
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Student Understanding of Aliasing and Procedure Calls

Preston Tunnell Wilson
Brown University

ptwilson@brown.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

Kathi Fisler
Brown University/WPI

kfisler@brown.edu

Abstract

Procedure (or method) calls are a basic computation mechanism

found in virtually every language. A procedure call may or may not

create aliases for parameters. Understanding aliasing is critical for

comprehending how programs will behave, with impact on other

concepts such as parallelism.

In this paper we study the awareness and descriptions of aliasing

behavior in two college-level audiences. �e paper measures their

understanding of aliasing, analyzes their wri�en explanations of

procedure calls, and identi�es problems with their knowledge. In

particular, we show that even upper-level students su�er from

di�culties that instructors might have assumed have long since

been addressed.

CCS Concepts •So�ware and its engineering →Procedures,

functions and subroutines;

Keywords Procedures, aliasing, call-by-value, call-by-reference,

pedagogy

ACM Reference format:

Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler. 2017.

Student Understanding of Aliasing and Procedure Calls. In Proceedings of

SPLASH-E, Vancouver, Canada, 2017, 6 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction to Aliasing

Aliasing is a fundamental concept in programming: when do multi-

ple di�erent names resolve to the same entity? (�is is analogous

to aliases for humans: one person being referred to by more than

one name.) Aliasing ma�ers especially in languages with mutation

operations, because when an entity is mutated using one alias, the

other alias also “silently” changes; programs that assume otherwise

will demonstrate errors that can sometimes be quite subtle. �is

can especially manifest in parallel programming errors: identifying

too few aliases results in failing to lock shared objects, generating

race conditions (which are notoriously di�cult to �nd and debug);

identifying too many results in excessive locking, reducing the

performance bene�ts of multiple threads.

Aliasing is also important when studying program complexity.

An aliased entity does not consume any extra space (other than

that for the alias itself), which can reduce (in a sense measurable

by complexity measures like O (·)) a program’s space needs. On

the other hand, aliases can also keep objects alive for longer than

expected, which can have a negative impact on memory manage-

ment techniques such as reference counting and garbage collection.

�erefore, knowing about aliasing is vital for reasoning about both

the correctness and the performance of programs.

In what follows, we present a brief summary of aliasing. Readers

familiar with the concept and with terms like variable and object

aliasing may skip this portion.

SPLASH-E, Vancouver, Canada

2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

In most programming languages, there are two broad kinds

of aliasing: aliasing of variables and aliasing of objects. Variable

aliasing is easy to see in C:

1 int q = 4;

2 void f(int p) {

3 p = 3;

4 }

5 void g(int *p) {

6 *p = 3;

7 }

8 int main() {

9 printf ("%d", q); // prints 4

10 f(q);

11 printf ("%d", q); // prints 4

12 g(&q);

13 printf ("%d", q); // prints 3

14 }

�e procedure f does not alias its parameter but g does. �erefore,

a mutation inside g (to its local variable p) is visible to the caller,

and the �nal printf displays 3 instead of 4.

Many languages, such as Java, do not have variable aliasing.

In contrast, most languages do have object aliasing, as this Java

example shows:

1 class IntBox {

2 public int b;

3 IntBox(int i) { b = i; }

4 void set(int n) { b = n; }

5 }

6 class Client {

7 public static void main(String [] args) {

8 IntBox b1 = new IntBox (10);

9 IntBox b2 = b1;

10

11 System.out.println(b1.b); // prints 10

12 b2.set (5);

13 System.out.println(b1.b); // prints 5

14 }

15 }

Here, b1 and b2 are aliases to the same object. �us, even though

we invoke the setmethod only on b2, the value in the object bound

to b1 has also changed.

In both examples, we can see the essence of aliasing: though an

operation is performed via one name, the change a�ects both asso-

ciations. Nevertheless, the two kinds of aliasing are semantically

very di�erent. Variable aliasing is necessarily limited to the scope

of a variable; when the scope of an alias ends, that alias disappears.

