
The Impact of a Single Lecture on
Program Plans in First-Year CS∗

Francisco Enrique Vicente
Castro

WPI Dept of Computer Science
fgcastro@cs.wpi.edu

Shriram Krishnamurthi
Brown Dept of Computer Science

sk@cs.brown.edu

Kathi Fisler
Brown Dept of Computer Science

kfisler@cs.brown.edu

ABSTRACT

Most programming problems have multiple viable solutions that

organize the underlying problem’s tasks in fundamentally differ-

ent ways. Which organizations (a.k.a. plans) students implement

and prefer depends on solutions they have seen before as well as

features of their programming language. How much exposure to

planning do students need before they can appreciate and produce

different plans? We report on a study in which students in intro-

ductory courses at two universities were given a single lecture

on planning between assessments. In the post-assessment, many

students produced multiple high-level plans (including ones first

introduced in the lecture) and richly discussed tradeoffs between

plans. This suggests that planning can be taught with fairly low

overhead once students have a decent foundation in programming.

KEYWORDS

Plan composition, program design, programming pedagogy

1 INTRODUCTION

Given a programming problem, students make multiple choices in

crafting a solution. Some choices focus on lower-level concerns

such as which language constructs to use (e.g., a while loop versus a

for loop). Higher-level decisions include how to cluster the subtasks

of a problem into individual functions or code blocks. The cluster-

ing of subtasks is often called a plan [17]. Programming involves

(among other things) implementing plan components in lower-level

constructs and composing those constructs into a solution for the

overall problem.

Planning is not an advanced topic only for upper-level CS stu-

dents. Even casual programmers who write scripts are affected by

planning decisions. A student writing scripts to process data for

a lab experiment encounters changing data requirements, noisy

data, or other situations that get handled through planning, not

just low-level construct choices. Thus, planning is relevant even to

∗Research partially supported by the US NSF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2017, November 16ś19, 2017, Koli, Finland

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5301-4/17/11. . . $15.00
https://doi.org/10.1145/3141880.3141897

students in first-year computing courses, including those who may

not take later courses.

But can students learn planning that early and, if so, how? Some

researchers have made notable efforts at teaching such concepts

from the outset [3, 7], but this requires a concerted effort to make

it central to the introductory curriculum. Because these courses

serve a variety of needs for the rest of the program, doing so re-

quires buy-in and prioritization from all the other faculty, who may

have vastly different needs. Thus, we were interested in whether a

lightweight approach to teaching planning could have any effect, or

whether only a comprehensive overhaul of the coursesÐwhich may

be impossible given a department’s other needsÐwould suffice.

Concretely, we assigned students (from two universities) pro-

gramming problems that could be approached through multiple

plans; leveraged those to give a single 50-minute lecture on plans

and tradeoffs; and then assigned a new set of programming prob-

lems. In the post-assessment, we asked students to produce two

solutions to each problem, each embodying a different plan. We also

asked students to rank their solutions by preference, so we could

see what criteria they used. Nearly all students produced two dif-

ferent plans in the post-assessment, often choosing a general plan

structure that was first introduced in the planning lecture. When

asked to preference-rank among their solutions, many students

chose solutions with a different general structure than what they

wrote on the pre-assessment. These results suggest that lightweight

instruction in planning can have an impact.

2 RELATED WORK

The task of developing and integrating programming plans has been

identified as a recurring problem among programming students

[2, 16, 17]. While some recent studies show students succeeding at

plan composition in specific contexts [5, 15], the pedagogic choices

that help students with this task remain poorly understood.

A growing body of research aims at improving planning skills by

explicit instruction. Porter and Calder suggest a process for building

a vocabulary of common patterns for guiding students through

problem decomposition [13]. Muller, Haberman, and Ginat use this

same concept to develop pattern-oriented instruction [9]: attaching

labels to algorithmic patterns and presenting various problems to

students, while encouraging students to look for common patterns

across problems. Our work differs in trying a more lightweight

approach, in which planning is the focus of a lecture and two

assignments rather than the entire curriculum.

De Raadt, