to spread to all remaining nodes.

Finally, we explore the gap between the abstract MAC layer model and the related asynchronous

message passage passing model. We prove (in Section 5) that fault-tolerant consensus is impossible in

the asynchronous message passing model in the absence of knowledge of network participants, even

if we assume no faults, allow randomized algorithms, and provide a constant-factor approximation of

1 We note that register simulations are also not an option in our model for two reasons: standard simulation algorithms
require knowledge of n and a majority correct nodes, whereas we assume no knowledge of n and wait-freedom.
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n. This differs from the abstract MAC layer model where we solve this problem without network

participant or network size information, and assuming crash failures. This result implies that the

fact that broadcasts are acknowledged in the abstract MAC layer model is crucial to overcoming the

difficulties induced by limited network information.

Related Work. Consensus provides a fundamental building block for reliable distributed comput-

ing [23–25]. It is particularly well-studied in asynchronous models [2, 35, 40, 44].

The abstract MAC layer approach2 to modeling wireless networks was introduced in [33] (later

expanded to a journal version [34]), and has been subsequently used to study several different

problems [14, 15, 29, 30, 41]. The most relevant of this related work is [41], which was the first paper

to study consensus in the abstract MAC layer model. This previous paper generalized the seminal

FLP [19] result to prove deterministic consensus is impossible in this model even in the presence of a

single failure. It then goes on to study deterministic consensus in the absence of failures, identifying

the pursuit of fault-tolerant randomized solutions as important future work—the challenge taken up

here.

We note that other researchers have also studied consensus using high-level wireless network

abstractions. Vollset and Ezhilchelvan [45], and Alekeish and Ezhilchelvan [4], study consensus

in a variant of the asynchronous message passing model where pairwise channels come and go

dynamically—capturing some behavior of mobile wireless networks. Their correctness results depend

on detailed liveness guarantees that bound the allowable channel changes. Wu et al. [46] use the

standard asynchronous message passing model (with unreliable failure detectors [13]) as a stand-in

for a wireless network, focusing on how to reduce message complexity (an important metric in a

resource-bounded wireless setting) in solving consensus.

A key difficulty for solving consensus in the abstract MAC layer model is the absence of advance

information about network participants or size. These constraints have also been studied in other

models. Ruppert [43], and Bonnet and Raynal [10], for example, study the amount of extra power

needed (in terms of shared objects and failure detection, respectively) to solve wait-free consensus in

anonymous versions of the standard models. Attiya et al. [6] describe consensus solutions for shared

memory systems without failures or unique ids. A series of papers [3, 11, 22], starting with the work

of Cavin et al. [11], study the related problem of consensus with unknown participants (CUPs), where

nodes are only allowed to communicate with other nodes whose identities have been provided by a

participant detector formalism.

Closer to our own model is the work of Abboud et al. [1], which also studies a single hop

network where nodes broadcast messages to an unknown group of network participants. They prove

deterministic consensus is impossible in these networks under these assumptions without knowledge

of network size. In this paper, we extend these existing results by proving this impossibility still holds

even if we assume randomized algorithms and provided the algorithm a constant-factor approximation

of the network size. This bound opens a sizable gap with our abstract MAC layer model in which

consensus is solvable without this network information.

We also consider almost-everywhere (a.e.) agreement [18], a weaker variant of consensus, where

a small number of nodes are allowed to decide on conflicting values, as long as a sufficiently large

majority agrees. Recently, a.e. agreement has been studied in the context of peer-to-peer networks

(c.f. [7, 31]), where the adversary can isolate small parts of the network thus rendering (everywhere)

consensus impossible. We are not aware of any prior work on a.e. agreement in the wireless settings.

2 There is no one abstract MAC layer model. Different studies use different variations. They all share, however,
the same general commitment to capturing the types of interfaces and communication/timing guarantees that are
provided by standard wireless MAC layers
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2 Model and Problem

In this paper, we study a variation of the abstract MAC layer model, which describes system

consisting of a single hop network of n ≥ 1 computational devices (called nodes in the following)

that communicate wirelessly using communication interfaces and guarantees inspired by commodity

wireless MAC layers.

In this model, nodes communicate with a bcast primitive that guarantees to eventually deliver

the broadcast message to all the other nodes (i.e., the network is single hop). At some point after a

given bcast has succeeded in delivering a message to all other nodes, the broadcaster receives an ack

informing it that the broadcast is complete (as detailed in the introduction, this captures the reality

that most wireless contention management schemes have a definitive point at which they know a

message broadcast is complete). This acknowledgment contains no information about the number or

identity of the receivers.

We assume a node can only broadcast one message at a time. That is, once it invokes bcast,

it cannot broadcast another message until receiving the corresponding ack (formally, overlapping

messages are discarded by the MAC layer). We also assume any number of nodes can permanently

stop executing due to crash failures. As in the classical message passing models, a crash can occur

during a broadcast, meaning that some nodes might receive the message while others do not.

This model is event-driven with the relevant events scheduled asynchronously by an arbitrary

scheduler. In more detail, for each node u, there are four event types relevant to u that can be

scheduled: initu (which occurs at the beginning of an execution and allows u to initialize), recv(m)u

(which indicates that u has received message m broadcast from another node), ack(m)u (which

indicates that the message m broadcast by u has been successfully delivered), and crashu (which

indicates that u is crashed for the remainder of the execution).

A distributed algorithm specifies for each node u a finite collection of steps to execute for each of

the non-crash event types. When one of these events is scheduled by the scheduler, we assume the

corresponding steps are executed atomically at the point that the event is scheduled. Notice that one

of the steps that a node u can take in response to these events is to invoke a bcast(m)u primitive for

some message m. When an event includes a bcast primitive we say it is combined with a broadcast.3

We place the following constraints on the scheduler. It must start each execution by scheduling an

init event for each node; i.e., we study the setting where all participating nodes are activated at the

beginning of the execution. If a node u invokes a valid bcast(m)u primitive, then for each v 6= u that is

not crashed when the broadcast primitive is invoked, the scheduler must subsequently either schedule

a single recv(m)v or crashv event at v. At some point after these events are scheduled, it must then

eventually schedule an ack(m)u event at u. These are the only recv and ack events it schedules (i.e.,

it cannot create new messages from scratch or cause messages to be received/acknowledged multiple

times). If the scheduler schedules a crashv event, it cannot subsequently schedule any future events

for u.

We assume that in making each event scheduling decision, the scheduler can use the schedule

history as well as the algorithm definition, but it does not know the nodes’ private states (which

includes the nodes’ random bits). When the scheduler schedules an event that triggers a broadcast

(making it a combined event), it is provided this information so that it knows it must now schedule

receive events for the message. We assume, however, that the scheduler does not learn the contents of

3 Notice, we can assume without loss of generality, that the steps executed in response to an event never invoke more
than a single bcast primitive, as any additional broadcasts invoked at the same time would lead to the messages being
discarded due to the model constraint that a node must receive an ack for the current message before broadcasting a
new message.

DISC 2018



38:6 Fault-Tolerant Consensus with an Abstract MAC Layer

the broadcast message.4

Given an execution α, we say the message schedule for α, also indicated msg[α], is the sequence

of message events (i.e., recv, ack, and crash) scheduled in the execution. We assume that a message

schedule includes indications of which events are combined with broadcasts.

The Consensus Problem. In this paper, we study binary consensus with probabilistic termination.

In more detail, at the beginning of an execution each node is provided an initial value from {0, 1} as

input. Each node has the ability to perform a single irrevocable decide action for either value 0 or

1. To solve consensus, an algorithm must guarantee the following three properties: (1) agreement:

no two nodes decide different values; (2) validity: if a node decides value b, then at least one node

started with initial value b; and (3) termination (probabilistic): every non-crashed node decides with

probability 1 in the limit.

Studying finite termination bounds is complicated in asynchronous models because the scheduler

can delay specific nodes taking steps for arbitrarily long times. In this paper, we circumvent this issue

by proving bounds on the number of scheduled events before the system reaches a termination state

in which every non-crashed node has: (a) decided; or (b) will decide whenever the scheduler gets

around to scheduling its next ack event.

Finally, in addition to studying consensus with standard agreement, we also study almost-

everywhere agreement, in which only a specified majority fraction (typically a 1− o(n) fraction of

the n total nodes) must agree.

3 Upper Bound

Here we describe analyze our first randomized binary consensus algorithm: counter race consensus

(see Algorithms 1 and 2 for pseudocode, and Section 3.1 for a high-level description of its behavior).

This algorithm assumes no advance knowledge of the network participants or network size. Nodes are

provided unique IDs, but these are treated as comparable black boxes, preventing them from leaking

information about the network size. (We will later discuss how to remove the unique ID assumption.)

It tolerates any number of crash faults. The detailed proofs can be found in the full paper [42].

3.1 Algorithm Description

The counter race consensus algorithm is described in pseudocode in the figures labeled Algorithm 1

and 2. Here we summarize the behavior formalized by this pseudocode.

The core idea of this algorithm is that each node u maintains a counter cu (initialized to 0) and

a proposal vu (initialized to its consensus initial value). Node u repeatedly broadcasts cu and vu,

updating these values before each broadcast. That is, during the ack event for its last broadcast of cu

and vu, node u will apply a set of update rules to these values. It then concludes the ack event by

broadcasting these updated values. This pattern repeats until u arrives at a state where it can safely

commit to deciding a value.

The update rules and decision criteria applied during the ack event are straightforward. Each

node u first calculates ĉ
(0)
u , the largest counter value it has sent or received in a message containing

4 This adversary model is sometimes called message oblivious and it is commonly considered a good fit for schedulers
that control network behavior. This follows because it allows the scheduler to adapt the schedule based on the
number of messages being sent and their sources—enabling it to model contention and load factors. One the other
hand, there is not good justification for the idea that this schedule should somehow also depend on the specific bits
contained in the messages sent. Notice, our liveness proof specifically leverages the message oblivious assumption
as it prevents the scheduler from knowing which nodes are sending updates and which are sending nop messages.
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Algorithm 1 Counter Race Consensus (for node u with UID idu and initial value vu)

Initialization:

cu ← 0

nu ← 2

Cu ← {(idu, cu, vu)}
peers← {idu}
phase← 0

active← true

decide← −1

k ← 3

c← k + 3

bcast(nop, idu, nu)

On Receiving ack(m):

phase← phase + 1

if m = (decide, b) then

decide(b) and halt()

else

newm← ⊥
C ′

u ← Cu

ĉ
(0)
u ← max counter in C ′

u paired with value 0 (default to 0 if no such elements)

ĉ
(1)
u ← max counter in C ′

u paired with value 1 (default to 0 if no such elements)

if ĉ
(0)
u > ĉ

(1)
u then vu ← 0

else if ĉ
(1)
u > ĉ

(0)
u then vu ← 1

if ĉ
(0)
u ≥ ĉ

(1)
u + k or decide = 0 then newm← (decide, 0)

else if ĉ
(1)
u ≥ ĉ

(0)
u + k or decide = 1 then newm← (decide, 1)

if newm = ⊥ then

if max{ĉ(0)
u , ĉ

(1)
u } ≤ cu and m 6= nop then cu ← cu + 1

else if max{ĉ(0)
u , ĉ

(1)
u } > cu then cu ← max{ĉ(0)

u , ĉ
(1)
u }

update (idu, ∗, ∗) element in Cu with new cu and vu

newm← (counter, idu, cu, vu, nu)

if phase % c = 1 then with probability 1/nu active← true otherwise active← false

if newm = (decide, ∗) or active = true then

bcast(newm)

else

bcast(nop, idu, nu)

On Receiving Message m:

updateEstimate(m)

if m = (decide, b) then

decide← b

else if m = (counter, id, c, v, n′) then

if ∃c′, v′ such that (id, c′, v′) ∈ Cu then

remove (id, c′, v′) from Cu

add (id, c, v) to Cu

DISC 2018
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Algorithm 2 The updateEstimate(m) subroutine called by Counter Race Consensus during recv(m)

event.

if m contains a UID id and network size estimate n′ then

peers← peers ∪ {id}
nu ← max{nu, |peers|, n′}

proposal value 0, and ĉ
(1)
u , the largest counter value it has sent or received in a message containing

proposal value 1.

If ĉ
(0)
u > ĉ

(1)
u , then u sets vu ← 0, and if ĉ

(1)
u > ĉ

(0)
u , then u sets vu ← 1. That is, u adopts the

proposal that is currently “winning" the counter race (in case of a tie, it does not change its proposal).

Node u then checks to see if either value is winning by a large enough margin to support a

decision. In more detail, if ĉ
(0)
u ≥ ĉ

(1)
u + 3, then u commits to deciding 0, and if ĉ

(1)
u ≥ ĉ

(0)
u + 3, then

u commits to deciding 1.

What happens next depends on whether or not u committed to a decision. If u did not commit to

a decision (captured in the if newm = ⊥ then conditional), then it must update its counter value. To

do so, it compares its current counter cu to ĉ
(0)
u and ĉ

(1)
u . If cu is smaller than one of these counters, it

sets cu ← max{ĉ(0)
u , ĉ

(1)
u }. Otherwise, if cu is the largest counter that u has sent or received so far, it

will set cu ← cu + 1. Either way, its counter increases. At this point, u can complete the ack event

by broadcasting a message containing its newly updated cu and vu values.

On the other hand, if u committed to deciding value b, then it will send a (decide, b) message

to inform the other nodes of its decision. On subsequently receiving an ack for this message, u

will decide b and halt. Similarly, if u ever receives a (decide, b) message from another node, it will

commit to deciding b. During its next ack event, it will send its own (decide, b) message and decide

and halt on its corresponding ack. That is, node u will not decide a value until it has broadcast its

commitment to do so, and received an ack on the broadcast.

The behavior described above guarantees agreement and validity. It is not sufficient, however, to

achieve liveness, as an ill-tempered scheduler can conspire to keep the race between 0 and 1 too close

for a decision commitment. To overcome this issue we introduce a random delay strategy that has

nodes randomly step away from the race for a while by replacing their broadcast values with nop

placeholders ignored by those who receive them. Because our adversary does not learn the content

of broadcast messages, it does not know which nodes are actively participating and which nodes

are taking a break (as in both cases, nodes continually broadcast messages)—thwarting its ability to

effectively manipulate the race.

In more detail, each node u partitions its broadcasts into groups of size 6. At the beginning of each

such group, u flips a weighted coin to determine whether or not to replace the counter and proposal

values it broadcasts during this group with nop placeholders—eliminating its ability to affect other

nodes’ counter/proposal values. As we will later elaborate in the liveness analysis, the goal is to

identify a point in the execution in which a single node v is broadcasting its values while all other

nodes are broadcasting nop values—allowing v to advance its proposal sufficiently far ahead to win

the race.

To be more specific about the probabilities used in this logic, node u maintains an estimate nu

of the number of nodes in the network. It replaces values with nop placeholders in a given group

with probability 1/nu. (In the pseudocode, the active flag indicates whether or not u is using nop

placeholders in the current group.) Node u initializes nu to 2. It then updates it by calling the

updateEstimate routine (described in Algorithm 2) for each message it receives.

There are two ways for this routine to update nu. The first is if the number of unique IDs that u

has received so far (stored in peers) is larger than nu. In this case, it sets nu ← |peers|. The second
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way is if it learns another node has an estimate n′ > nu. In this case, it sets nu ← n′. Node u learns

about other nodes’ estimates, as the algorithm has each node append its current estimate to all of

its messages (with the exception of decide messages). In essence, the nodes are running a network

size estimation routine parallel to its main counter race logic—as nodes refine their estimates, their

probability of taking useful breaks improves.

3.2 Safety

We begin our analysis by proving that our algorithm satisfies the agreement and validity properties

of the consensus problem. Validity follows directly from the algorithm description. Our strategy to

prove agreement is to show that if any node sees a value b with a counter at least 3 ahead of value

1− b (causing it to commit to deciding b), then b is the only possible decision value. Race arguments

of this type are easier to prove in a shared memory setting where nodes work with objects like atomic

registers that guarantee linearization points. In our message passing setting, by contrast, in which

broadcast messages arrive at different receivers at different times, we will require more involved

definitions and operational arguments.5

We start with a useful definition. We say b dominates 1− b at a given point in the execution, if

every (non-crashed) node at this point believes b is winning the race, and none of the messages in

transit can change this perception.

To formalize this notion we need some notation. In the following, we say at point t (or at t), with

respect to an event t from the message schedule of an execution α, to describe the state of the system

immediately after event t (and any associated steps that execute atomically with t) occurs. We also

use the notation in transit at t to describe messages that have been broadcast but not yet received at

every non-crashed receiver at t.

I Definition 1. Fix an execution α, event t in the corresponding message schedule msg[α],

consensus value b ∈ {0, 1}, and counter value c ≥ 0. We say α is (b, c)-dominated at t if the

following conditions are true:

1. For every node u that is not crashed at t: ĉ
(b)
u [t] > c and ĉ

(1−b)
u [t] ≤ c, where at point t, ĉ

(b)
u [t]

(resp. ĉ
(1−b)
u [t]) is the largest value u has sent or received in a counter message containing

consensus value b (resp. 1− b). If u has not sent or received any counter messages containing b

(resp. 1− b), then by default it sets ĉ
(b)
u [t]← 0 (resp. ĉ

(1−b)
u [t]← 0) in making this comparison.

2. For every message of the form (counter, id, 1− b, c′, n′) that is in transit at t: c′ ≤ c.

The following lemma formalizes the intuition that once an execution becomes dominated by a

given value, it remains dominated by this value.

I Lemma 2. Assume some execution α is (b, c)-dominated at point t. It follows that α is (b, c)-

dominated at every t′ that comes after t.

Proof. In this proof, we focus on the suffix of the message schedule msg[α] that begins with event

t. For simplicity, we label these events E1, E2, E3, ..., with E1 = t. We will prove the lemma by

induction on this sequence.

The base case (E1) follows directly from the lemma statement. For the inductive step, we

must show that if α is (b, c)-dominated at point Ei, then it will be dominated at Ei+1 as well. By

the inductive hypothesis, we assume the execution is dominated immediately before Ei+1 occurs.

5 We had initially hoped there might be some way to simulate linearizable shared objects in our model. Unfortunately,
our nodes’ lack of information about the network size thwarted standard simulation strategies which typically
require nodes to collect messages from a majority of nodes in the network before proceeding to the next step of the
simulation.
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Therefore, the only way the step is violated is if Ei+1 transitions the system from dominated to

non-dominated status. We consider all possible cases for Ei+1 and show none of them can cause such

a transition.

The first case is if Ei+1 is a crashu event for some node u. It is clear that a crash cannot transition

a system into non-dominated status.

The second case is if Ei+1 is a recv(m)u event for some node u. This event can only transition

the system into a non-dominated status if m is a counter message that includes 1− b and a counter

c′ > c. For u to receive this message, however, means that the message was in transit immediately

before Ei+1 occurs. Because we assume the system is dominated at Ei, however, no such message

can be in transit at this point (by condition 2 of the domination definition).

The third and final case is if Ei+1 is a ack(m)u event for some node u, that is combined with a

bcast(m′)u event, where m′ is a counter message that includes 1− b and a counter c′ > c. Consider

the values ĉ
(b)
u and ĉ

(1−b)
u set by node u early in the steps associated with this ack(m)u event. By

our inductive hypothesis, which tells us that the execution is dominated right before this ack(m)u

event occurs, it must follow that ĉ
(b)
u > ĉ

(1−b)
u (as ĉ

(b)
u = ĉ

(b)
u [Ei] and ĉ

(1−b)
u = ĉ

(1−b)
u [Ei]). In the

steps that immediately follow, therefore, node u will set vu ← b. It is therefore impossible for u to

then broadcast a counter message with value vu = 1− b. J

To prove agreement, we are left to show that if a node commits to deciding some value b, then it

must be the case that b dominates the execution at this point—making it the only possible decision

going forward. The following helper lemma, which captures a useful property about counters, will

prove crucial for establishing this point.

I Lemma 3. Assume event t in the message schedule of execution α is combined with a bcast(m)v ,

where m = (counter, idv, c, b, nv), for some counter c > 0. It follows that prior to t in α, every

node that is non-crashed at t received a counter message with counter c− 1 and value b.

Proof. Fix some t, α, v and m = (counter, idv, c, b, nv), as specified by the lemma statement. Let

t′ be the first event in α such that at t′ some node w has local counter cw ≥ c and value vw = b. We

know at least one such event exists as t and v satisfy the above conditions, so the earliest such event,

t′, is well-defined. Furthermore, because t′ must modify local counter and/or consensus values, it

must also be an ack event.

For the purposes of this argument, let cw and vw be w’s counter and consensus value, respectively,

immediately before t′ is scheduled. Similarly, let c′

w and v′

w be these values immediately after t′ and

its steps complete (i.e., these values at point t′). By assumption: c′

w ≥ c and v′

w = b. We proceed by

studying the possibilities for cw and vw and their relationships with c′

w and v′

w.

We begin by considering vw. We want to argue that vw = b. To see why this is true, assume for

contradiction that vw = 1− b. It follows that early in the steps for t′, node w switches its consensus

value from 1− b to b. By the definition of the algorithm, it only does this if at this point in the ack

steps: ĉ
(b)
w > ĉ

(1−b)
w ≥ cw (the last term follows because cw is included in the values considered

when defining c
(1−b)
w ). Note, however, that c

(b)
w must be less than c. If it was greater than or equal to

c, this would imply that a node ended an earlier event with counter ≥ c and value b—contradicting

our assumption that t′ was the earliest such event. If c
(b)
w < c and c

(b)
w > cw, then w must increase its

cw value during this event. But because ĉ
(b)
w > ĉ

(1−b)
w ≥ cw, the only allowable change to cw would

be to set it to ĉ
(b)
w < c. This contradicts the assumption that c′

w ≥ c.

At this checkpoint in our argument we have argued that vw = b. We now consider cw. If cw ≥ c,

then w starts t′ with a sufficiently big counter—contradicting the assumption that t′ is the earliest

such event. It follows that cw < c and w must increase this value during this event.

There are two ways to increase a counter; i.e., the two conditions in the if/else-if statement that

follows the newm = ⊥ check. We start with the second condition. If max{ĉ(b)
w , ĉ

(1−b)
w } > cw, then
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w can set cw to this maximum. If this maximum is equal to ĉ
(b)
w , then this would imply ĉ

(b)
w ≥ c. As

argued above, however, it would then follow that a node had a counter ≥ c and value b before t′. If

this is not true, then ĉ
(1−b)
w > c

(b)
w . If this was the case, however, w would have adopted value 1− b

earlier in the event, contradicting the assumption that v′

w = b.

At this next checkpoint in our argument we have argued that vw = b, cw < c, and w increases

cw to c through the first condition of the if/else if; i.e., it must find that max{ĉ(b)
w , ĉ

(1−b)
w } ≤ cw

and m 6= nop. Because this condition only increases the counter by 1, we can further refine our

assumption to cw = c− 1.

To conclude our argument, consider the implications of the m 6= nop component of this con-

dition. It follows that t′ is an ack(m)w for an actual message m. It cannot be the case that m is

a decide message, as w will not increase its counter on acknowledging a decide. Therefore, m

is a counter message. Furthermore, because counter and consensus values are not modified after

broadcasting a counter message but before receiving its subsequent acknowledgment, we know

m = (counter, idw, cw, vw, ∗) = (counter, idw, c− 1, b, ∗) (we replace the network size estimate

with a wildcard here as these estimates could change during this period).

Because w has an acknowledgment for this m, by the definition of the model, prior to t′: every

non-crashed node received a counter message with counter c − 1 and consensus value b. This is

exactly the claim we are trying to prove. J

Our main safety theorem leverages the above two lemmas to establish that committing to decide b

means that b dominates the execution. The key idea is that counter values cannot become too stale. By

Lemma 3, if some node has a counter c associated with proposal value 1− b, then all nodes have seen

a counter of size at least c− 1 associated with 1− b. It follows that if some node thinks b is far ahead,

then all nodes must think b is far ahead in the race (i.e., b dominates). Lemma 2 then establishes that

this dominance is permanent—making b the only possible decision value going forward.

I Theorem 4. The Counter Race Consensus algorithm satisfies validity and agreement.

Proof. Validity follows directly from the definition of the algorithm. To establish agreement, fix

some execution α that includes at least one decision. Let t be the first ack event in α that is combined

with a broadcast of a decide message. We call such a step a pre-decision step as it prepares nodes to

decide in a later step. Let u be the node at which this ack occurs and b be the value it includes in the

decide message. Because we assume at least one process decides in α, we know t exists. We also

know it occurs before any decision.

During the steps associated with t, u sets newm ← (decide, b). This indicates the following

is true: ĉ
(b)
u ≥ ĉ

(1−b)
u + 3. Based on this condition, we establish two claims about the system at t,

expressed with respect to the value ĉ
(1−b)
u during these steps:

Claim 1. The largest counter included with value 1− b in a counter message broadcast6 before t

is no more than ĉ
(1−b)
u + 1.

Assume for contradiction that before t some v broadcast a counter message with value 1− b and

counter c > ĉ
(1−b)
u + 1. By Lemma 3, it follows that before t every non-crashed node receives a

counter message with value 1− b and counter c− 1 ≥ ĉ
(1−b)
u + 1. This set of nodes includes u.

This contradicts our assumption that at t the largest counter u has seen associated with 1− b is

ĉ
(1−b)
u .