In contrast, object aliasing is not tied to variables, since objects

can reside inde�nitely on the heap. �erefore, a programmer must

understand the behavior of the whole program to measure the

potential for object aliasing.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

SPLASH-E, 2017, Vancouver, Canada Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

Contributions of This Paper In this paper, we develop on past

studies (section 2) on student understanding of aliasing. We perform

studies in two di�erent courses at one university, one upper-level

and one introductory, the former using Java and the la�er a mostly-

functional, education-oriented programming language called Pyret.

Concretely, we make the following contributions:

1. In each course, we study student understanding of aliasing

at di�erent points in the semester to identify improvements

(or their absence) across that course (section 4, section 5).

2. We explore the evolving terminology that students use to

describe potential aliasing in programs (section 7).

3. We summarize speci�c inaccurate models that students

invoke when describing behavior of our study programs;

these suggest concept-inventory distractors (section 8).

In general, faculty would bene�t from having simple instruments

for evaluating their students’ understanding of aliasing. To that end,

our work is also a preliminary step towards creating a concept in-

ventory (Hestenes et al. 1992) for aliasing. We note that the concept

inventory-style of question—short programs with multiple-choice

answers—lend themselves particularly well to use with in-class

peer instruction and clickers, which are an increasingly popular

and e�ective education model (Porter et al. 2016).

Terminology Note In this paper, we will use “procedure” to also

cover “method”. �ough technically not identical concepts, they

both involve parameter-passing, which is the only aspect we care

about in this document. Similarly, we will use “object” even for

languages (such as functional languages) that have only “values”,

not objects in the sense of object-oriented programming, because

again the di�erence is not germane. Finally, when we want to

ignore the di�erence between aliased objects and aliased variables,

we will use the term “entity”.

2 Related Work

Past projects have studied misconceptions about variables, assign-

ment, and parameter passing (Kaczmarczyk et al. 2010; Ma et al.

2011). �ese typically use short CS1-style programs containing a

sequence of assignment statements; students are asked to explain

the program’s behavior. �ese studies show that students generally

have both incorrect and inconsistent models of these concepts—

particularly the underlying model of how memory works—early in

a CS curriculum. Several di�erences to our work include: a focus

on pointers and memory representations rather than the semantic

concept of aliasing; focusing on only one language or paradigm;

not accounting for advanced students (who, we surprisingly �nd,

also fare poorly); and not identifying some of the issues we raise

through our narrative analysis. Sorva (Sorva 2007) shows that stu-

dents have many models of how objects are created and stored in

memory.

Our work is more directly inspired by a recent paper (Fisler et al.

2017). We have used their problem sets as a starting point because

they address the shortcomings of other work discussed above. How-

ever, their work also fails to consider students at multiple levels of

preparation; their answers have ambiguous interpretations that we

have �xed; and their focus is di�erent (by examining inter-language

transfer as well as emphasizing the interaction with scope).

3 Study Context

�e quantitative results in this paper rely on information from a

total of four studies, presented to students as quizzes. All four

were conducted at a selective, private US university, in two courses.

Both courses were taught by the same instructor, who is one of the

authors of this paper.

3.1 Student Populations and Study Design

One, which we callCS1.5, is an accelerated introductory class taken

mostly by �rst-year college students with some prior computing

background; it compresses most of a CS1–CS2 sequence into a

semester. Many students in this class did not have a sophisticated

programming background, so the course could not assume pre-

requisite knowledge in terms of languages or concepts. �e course

itself used Pyret (h�ps://www.pyret.org/), a new functional and

object-oriented language designed for programming instruction.

All the study instruments in this class used Pyret, since it was the

one language students were sure to know.

�e other, which we call CSPL, is an upper-level programming

languages course takenmostly by third- and fourth-year college stu-

dents, with some second-years, master’s, and PhD students. Most

students in this class had a much more sophisticated programming

background. All knew some Java, all had had at least a year of col-

legiate computer science, most had much more computer science

than that and also had industrial experience in summer internships

or full-time. �e study instruments in this class used Java.

We administered two quizzes in CSPL. �e �rst, given early in

the semester, established a baseline of their knowledge (since all

students had fairly extensive experience with mutation in imper-

ative programming). A�er this, aliasing was taught explicitly in

class. �e second quiz was essentially a repeat of the �rst, at the

end of the semester.

In CS1.5, we administered two quizzes. We could not assume

students were comfortable with imperative programming at entry,

so a baseline would not have been meaningful (and may have

induced a sense of inadequacy in some students). We administered

the �rst quiz (similar in content to that of CSPL) immediately

a�er the course introduced mutation. We taught students a model

for memory by going over equality. We covered both shallow

(referential) and deep (value) equality. �e second quiz, like in

CSPL, was near the end of the course and essentially a repeat of

the �rst.

3.2 Study �estions

Figure 1 shows Java versions of our quiz questions.1 In the style

of a concept inventory, students were given multiple choices that

correspond to one correct answer and distractors for common mis-

conceptions (identi�ed from the past literature). Students were

also asked to provide a wri�en description of the program behav-

ior resulting in that answer. We also gave students the choice of

indicating that they did not know the answer and to explain why.

Question1 helps identify whether students have an (incorrect)

variable-aliasing semantics in mind for method calls. Observe that

the mutation to toReset is to a purely local variable, and hence has

no impact on leo’s �elds. �us the output is "Leonard".

1We have slightly abbreviated some of the class names and string constants to make
the code �t in the page. �e full version will provide a link to the complete code.

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Student Understanding of Aliasing and Procedure Calls SPLASH-E, 2017, Vancouver, Canada

1 class Question1 {

2 public static void F1(Employee toReset) {

3 toReset = new Employee ("Betty", 30);

4 }

5

6 public static void main(String [] args) {

7 Employee leo = new Employee (" Leonard", 20);

8 F1(leo);

9 System.out.println(leo.name);

10 }

11 }

1 class Question2 {

2 public static void F2(Employee e1, Employee e2) {

3 e1 = e2;

4 e1.pay = 12;

5 }

6

7 public static void main(String [] args) {

8 Employee abel = new Employee ("Abel", 7);

9 Employee betty = new Employee ("Betty", 10);

10 F2(abel , betty);

11 System.out.println(abel.pay + ", " + betty.pay);

12 }

13 }

1 class Question4 {

2 public static void F4(Employee e1) {

3 Manager bill = new Manager ("Bill", e1);

4 bill.employee.pay = 2;

5 }

6

7 public static void main(String [] args) {

8 Employee peter = new Employee ("Peter", 25);

9 Manager glinda = new Manager (" Glinda", peter);

10 F4(peter);

11 System.out.println(glinda.employee.pay);

12 }

13 }

1 class Question5 {

2 public static void F5(Employee e1) {

3 Employee e = e1;

4 e.pay = 150;

5 }

6

7 public static void main(String [] args) {

8 Employee jack = new Employee ("Jack", 100);

9 F5(jack);

10 System.out.println(jack.pay);

11 }

12 }

Figure 1. Java versions of quiz programs.

Question2 tests for whether students expect variable-aliasing

and how objects can be mutated when passed as parameters. �e

correct answer is 7, 12. �is is because on line 3, e1 is changed to

alias e2, so the "Abel" object cannot be a�ected by anything further

in F2. �e change to .pay in line 4 thus modi�es the "Betty" object.

�e �rst-round quiz contained a Question3 that passed Strings as

arguments. Students’ answers to this question revealed confusion

about whether Java Strings were base- or object-types, mutable,

etc. Since this confusion distracted from our core focus on aliasing,

we dropped this question from the rest of the study.

Question4 nests objects and then uses enclosing objects tomutate

�elds of interior objects. As the "bill" object holds an alias to e1,

the correct answer is 2.

Question5 is intentionally a variation on Question1. In it, we

simply introduce an extra local variable to alias the parameter, and

mutate that local variable instead, instead of directly modifying the

parameter. We discuss the reason for this variant in more depth

later (section 5). �e correct answer is 150.

4 Student Models of Aliasing in CSPL

Our primary goal is to explore students’ understanding of alias-

ing. Each question had answer options corresponding to each of

aliasing and non-aliasing. We were interested in not only whether

students predicted the correct answers for the quiz questions, but

also whether their wri�en responses re�ected an understanding

of the underlying mechanisms of aliasing (even if they did not use

that terminology).

In CSPL, the �rst quiz occurred at the start of the semester,

before aliasing or the semantics of mutation were covered in the

course. Students’ responses therefore re�ected their prior program-

ming experience. Given CSPL students’ prior knowledge of Java

and experience with the language and other languages that behave

similarly—such as Python—we might have expected them to have

no di�culty with these questions, but their performance failed

this expectation. �e following table summarizes performance of

students in CSPL across the �rst and �nal quizzes using the pro-

gramming questions (the questions were shu�ed and the objects

changed across versions, but the questions were structurally identi-

cal). �e cells report numbers of students (out of N=32, the number

who took both quizzes). �ese correspond to �estions 1, 2, and 4

in �g. 1 (Question5 was not in the �rst quiz).

Got Both Got Both

�estion Be�er Wrong Worse Correct

1: var. aliasing 7 3 3 19

2: obj. & var. aliasing 4 6 1 21

4: obj. aliasing & nest. 9 0 1 22

�e number of students who had a question wrong on the �rst

quiz is the total of the “Got Be�er” and “Both Wrong” cells. On

each question, roughly 30% of the class had the wrong answer

in the �rst quiz. Half of the class missed at least one of these

questions. Only six students got both Question1 and Question2

wrong, while �ve students got both of these correct while missing

Question4. Misunderstandings around aliasing are thus common

in this population, despite their experience.

Several students had a consistent interpretation of variable alias-

ing or object aliasing. A selection of them answered one question

correctly and one incorrectly. �ey are an interesting population

since they might have assumed variable aliasing inconsistently, or

they have a broken model of it. We now examine this population. In

the �rst quiz, the most commonwrong answer on each of Question1

(9 out of 10 students) and Question2 (6 out of 10 students) assumed

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

SPLASH-E, 2017, Vancouver, Canada Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

variable aliasing. Four students got one of these questions right

and one wrong. Interestingly, one of the four described contradic-

tory models across the two wri�en answers, one assuming leakage

outside the function and one assumed containment of modi�ca-

tions within the function. One had answers too vague to suggest

models, and another cited “object references are passed by value”,

drawing di�erent conclusions in each question. �e fourth gave

incomparable explanations for both questions.

Inferring Models from Explanations

While the students’ answers suggested certain assumptions about

aliasing, the more interesting question is whether their wri�en

explanations re�ected those same assumptions. We initially hoped

to categorize students’ models from their explanations, but this

ultimately proved too di�cult. �e authors made several a�empts

at a coding rubric, and repeatedly failed to achieve inter-coder

reliability in applying it.

As an example of what went wrong, consider the following rule

that we tried to include in our rubric:

Mark the student as correctly aliasing an actual ar-

gument if the student mentions “pass by reference” in

combination with “changing one a�ects the other.”

Part of the problem with a rule like this is students used terms

like “reference” in myriad ways, each of which came with di�erent

nuances. In the answers to Question2 alone, for example, students

used phrases such as “pass by reference”, “assigns by reference”,

“refers to”, “both variables are references to”, and “passes references

by value”. Phrases using the term “reference” appeared in explana-

tions of both correct and incorrect answers. Ultimately, the authors

could not agree on the interpretations of such phrases consistently

enough to form a coding rubric.

Other challenges included vague descriptions, use of pseudo-

technical vocabulary in an informal context, and hints of multiple

models in the same sentence. As the number of these cases in-

creased, we realized that free-form responses were not a reliable

way of eliciting students’ models of aliasing and parameter passing.

At the very least, we needed to avoid relying on students’ vague

understandings of terminology.

�e granularity and variety of decisions embodied in a language

semantics or language model pose additional challenges. Experts

know core models that include the details of memory layout (e.g., a

stack and a heap, and the mappings of variable names on the stack

to heap addresses). Students, however, are initially taught and learn

models of languages based on syntactic constructs. For example, in

the CSPL �rst quiz explanations, we see many students a�ributing

their answers (whether correct or incorrect) to the semantics of

parameter passing, overlooking issues of scope. Students also con-

�ate or miss issues, e.g., stopping with a description of parameter

passing without considering the behavior of mutation.

