Student Understanding of Aliasing and Procedure Calls

Preston Tunnell Wilson
Brown University
ptwilson@brown.edu

Abstract

Procedure (or method) calls are a basic computation mechanism
found in virtually every language. A procedure call may or may not
create aliases for parameters. Understanding aliasing is critical for
comprehending how programs will behave, with impact on other
concepts such as parallelism.

In this paper we study the awareness and descriptions of aliasing
behavior in two college-level audiences. The paper measures their
understanding of aliasing, analyzes their written explanations of
procedure calls, and identifies problems with their knowledge. In
particular, we show that even upper-level students suffer from
difficulties that instructors might have assumed have long since
been addressed.

CCS Concepts +Software and its engineering —Procedures,
functions and subroutines;

Keywords Procedures, aliasing, call-by-value, call-by-reference,
pedagogy

ACM Reference format:

Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler. 2017.
Student Understanding of Aliasing and Procedure Calls. In Proceedings of
SPLASH-E, Vancouver, Canada, 2017, 6 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction to Aliasing

Aliasing is a fundamental concept in programming: when do multi-
ple different names resolve to the same entity? (This is analogous
to aliases for humans: one person being referred to by more than
one name.) Aliasing matters especially in languages with mutation
operations, because when an entity is mutated using one alias, the
other alias also “silently” changes; programs that assume otherwise
will demonstrate errors that can sometimes be quite subtle. This
can especially manifest in parallel programming errors: identifying
too few aliases results in failing to lock shared objects, generating
race conditions (which are notoriously difficult to find and debug);
identifying too many results in excessive locking, reducing the
performance benefits of multiple threads.

Aliasing is also important when studying program complexity.
An aliased entity does not consume any extra space (other than
that for the alias itself), which can reduce (in a sense measurable
by complexity measures like O(-)) a program’s space needs. On
the other hand, aliases can also keep objects alive for longer than
expected, which can have a negative impact on memory manage-
ment techniques such as reference counting and garbage collection.
Therefore, knowing about aliasing is vital for reasoning about both
the correctness and the performance of programs.

In what follows, we present a brief summary of aliasing. Readers
familiar with the concept and with terms like variable and object
aliasing may skip this portion.

SPLASH-E, Vancouver, Canada
2017. 978-x-xxxX-XxxX-x/YY/MM...$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

O 0 U R W N

e e e
B W N = O

O 0 N N R W N =

e e e e
s W N = O

Kathi Fisler
Brown University/WPI
kfisler@brown.edu

In most programming languages, there are two broad kinds
of aliasing: aliasing of variables and aliasing of objects. Variable
aliasing is easy to see in C:

int q = 4;

void f(int p) {
p = 3;

3

void g(int *p) {
*p = 35

3

int main() {

printf("%d", q); // prints 4
fla);
printf ("%d", q); // prints 4
g(&a);
printf ("%d", q); // prints 3

}

The procedure f does not alias its parameter but g does. Therefore,
a mutation inside g (to its local variable p) is visible to the caller,
and the final printf displays 3 instead of 4.

Many languages, such as Java, do not have variable aliasing.
In contrast, most languages do have object aliasing, as this Java
example shows:

class IntBox {
public int b;
IntBox(int i) { b = 1i; 3}
void set(int n) { b = n; }

3

class Client {

public static void main(String[] args) {

IntBox b1l = new IntBox(10);
IntBox b2 = b1,

System.out.println(bl.b);
b2.set(5);
System.out.println(bl.b);

// prints 10
// prints 5

}

Here, b1 and b2 are aliases to the same object. Thus, even though
we invoke the set method only on b2, the value in the object bound
to b1 has also changed.

In both examples, we can see the essence of aliasing: though an
operation is performed via one name, the change affects both asso-
ciations. Nevertheless, the two kinds of aliasing are semantically
very different. Variable aliasing is necessarily limited to the scope
of a variable; when the scope of an alias ends, that alias disappears.
In contrast, object aliasing is not tied to variables, since objects
can reside indefinitely on the heap. Therefore, a programmer must
understand the behavior of the whole program to measure the
potential for object aliasing.