6 Notice, in these claims, when we say a message is “broadcast" we only mean that the corresponding bcast event
occurred. We make no assumption on which nodes have so far received this message.
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Claim 2. Before t, every non-crashed node has sent or received a counter message with value b

and counter at least ĉ
(1−b)
u + 2.

By assumption on the values u has seen at t, we know that before t some node v broadcast a

counter message with value b and counter c ≥ ĉ
(1−b)
u + 3. By Lemma 3, it follows that before t,

every node has sent or received a counter with value b and counter c− 1 ≥ ĉ
(1−b)
u + 2.

Notice that claim 1 combined with claim 2 implies that the execution is (b, ĉ
(1−b)
u + 1)-dominated

before t. By Lemma 2, the execution will remain dominated from this point forward. We assume

t was the first pre-decision, and it will lead u to tell other nodes to decide u before doing so itself.

Other pre-decision steps might occur, however, before all nodes have received u’s preference for b.

With this in mind, let t′ be any other pre-decision step. Because t′ comes after t it will occur in a

(b, ĉ
(1−b)
u + 1)-dominated system. This means that during the first steps of t′, the node will adopt b as

its value (if it has not already done so), meaning it will also promote b.

To conclude, we have shown that once any node reaches a pre-decision step for a value b, then the

system is already dominated in favor of b, and therefore b is the only possible decision value going

forward. Agreement follows directly. J

3.3 Liveness

We now turn our attention liveness. Our goal is to prove the following theorem:

I Theorem 5. With high probability, within O(n3 ln n) scheduled ack events, every node executing

counter race consensus has either crashed, decided, or received a decide message. In the limit, this

termination condition occurs with probability 1.

Notice that this theorem does not require a fair schedule. It guarantees its termination criteria

(with high probability) after any O(n3 ln n) scheduled ack events, regardless of which nodes these

events occur at. Once the system arrives at a state in which every node has either crashed, decided, or

received a decide message, the execution is now univalent (only one decision value is possible going

forward), and each non-crashed node u will decide after at most two additional ack events at u.7

Our liveness proof is longer and more involved than our safety proof. This follows, in part,

from the need to introduce multiple technical definitions to help identify the execution fragments

sufficiently well-behaved for us to apply our probabilistic arguments. With this in mind, we divide

the presentation of our liveness proof into two parts. The first part introduces the main ideas of the

analysis and provides a road map of sorts to its component pieces. The second part, which contains

the details, can be found in the full paper [42].

3.3.1 Main Ideas

Here we discuss the main ideas of our liveness proof. A core definition used in our analysis is the

notion of an x-run. Roughly speaking, for a given constant integer x ≥ 2 and node u, we say an

execution fragment β is an x-run for some node u, if it starts and ends with an ack event for u, it

contains x total ack events for u, and no other node has more than x ack events interleaved. We

deploy a recursive counting argument to establish that an execution fragment β that contains at least

n · x total ack events, must contain a sub-fragment β′ that is an x-run for some node u.

7 In the case where u receives a decide message, the first ack might correspond to the message it was broadcasting
when the decide arrived, and the second ack corresponds to the decide message that u itself will then broadcast.
During this second ack, u will decide and halt.
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To put this result to use, we focus our attention on (2c + 1)-runs, where c = 6 is the constant

used in the algorithm definition to define the length of a group (see Section 3.1 for a reminder of

what a group is and how it is used by the algorithm). A straightforward argument establishes that a

(2c + 1)-run for some node u must contain at least one complete group for u—that is, it must contain

all c broadcasts of one of u’s groups.

Combining these observations, it follows that if we partition an execution into segments of length

n · (2c+1), each such segment i contains a (2c+1)-run for some node ui, and each such run contains

a complete group for ui. We call this complete group the target group ti for segment i (if there are

multiple complete groups in the run, choose one arbitrarily to be the target).

These target groups are the core unit to which our subsequent analysis applies. Our goal is to

arrive at a target group ti that is clean in the sense that ui is active during the group (i.e., sends its

actual values instead of nop placeholders), and all broadcasts that arrive at u during this group come

from non-active nodes (i.e., these received messages contain nop placeholders instead of values). If

we achieve a clean group, then it is not hard to show that ui will advance its counter at least k ahead

of all other counters, pushing all other nodes into the termination criteria guaranteed by Theorem 5.

To prove clean groups are sufficiently likely, our analysis must overcome two issues. The first

issue concerns network size estimations. Fix some target group ti. Let Pi be the nodes from which ui

receives at least one message during ti. If all of these nodes have a network size estimate of at least

ni = |Pi| at the start of ti, we say the group is calibrated. We prove that if ti is calibrated, then it is

clean with a probability in Ω(1/n).

The key, therefore, is proving most target groups are calibrated. To do so, we note that if

some ti is not calibrated, it means at least one node used an estimate strictly less than ni when it

probabilistically defined active at the beginning of this group. During this group, however, all nodes

will receive broadcasts from at least ni unique nodes, increasing all network estimates to size at least

ni.
8 Therefore, each target group that fails to be calibrated increases the minimum network size

estimate in the system by at least 1. It follows that at most n target groups can be non-calibrated.