5 Student Models of Aliasing in CS1.5

�e student performance in CS1.5 is less interesting for the follow-

ing reason. �e �rst quiz was given immediately a�er students were

introduced to mutation (as discussed in section 3.1), so students

did quite well. For the end-of-semester quiz, similarly to CSPL, we

dropped the equivalent of the problematic Question3. To further

reduce work at a busy time of semester, we also dropped the equiv-

alent of Question1, on which students had done well initially. �e

performance across the quizzes on the remaining two questions

was as follows (N=42):

Got Both Got Both

�estion Be�er Wrong Worse Correct

2: obj. & var. aliasing 5 1 1 35

4: obj. aliasing & nest. 2 4 5 31

As we see, students generally did much be�er. �ere are many

possible reasons, given the di�erences in population, background,

etc., and we need signi�cantly more studies to tease them apart.

We have already detailed one, which is the immediacy of student

preparation for the �rst quiz (which could have also a�ected the

second administration). Another important one is the following.

As discussed, CS1.5 used the Pyret language. �ough the under-

lying semantic model of Pyret (for the parts tested in this paper)

is identical to that of Java, there was one problem with directly

translating the code. Naively, the equivalent of the method F1 (from

Question1) would appear (in Pyret, which has a Python-inspired

syntax) to be:

1 fun F1(toReset):

2 toReset := Employee ("Betty", 30)

3 end

However, in Pyret, mutable variables must be declared explicitly.

Due to other design decisions, this must instead be wri�en as:

1 fun F1(toReset):

2 var temp = toReset

3 temp := Employee ("Betty", 30)

4 end

�ough it is not clear this was intended by the language designers,

we conjectured that introducing this extra “indirection” reduces the

likelihood of students thinking that a mutation inside the procedure

has any impact on the caller. �is is why we added Question5 to

the �nal quiz in CSPL. Performance on this question in CSPL

resembled that on Question1 and Question2: 6 students did not

choose the correct answer, with 3 of those saying that they didn’t

know. Nearly all students who got it right explained that the new

local variable was simply another reference to the passed-in object;

2 students who didn’t know wondered whether the new variable

created an alias or a copy of the object.

6 Trying to Identify Models Visually

A�er �nding it hard to elicit students’ models of aliasing from ex-

planations on the �rst quiz of CSPL—as evinced by the di�culty

in coding their wri�en responses—we introduced a new quiz at

an intermediate stage of the course. Instead of asking students to

generate explanations, we asked them to pick one, and to avoid

ignorance of or confusion over terminology, we used diagrams.

Concretely, we gave a single problem similar to Question1 in sec-

tion 3.2, but this time asked students to select the diagram that

best depicted the relationships between variable names, memory

addresses, and objects at a particular point in the program’s execu-

tion. Figure 2 shows the diagram options. �ese diagrams had not

been presented in class, so we were relying on students’ intuitive

readings, rather than an agreed-upon semantics for the diagrams.

What follows is a description of the program which the diagrams

model and our intended meaning behind the diagrams.

In the problem, a variable x (bound to an object) is passed as

the actual parameter to a method with formal parameter y. In this

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

SPLASH-E, 2017, Vancouver, Canada Preston Tunnell Wilson, Shriram Krishnamurthi, and Kathi Fisler

the �nal quiz, though two students started using this terminology.

Descriptions in terms of “references” remained: only six students

never used a variant on “refer(ence)” in the �nal quiz: one wrote in

terms of “alias”, while 3 wrote in terms of “points to”. It is worth

noting that none of these terms su�ce to help us (the researchers)

determine which �g. 2 diagram the students might have in mind.

�e vocabulary shi� in CS1.5 was more interesting. Half of the

students (21 out of 42) used aliasing terminology in the �rst quiz,

which makes sense because the quiz was administered just a�er

the lecture on mutation (the same instructor as for CSPL again

introduced the vocabulary of “aliasing” very explicitly). By the �nal

quiz at the end of the term, however, only 8 students were still

using that vocabulary. Some switched to using “points to”, while

others spoke in terms of “refer(ences)”. �is could be an artifact of

prior programming experience (which many of these students had),

or students could have simply forgo�en the terminology from the

mutation lecture. It would be interesting to re-quiz these students at

the start of the next academic year to see if their quiz performance

drops without the immediacy of the mutation lecture.