SPLASH-E, 2017, Vancouver, Canada

Contributions of This Paper In this paper, we develop on past
studies (section 2) on student understanding of aliasing. We perform
studies in two different courses at one university, one upper-level
and one introductory, the former using Java and the latter a mostly-
functional, education-oriented programming language called Pyret.
Concretely, we make the following contributions:

1. In each course, we study student understanding of aliasing
at different points in the semester to identify improvements
(or their absence) across that course (section 4, section 5).

2. We explore the evolving terminology that students use to
describe potential aliasing in programs (section 7).

3. We summarize specific inaccurate models that students
invoke when describing behavior of our study programs;
these suggest concept-inventory distractors (section 8).

In general, faculty would benefit from having simple instruments
for evaluating their students’ understanding of aliasing. To that end,
our work is also a preliminary step towards creating a concept in-
ventory (Hestenes et al. 1992) for aliasing. We note that the concept
inventory-style of question—short programs with multiple-choice
answers—lend themselves particularly well to use with in-class
peer instruction and clickers, which are an increasingly popular
and effective education model (Porter et al. 2016).

Terminology Note In this paper, we will use “procedure” to also
cover “method”. Though technically not identical concepts, they
both involve parameter-passing, which is the only aspect we care
about in this document. Similarly, we will use “object” even for
languages (such as functional languages) that have only “values”,
not objects in the sense of object-oriented programming, because
again the difference is not germane. Finally, when we want to
ignore the difference between aliased objects and aliased variables,
we will use the term “entity”.

2 Related Work

Past projects have studied misconceptions about variables, assign-
ment, and parameter passing (Kaczmarczyk et al. 2010; Ma et al.
2011). These typically use short CS1-style programs containing a
sequence of assignment statements; students are asked to explain
the program’s behavior. These studies show that students generally
have both incorrect and inconsistent models of these concepts—
particularly the underlying model of how memory works—early in
a CS curriculum. Several differences to our work include: a focus
on pointers and memory representations rather than the semantic
concept of aliasing; focusing on only one language or paradigm;
not accounting for advanced students (who, we surprisingly find,
also fare poorly); and not identifying some of the issues we raise
through our narrative analysis. Sorva (Sorva 2007) shows that stu-
dents have many models of how objects are created and stored in
memory.

Our work is more directly inspired by a recent paper (Fisler et al.
2017). We have used their problem sets as a starting point because
they address the shortcomings of other work discussed above. How-
ever, their work also fails to consider students at multiple levels of
preparation; their answers have ambiguous interpretations that we
have fixed; and their focus is different (by examining inter-language
transfer as well as emphasizing the interaction with scope).

Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

3 Study Context

The quantitative results in this paper rely on information from a
total of four studies, presented to students as quizzes. All four
were conducted at a selective, private US university, in two courses.
Both courses were taught by the same instructor, who is one of the
authors of this paper.

3.1 Student Populations and Study Design

One, which we call CS1.5, is an accelerated introductory class taken
mostly by first-year college students with some prior computing
background; it compresses most of a CS1-CS2 sequence into a
semester. Many students in this class did not have a sophisticated
programming background, so the course could not assume pre-
requisite knowledge in terms of languages or concepts. The course
itself used Pyret (https://www.pyret.org/), a new functional and
object-oriented language designed for programming instruction.
All the study instruments in this class used Pyret, since it was the
one language students were sure to know.

The other, which we call CSPL, is an upper-level programming
languages course taken mostly by third- and fourth-year college stu-
dents, with some second-years, master’s, and PhD students. Most
students in this class had a much more sophisticated programming
background. All knew some Java, all had had at least a year of col-
legiate computer science, most had much more computer science
than that and also had industrial experience in summer internships
or full-time. The study instruments in this class used Java.

We administered two quizzes in CSPL. The first, given early in
the semester, established a baseline of their knowledge (since all
students had fairly extensive experience with mutation in imper-
ative programming). After this, aliasing was taught explicitly in
class. The second quiz was essentially a repeat of the first, at the
end of the semester.

In CS1.5, we administered two quizzes. We could not assume
students were comfortable with imperative programming at entry,
so a baseline would not have been meaningful (and may have
induced a sense of inadequacy in some students). We administered
the first quiz (similar in content to that of CSPL) immediately
after the course introduced mutation. We taught students a model
for memory by going over equality. We covered both shallow
(referential) and deep (value) equality. The second quiz, like in
CSPL, was near the end of the course and essentially a repeat of
the first.

3.2 Study Questions

Figure 1 shows Java versions of our quiz questions.! In the style
of a concept inventory, students were given multiple choices that
correspond to one correct answer and distractors for common mis-
conceptions (identified from the past literature). Students were
also asked to provide a written description of the program behav-
ior resulting in that answer. We also gave students the choice of
indicating that they did not know the answer and to explain why.

Question1 helps identify whether students have an (incorrect)
variable-aliasing semantics in mind for method calls. Observe that
the mutation to toReset is to a purely local variable, and hence has
no impact on leo’s fields. Thus the output is "Leonard".

!We have slightly abbreviated some of the class names and string constants to make
the code fit in the page. The full version will provide a link to the complete code.

o B NS B S S

_
=l

=
~
O 0 N N U e W N =

O 00 N N U s WD =

= e e
W N o= O

'
'S
O 0 N0 U W =

Student Understanding of Aliasing and Procedure Calls

class Questionl {
public static void F1(Employee toReset) {
toReset = new Employee("Betty", 30);

public static void main(String[] args) {
Employee leo = new Employee("Leonard", 20);
F1(leo);
System.out.println(leo.name);

class Question2 {

public static void F2(Employee el, Employee e2) {

el = e2;
el.pay = 12;

public static void main(String[] args) {
Employee abel = new Employee("Abel", 7);
Employee betty = new Employee("Betty", 10);
F2(abel, betty);
System.out.println(abel.pay + ", "

3

class Question4 {
public static void F4(Employee el) {
Manager bill = new Manager ("Bill", el);
bill.employee.pay = 2;

public static void main(String[] args) {
Employee peter = new Employee("Peter", 25);

Manager glinda = new Manager ("Glinda", peter);

F4 (peter);
System.out.println(glinda.employee.pay);

}

class Question5 {
public static void F5(Employee el) {
Employee e = el;
e.pay = 150;

public static void main(String[] args) {
Employee jack = new Employee("Jack", 100);
F5(jack);
System.out.println(jack.pay);

Figure 1. Java versions of quiz programs.

Question2 tests for whether students expect variable-aliasing
and how objects can be mutated when passed as parameters. The
correct answer is 7, 12. This is because on line 3, e1 is changed to

+ betty.pay)

SPLASH-E, 2017, Vancouver, Canada

alias e2, so the "Abel" object cannot be affected by anything further
in F2. The change to .pay in line 4 thus modifies the "Betty" object.

The first-round quiz contained a Question3 that passed Strings as
arguments. Students’ answers to this question revealed confusion
about whether Java Strings were base- or object-types, mutable,
etc. Since this confusion distracted from our core focus on aliasing,
we dropped this question from the rest of the study.

Question4 nests objects and then uses enclosing objects to mutate
fields of interior objects. As the "bill" object holds an alias to e1,
the correct answer is 2.

Question5 is intentionally a variation on Questioni. In it, we
simply introduce an extra local variable to alias the parameter, and
mutate that local variable instead, instead of directly modifying the
parameter. We discuss the reason for this variant in more depth
later (section 5). The correct answer is 150.

4 Student Models of Aliasing in CSPL

Our primary goal is to explore students’ understanding of alias-
ing. Each question had answer options corresponding to each of
aliasing and non-aliasing. We were interested in not only whether
students predicted the correct answers for the quiz questions, but
also whether their written responses reflected an understanding
of the underlying mechanisms of aliasing (even if they did not use
that terminology).

In CSPL, the first quiz occurred at the start of the semester,
before aliasing or the semantics of mutation were covered in the
course. Students’ responses therefore reflected their prior program-
ming experience. Given CSPL students’ prior knowledge of Java
and experience with the language and other languages that behave
similarly—such as Python—we might have expected them to have
no difficulty with these questions, but their performance failed
this expectation. The following table summarizes performance of
students in CSPL across the first and final quizzes using the pro-
gramming questions (the questions were shuffled and the objects
changed across versions, but the questions were structurally identi-
cal). The cells report numbers of students (out of N=32, the number
who took both quizzes). These correspond to Questions 1, 2, and 4
in fig. 1 (Question5 was not in the first quiz).