The second issue concerns probabilistic dependencies. Let Ei be the event that target group ti

is clean and Ej be the event that some other target group tj is clean. Notice that Ei and Ej are not

necessarily independent. If a node u has a group that overlaps both ti and tj , then its probabilistic

decision about whether or not to be active in this group impacts the potential cleanliness of both ti

and tj .

Our analysis tackles these dependencies by identifying a subset of target groups that are pairwise

independent. To do so, roughly speaking, we process our target groups in order. Starting with the first

target group, we mark as unavailable any future target group that overlaps this first group (in the sense

described above). We then proceed until we arrive at the next target group not marked unavailable

and repeat the process. Each available target group marks at most O(n) future groups as unavailable.

Therefore, given a sufficiently large set T of target groups, we can identify a subset T ′, with a size in

Ω(|T |/n), such that all groups in T ′ are pairwise independent.

We can now pull together these pieces to arrive at our main liveness complexity claim. Consider

the first O(n3 ln n) ack events in an execution. We can divide these into O(n2 ln n) segments of

length (2c + 1)n ∈ Θ(n). We now consider the target groups defined by these segments. By our

above argument, there is a subset T ′ of these groups, where |T ′| ∈ Ω(n ln n), and all target groups

in T ′ are mutually independent. At most n of these remaining target groups are not calibrated. If

we discard these, we are left with a slightly smaller set, of size still Ω(n ln n), that contains only

8 This summary is eliding some subtle details tackled in the full analysis concerning which broadcasts are guaranteed
to be received during a target group. But these details are not important for understanding the main logic of this
argument.
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calibrated and pairwise independent target groups.

We argued that each calibrated group has a probability in Ω(1/n) of being clean. Leveraging

the independence between our identified groups, a standard concentration analysis establishes with

high probability in n that at least one of these Ω(n/ ln n) groups is clean—satisfying the Theorem

statement.

3.4 Removing the Assumption of Unique IDs

The consensus algorithm described in this section assumes unique IDs. We now show how to eliminate

this assumption by describing a strategy that generates unique IDs w.h.p., and discuss how to use this

as a subroutine in our consensus algorithm.

We make use of a simple tiebreaking mechanism as follows: Each node u proceeds by iteratively

extending a (local) random bit string that eventually becomes unique among the nodes. Initially,

u broadcasts bit b1, which is initialized to 1 (at all nodes), and each time u samples a new bit b, it

appends b to its current string and broadcasts the result. For instance, suppose that u’s most recently

broadcast bit string is b1 . . . bi. Upon receiving ack(b1 . . . bi), node u checks if it has received a

message identical to b1 . . . bi. If it did not receive such a message, then u adopts b1 . . . bi as its ID and

stops. Otherwise, some distinct node must have sampled the same sequence of bits as u and, in this

case, the ID b1 . . . bi is considered to be already taken. (Note that nodes do not take receive events for

their own broadcasts.) Node u continues by sampling its (i + 1)-th bit bi+1 uniformly at random, and

then broadcasts the string b1 . . . bibi+1, and so forth. In the full paper [42], we prove the following

result and describe how to combine it with our consensus algorithm:

I Theorem 6. Consider an execution α of the tiebreaking algorithm. Let tu be an event in the

message schedule msg[α] such that node u is scheduled for Ω(log n) ack events before tu. Then, for

each correct node u, it holds that u has a unique ID of O(log n) bits with high probability at tu.

4 Almost-Everywhere Agreement

In the previous section, we showed how to solve consensus in O(n3 log n) events. Here we show how

to improve this bound by a near linear factor by loosening the agreement guarantees. In more detail,

we consider a weaker variant of consensus, introduced in [18], called almost-everywhere agreement.

This variation relaxes the agreement property of consensus such that o(n) nodes are allowed to decide

on conflicting values so long as the remaining nodes all decide the same value. For many problems

that use consensus as a subroutine, this relaxed agreement property is sufficient.

In more detail, we present an algorithm for solving almost-everywhere agreement in the abstract

MAC layer model when nodes start with arbitrary (not necessarily binary) input values. The algorithm

consists of two phases; see Algorithm 3 for the pseudo code.

Phase 1: In this phase, nodes try to obtain an estimate of the network size by performing local coin

flipping experiments. Each node u records the number of times that its coin comes up tails before

observing the first heads in a variable X . Then, u broadcasts its value of X once, and each node

updates X to the highest outcome that it has seen until it receives the ack for its broadcast. In our

analysis, we show that, by the end of Phase 1, variable X is an approximation of log2(n) with an

additive O(log log n) term, for all nodes in a large set called EST , and hence N := 2X is a good

approximation of the network size n for any node in EST .

Phase 2: Next, we use X and N as parameters of a randomly rotating leader election procedure.

Each node decides after T = Θ(N log3(N) log log(N)) rounds. (Note that due to the asynchronous

nature of the abstract MAC layer model, different nodes might be executing in different rounds at the

same point in time.) We now describe the sequence of steps comprising a round in more detail: A
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node u becomes active with probability 1/Nu at the start of each round.9 If it is active, then u samples

a random rank ρ from a range polynomial in Xu, and broadcasts a message 〈r, ρ, val〉 where val

refers to its current consensus input value. To ensure that the scheduler cannot derive any information

about whether a node is active in a round, inactive nodes simply broadcast a dummy message with

infinite rank. While an (active or inactive) node v waits for its ack for round r, it keeps track of all

received messages and defers processing of a message sent by a node in some round r′ > r until the

event in which v itself starts round r′. On the other hand, if a received message was sent in r′ < r,

then v simply discards that late message as it has already completed r′. Node v uses the information

of messages originating from the same round r to update its consensus input value, if it receives such

a message from an active node that has chosen a smaller rank than its own. (Recall that inactive nodes

have infinite rank.) After v has finished processing the received messages, it moves on the next round.