8 Apparent Student Models

Eventually, our goal is to get to a concept inventory on aliasing. De-

veloping this requires a clear understanding of the misconceptions

and incorrect models that students might hold. Here, we describe

several models that appear in students’ free-form explanations of

their quiz answers. We present only the models that correspond to

student confusion; most students did not exhibit these problems.

• Assignment by Copy: a few students in both CSPL and

CS1.5 mentioned an assignment by copy mechanic, proba-

bly similar to a “pass by copy” or “pass by value” semantics.

Sample student quotes towards this model include:

– I’m not sure if bill holds a copy of e1 or an alias

– I can think of several things that “o2 = o1” might do. Let’s

pretend that it doesn’t change o1, and makes a copy of o1

for ‘o2’ to henceforth refer to.

• Reference Grouping: One of the CS1.5 students described

a model of memory in which aliases get grouped together.

�e following quote is about a program that a�empts to

perform a “swap” of parameters via local variables (which

was on the �rst quiz but dropped for the �nal quiz).

temp, o1, and occupant1 all refer to “Carmen” at �rst, while

o2 refers to “RAs” at �rst. �en, o1’s value is changed to o2, so

all four of temp, o1, occupant1, and o2 refer to “RAs”. Finally,

o2’s value is changed to temp, which doesn’t do anything since

they’re all the same.

• Bidirectional assignment: Following an assignment state-

ment of the form o1 = o2, where o2 is a parameter, some stu-

dents believe modi�cations to o1 re�ect in o2. �is assump-

tion can get con�ated with whether updates leak through

to actual parameters.

We note that the last two interpretations are more consistent with

languages whose behavior is based on uni�cation—such as logic

programming languages (with Prolog as a leading example).

9 Conclusion

Our paper focuses on aliasing, a key concept in understanding

programs for both correctness and performance. Our studies show

confusion about aliasing across programming languages and even

in students with signi�cant education and experience. We �nd that

students have di�culty articulating their mental models. We have

also taken steps towards creating concept inventory-style questions

for aliasing, which are useful in both education and assessment.

In the future, we believe it would be worth teasing out some

of the misconceptions we �nd to study in greater depth. We also

believe there is value to trying to formalize and explicitly teach the

visual models we have used, and studying whether their use has

an impact on student understanding. Finally, we wonder whether

the standard procedure call terminology is unhelpful in clarifying

the nature of aliasing, by failing to align the aliasing aspect of

procedure calls with the aliasing of non-procedure-calls (such as

assignment).

Acknowledgments

We thank Joe Gibbs Politz for alerting us to the connection to

clickers, and appreciate the graduate students who helped us debug

early iterations of the quizzes. �is work is partially supported by

the US National Science Foundation. �e �rst author’s last name is

Tunnell Wilson (i.e., indexed under “T”).

References
Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing and

Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In ACM
Technical Symposium on Computer Science Education.

D. Hestenes, M. Wells, and G. Swackhamer. 1992. Force concept inventory. �e Physics
Teacher 30 (1992).

Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geo�rey L. Herman. 2010.
Identifying Student Misconceptions of Programming. In SIGCSE.

L. Ma, J. Ferguson, M. Roper, and M. Wood. 2011. Investigating and improving the
models of programming concepts held by novice programmers. Computer Science
Education 21, 1 (2011).

Leo Porter, Dennis Bouvier, �intin Cu�s, Sco� Grissom, Cynthia Lee, Robert Mc-
Cartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study of Peer
Instruction in Introductory Computing. In SIGCSE.

Juha Sorva. 2007. Students’ Understandings of Storing Objects. In Proceedings of the
Seventh Baltic Sea Conference on Computing Education Research - Volume 88 (Koli
Calling ’07). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
127–135. h�p://dl.acm.org/citation.cfm?id=2449323.2449337

6

	Abstract
	1 Introduction to Aliasing
	2 Related Work
	3 Study Context
	3.1 Student Populations and Study Design
	3.2 Study Questions

	4 Student Models of Aliasing in CSPL
	5 Student Models of Aliasing in CS1.5
	6 Trying to Identify Models Visually
	7 Evolution of Descriptions
	8 Apparent Student Models
	9 Conclusion
	Acknowledgments
	References