Got Both Got Both
Question Better | Wrong | Worse | Correct
1: var. aliasing 7 3 3 19
2: obj. & var. aliasing 4 6 1 21
4: obj. aliasing & nest. 9 0 1 22

The number of students who had a question wrong on the first
quiz is the total of the “Got Better” and “Both Wrong” cells. On
each question, roughly 30% of the class had the wrong answer
in the first quiz. Half of the class missed at least one of these
questions. Only six students got both Question1 and Question2
wrong, while five students got both of these correct while missing
Question4. Misunderstandings around aliasing are thus common
in this population, despite their experience.

Several students had a consistent interpretation of variable alias-
ing or object aliasing. A selection of them answered one question
correctly and one incorrectly. They are an interesting population
since they might have assumed variable aliasing inconsistently, or
they have a broken model of it. We now examine this population. In
the first quiz, the most common wrong answer on each of Question1
(9 out of 10 students) and Question2 (6 out of 10 students) assumed

SPLASH-E, 2017, Vancouver, Canada

variable aliasing. Four students got one of these questions right
and one wrong. Interestingly, one of the four described contradic-
tory models across the two written answers, one assuming leakage
outside the function and one assumed containment of modifica-
tions within the function. One had answers too vague to suggest
models, and another cited “object references are passed by value”,
drawing different conclusions in each question. The fourth gave
incomparable explanations for both questions.

Inferring Models from Explanations

While the students’ answers suggested certain assumptions about
aliasing, the more interesting question is whether their written
explanations reflected those same assumptions. We initially hoped
to categorize students’ models from their explanations, but this
ultimately proved too difficult. The authors made several attempts
at a coding rubric, and repeatedly failed to achieve inter-coder
reliability in applying it.

As an example of what went wrong, consider the following rule
that we tried to include in our rubric:

Mark the student as correctly aliasing an actual ar-
gument if the student mentions “pass by reference” in
combination with “changing one affects the other.”

Part of the problem with a rule like this is students used terms
like “reference” in myriad ways, each of which came with different
nuances. In the answers to Question2 alone, for example, students
used phrases such as “pass by reference”, “assigns by reference”,
“refers to”, “both variables are references to”, and “passes references
by value”. Phrases using the term “reference” appeared in explana-
tions of both correct and incorrect answers. Ultimately, the authors
could not agree on the interpretations of such phrases consistently
enough to form a coding rubric.

Other challenges included vague descriptions, use of pseudo-
technical vocabulary in an informal context, and hints of multiple
models in the same sentence. As the number of these cases in-
creased, we realized that free-form responses were not a reliable
way of eliciting students’ models of aliasing and parameter passing.
At the very least, we needed to avoid relying on students’ vague
understandings of terminology.

The granularity and variety of decisions embodied in a language
semantics or language model pose additional challenges. Experts
know core models that include the details of memory layout (e.g., a
stack and a heap, and the mappings of variable names on the stack
to heap addresses). Students, however, are initially taught and learn
models of languages based on syntactic constructs. For example, in
the CSPL first quiz explanations, we see many students attributing
their answers (whether correct or incorrect) to the semantics of
parameter passing, overlooking issues of scope. Students also con-
flate or miss issues, e.g., stopping with a description of parameter
passing without considering the behavior of mutation.

5 Student Models of Aliasing in CS1.5

The student performance in CS1.5 is less interesting for the follow-
ing reason. The first quiz was given immediately after students were
introduced to mutation (as discussed in section 3.1), so students
did quite well. For the end-of-semester quiz, similarly to CSPL, we
dropped the equivalent of the problematic Question3. To further
reduce work at a busy time of semester, we also dropped the equiv-
alent of Question1, on which students had done well initially. The

BW N =

Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

performance across the quizzes on the remaining two questions
was as follows (N=42):

Got Both Got Both
Question Better | Wrong | Worse | Correct
2: obj. & var. aliasing 5 1 1 35
4: obj. aliasing & nest. 2 4 5 31

As we see, students generally did much better. There are many
possible reasons, given the differences in population, background,
etc., and we need significantly more studies to tease them apart.
We have already detailed one, which is the immediacy of student
preparation for the first quiz (which could have also affected the
second administration). Another important one is the following.

As discussed, CS1.5 used the Pyret language. Though the under-
lying semantic model of Pyret (for the parts tested in this paper)
is identical to that of Java, there was one problem with directly
translating the code. Naively, the equivalent of the method F1 (from
Questionl) would appear (in Pyret, which has a Python-inspired
syntax) to be:

fun F1(toReset):
toReset := Employee("Betty", 30)

end

However, in Pyret, mutable variables must be declared explicitly.
Due to other design decisions, this must instead be written as:

fun F1(toReset):

var temp = toReset
temp := Employee("Betty", 30)
end

Though it is not clear this was intended by the language designers,
we conjectured that introducing this extra “indirection” reduces the
likelihood of students thinking that a mutation inside the procedure
has any impact on the caller. This is why we added Question5 to
the final quiz in CSPL. Performance on this question in CSPL
resembled that on Question1 and Question2: 6 students did not
choose the correct answer, with 3 of those saying that they didn’t
know. Nearly all students who got it right explained that the new
local variable was simply another reference to the passed-in object;
2 students who didn’t know wondered whether the new variable
created an alias or a copy of the object.

6 Trying to Identify Models Visually

After finding it hard to elicit students’ models of aliasing from ex-
planations on the first quiz of CSPL—as evinced by the difficulty
in coding their written responses—we introduced a new quiz at
an intermediate stage of the course. Instead of asking students to
generate explanations, we asked them to pick one, and to avoid
ignorance of or confusion over terminology, we used diagrams.
Concretely, we gave a single problem similar to Question1 in sec-
tion 3.2, but this time asked students to select the diagram that
best depicted the relationships between variable names, memory
addresses, and objects at a particular point in the program’s execu-
tion. Figure 2 shows the diagram options. These diagrams had not
been presented in class, so we were relying on students’ intuitive
readings, rather than an agreed-upon semantics for the diagrams.
What follows is a description of the program which the diagrams
model and our intended meaning behind the diagrams.

In the problem, a variable x (bound to an object) is passed as
the actual parameter to a method with formal parameter y. In this

Student Understanding of Aliasing and Procedure Calls

[100] =» = T
yoa Y=»[101] A
Option 1 Option 2
(100] = - .
0 Y [101] =) =
Y = [101] g
Option 3 Option 4
Office Office
y Office y z
) e
Option 5§ Option 6

Figure 2. A visual presentation of possible models of variables,
addresses, and objects. Students were asked what the state of
the program looked like just after x (bound to an 0ffice object) is
passed as the actual parameter to a method with formal parameter y.
Students were told that “grey parts represent aspects of the system
which are ‘out of scope, ‘unavailable, or generally inaccessible.”
The larger size on the last two questions is not meaningful.

context, diagrams 4 and 5 are wrong because they have two copies
of the object (the gold folder icon). Diagram 3 is wrong because
it lacks a consistent type of mapping from names to objects (due
to the extra reference from one address to another; in practice, a
language with such a model could not guarantee constant-time
access of objects via variable names).

Diagram 2 is the most correct: variables map to memory loca-
tions (the stack), which in turn map to objects (in the heap). One
could make a case for diagram 6 if the variables were interpreted as
references to objects (making the addresses implicit by conflating
names and stack addresses). Diagram 1 suggests that two variables
share the same memory address: this could suggest variable alias-
ing (if the address were on the stack), but it could also be correct if
students interpreted the memory address to be that of the object in
the heap (eliding the stack in the picture).

To be clear, we did not expect that the students necessarily knew
about the separation of the stack and heap (though most would
have had a prior course that covered this material). Mainly, we
were curious whether their choice of diagram might shed light on
the conceptual models they used to answer the questions on the
first quiz. We also hoped the diagrams could provide a more reliable
way to extract students’ understanding of aliasing.

Because we did not teach students what these diagrams repre-
sented, we were relying on their intuitive readings, as we mention
above. Alas, we hoped in vain. Table 1 shows which diagrams
were chosen by students who correctly answered each question
from the first quiz. The data show that roughly 25% of the students
selected one of the incorrect visual models (#3-5), despite their
earlier answers correctly reflecting that objects, but not variables,
alias on procedure calls. Many students selected diagram 1, which

SPLASH-E, 2017, Vancouver, Canada

Share Stack | Chain | Two No

Addr | & Heap | Addrs | Objs | Stack
First Quiz [#1] [#2] [#3] | [#4/5] | [#6]
Question (n=12) | (n=12) | (n=3) | (n=6) | (n=7)
1: var alias 7 10 3 5 4
2: obj. & var. alias 7 11 3 3 5
4: obj. alias & nest. 10 9 2 3 5

Table 1. Visual models selected by students answering questions
correctly on the first-round quiz in CSPL. The “4N” annotations in
column headings refer to diagrams from fig. 2.

enables the variable-aliasing interpretation. Only half of the stu-
dents selected one of the viable diagrams (#2 and #6), despite having
correct quiz answers. Of the 9 students who selected one of the
incorrect visual models, four had a perfect score on the quiz, and
another three missed only one question. Of the 5 students who got
at most one question right on the first quiz, only one picked one of
the incorrect visual models.

These results suggest that the visual models are not sufficient
discriminators of misconceptions about the behavior of aliasing.
As a result, we dropped the results of this survey from our analysis
for CSPL. We still believe some diagrammatic notation could have
value, but it clearly requires much more explicit instruction. We
therefore leave this as an opportunity for study in future work.

Pedagogic Note On the other hand, pedagogically speaking, ad-
ministering the diagram-based quiz was extremely helpful for in-
class discussion. Since students had been forced to think about
both the meaning of the pictures and what they thought was hap-
pening in the program, they came primed for a discussion of both.
The visual vocabulary also made it possible for them to suggest
alternate pictures to explore other models they had in mind, and
to comment on proposals from each other. In other words, while
these pictures are—in the absence of any prior explanation—a poor
diagnostic device, they appear to be an excellent pedagogic one.

7 Evolution of Descriptions

One of our study goals was to track how student understanding of
aliasing evolved over the two courses. Understanding of aliasing
is evidenced in many ways, including changes in performance on
quiz questions, more precise free-form explanations, and changes
in use of vocabulary related to aliasing.

The table in section 4 shows the performance change in CSPL.
Students who were still wrong in the final quiz are in the “Both
Wrong” and “Got Worse” columns. The table shows that most stu-
dents resolved confusion on Question4, but many students were still
(or newly!) wrong on the first two questions (still-wrong students
typically picked the same wrong answer both times).

In terms of vocabulary, none of the CSPL students used the term
“alias” in the explanations in the first quiz (hardly surprising). Only
3 students used this term in the final quiz (and only one used it on
all three questions). Thus, despite being introduced very explicitly
in class, the aliasing vocabulary failed to take hold. Use of the
phrase “call by value” dropped: 6 students used it in the first quiz,
but only two used it in the final quiz, both in the form “Java passes
references by value”. Only one student (out of four) who had used
the phrase “pass by reference” in the first quiz was still using it in

SPLASH-E, 2017, Vancouver, Canada

the final quiz, though two students started using this terminology.
Descriptions in terms of “references” remained: only six students
never used a variant on “refer(ence)” in the final quiz: one wrote in
terms of “alias”, while 3 wrote in terms of “points to”. It is worth
noting that none of these terms suffice to help us (the researchers)
determine which fig. 2 diagram the students might have in mind.

The vocabulary shift in CS1.5 was more interesting. Half of the
students (21 out of 42) used aliasing terminology in the first quiz,
which makes sense because the quiz was administered just after
the lecture on mutation (the same instructor as for CSPL again
introduced the vocabulary of “aliasing” very explicitly). By the final
quiz at the end of the term, however, only 8 students were still
using that vocabulary. Some switched to using “points to”, while
others spoke in terms of “refer(ences)”. This could be an artifact of
prior programming experience (which many of these students had),
or students could have simply forgotten the terminology from the
mutation lecture. It would be interesting to re-quiz these students at
the start of the next academic year to see if their quiz performance
drops without the immediacy of the mutation lecture.