We first provide some intuition why it is insufficient to focus on a round r where the “earliest”

node is also active: Ideally, we want the node w1 that is the first to receive its ack for round r to be

active and to have the smallest rank among all active nodes in round r, as this will force all other

(not-yet decided) nodes to adopt w1’s value when receiving their own round r ack, ensuring a.e.

agreement. However, it is possible that w1 and also the node w2 that receives its round r ack right

after w1, are among the few nodes that ended up with a small (possibly constant) value of X after

Phase 1. We cannot use the size of EST to reason about this probability, as some nodes are much

likelier to be in EST than others, depending on the schedule of events in Phase 1. In that case, it

could happen that both w1 and w2 become active and choose a rank of 1. Note that it is possible that

the receive steps of their broadcasts are scheduled such that roughly half of the nodes receive w1’s

message before w2’s message, while the other half receive w2’s message first. If w1 and w2 have

distinct consensus input values, then it can happen that both consensus values gain large support in

the network as a result.

To avoid this pitfall, we focus on a set of rounds where all nodes not in EST have already

terminated Phase 2 (and possibly decided on a wrong value): from that point onwards, only nodes

with sufficiently large values of X and N keep trying to become active. We can show that every node

in EST has a probability of at least Ω(1/(n log n)) to become active and a probability of Ω(1/ log n)

to have chosen the smallest rank among all nodes that are active in the same round. Thus, when

considering a sufficiently large set of rounds, we can show that the event, where the first node in

EST that receives its ack in round r becomes active and also chooses a rank smaller than the rank of

any other node active active in the same round, happens with probability 1− o(1).

In the full paper [42], we formalize the above discussion by proving the following main theorem

regarding this algorithm:

I Theorem 7. With high probability, the following two properties are true of our almost-everywhere

consensus algorithm: (1) within O(n2 log4 n · log log n) scheduled ack events, every node has either

crashed, decided, or will decided after it is next scheduled; (b) all but at most o(n) nodes that decide,

decide the same value.

5 Lower Bound

We conclude our investigation by showing a separation between the abstract MAC layer model and

the related asynchronous message passing model. In more detail, we prove below that fault-tolerant

consensus with constant success probability is impossible in a variation of the asynchronous message

passing model where nodes are provided only a constant-fraction approximation of the network

size and communicate using (blind) broadcast. This bounds holds even if we assume no crashes

9 We use the convention Nu when referring to the local variable N of a specific node u.

DISC 2018



38:16 Fault-Tolerant Consensus with an Abstract MAC Layer

Algorithm 3 Almost-everywhere agreement in the abstract MAC layer model. Code for node u.

1: val← consensus input value

2: . Phase 1

3: initialize X ← 0; R← ∅
4: while flip_coin() = heads do

5: X ← X + 1

6: bcast(X)

7: while waiting for ack do

8: add received messages to R

9: X ← max(R ∪ {X})
10: N ← 2X

11: . Phase 2

12: T ← dcN log3(N) log log(N)e, where c is a sufficiently large constant.

13: initialize array of sets R[1], . . . , R[T ]← ∅
14: for i← 1, . . . , T do . Start of round i at u

15: u becomes active with probability 1
N

16: if u is active then

17: ρ← unif. at random sampled integer from [1, X4]

18: else

19: ρ←∞
20: bcast(〈i, ρ, val〉)
21: while waiting for ack do

22: add received messages to R[i]

23: for each message m = 〈i′, ρ′, val′〉 ∈ R[i] do

24: if i′ = i and ρ′ < ρ then . Received message from node with smaller rank

25: val← val′

26: else if i′ > i then . Received message from node active in future round

27: add m to R[i′]

28: else

29: discard message m

30: decide on val

and provide nodes unique ids from a small set. Notice, in the abstract MAC layer model, we solve

consensus with broadcast under the harsher constraints of no network size information, no ids, and

crash failures. The difference is the fact that the broadcast primitive in the abstract MAC layer model

includes an acknowledgment. This acknowledgment is therefore revealed to be the crucial element

of the our model that allows algorithms to overcome lack of network information. We note that this

bound is a generalization of the result from [1], which proved deterministic consensus was impossible

under these constraints. In the full paper [42], we show that, for any given randomized algorithm we

can construct scenarios that are indistinguishable for the nodes, thus causing conflicting decisions.

I Theorem 8. Consider an asynchronous network of n nodes that communicate by broadcast and

suppose that nodes are unaware of the network size n, but have knowledge of an integer that is

guaranteed to be a 2-approximation of n. No randomized algorithm can solve binary consensus with

a probability of success of at least 1− ε, for any constant ε < 2−
√

3. This holds even if nodes have

unique identifiers chosen from a range of size at least 2n and all nodes are correct.
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