8 Apparent Student Models

Eventually, our goal is to get to a concept inventory on aliasing. De-
veloping this requires a clear understanding of the misconceptions
and incorrect models that students might hold. Here, we describe
several models that appear in students’ free-form explanations of
their quiz answers. We present only the models that correspond to
student confusion; most students did not exhibit these problems.

o Assignment by Copy: a few students in both CSPL and
CS1.5 mentioned an assignment by copy mechanic, proba-
bly similar to a “pass by copy” or “pass by value” semantics.
Sample student quotes towards this model include:

— I'm not sure if bill holds a copy of el or an alias

— Ican think of several things that “02 = 01” might do. Let’s
pretend that it doesn’t change o1, and makes a copy of o1
for 02’ to henceforth refer to.

e Reference Grouping: One of the CS1.5 students described
a model of memory in which aliases get grouped together.
The following quote is about a program that attempts to
perform a “swap” of parameters via local variables (which
was on the first quiz but dropped for the final quiz).

temp, o1, and occupant1 all refer to “Carmen” at first, while
o2 refers to “RAs” at first. Then, o1’s value is changed to 02, so
all four of temp, o1, occupantl, and o2 refer to “RAs”. Finally,
02’s value is changed to temp, which doesn’t do anything since
they’re all the same.

o Bidirectional assignment: Following an assignment state-
ment of the form o1 = 02, where 02 is a parameter, some stu-
dents believe modifications to o1 reflect in 02. This assump-
tion can get conflated with whether updates leak through
to actual parameters.

We note that the last two interpretations are more consistent with
languages whose behavior is based on unification—such as logic
programming languages (with Prolog as a leading example).

9 Conclusion

Our paper focuses on aliasing, a key concept in understanding
programs for both correctness and performance. Our studies show
confusion about aliasing across programming languages and even

Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

in students with significant education and experience. We find that
students have difficulty articulating their mental models. We have
also taken steps towards creating concept inventory-style questions
for aliasing, which are useful in both education and assessment.

In the future, we believe it would be worth teasing out some
of the misconceptions we find to study in greater depth. We also
believe there is value to trying to formalize and explicitly teach the
visual models we have used, and studying whether their use has
an impact on student understanding. Finally, we wonder whether
the standard procedure call terminology is unhelpful in clarifying
the nature of aliasing, by failing to align the aliasing aspect of
procedure calls with the aliasing of non-procedure-calls (such as
assignment).

Acknowledgments

We thank Joe Gibbs Politz for alerting us to the connection to
clickers, and appreciate the graduate students who helped us debug
early iterations of the quizzes. This work is partially supported by
the US National Science Foundation. The first author’s last name is
Tunnell Wilson (i.e., indexed under “T”).

References

Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing and
Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In ACM
Technical Symposium on Computer Science Education.

D. Hestenes, M. Wells, and G. Swackhamer. 1992. Force concept inventory. The Physics
Teacher 30 (1992).

Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman. 2010.
Identifying Student Misconceptions of Programming. In SIGCSE.

L. Ma, J. Ferguson, M. Roper, and M. Wood. 2011. Investigating and improving the
models of programming concepts held by novice programmers. Computer Science
Education 21, 1 (2011).

Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert Mc-
Cartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study of Peer
Instruction in Introductory Computing. In SIGCSE.

Juha Sorva. 2007. Students’ Understandings of Storing Objects. In Proceedings of the
Seventh Baltic Sea Conference on Computing Education Research - Volume 88 (Koli
Calling ’07). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
127-135. http://dl.acm.org/citation.cfm?id=2449323.2449337

	Abstract
	1 Introduction to Aliasing
	2 Related Work
	3 Study Context
	3.1 Student Populations and Study Design
	3.2 Study Questions

	4 Student Models of Aliasing in CSPL
	5 Student Models of Aliasing in CS1.5
	6 Trying to Identify Models Visually
	7 Evolution of Descriptions
	8 Apparent Student Models
	9 Conclusion
	Acknowledgments
	References

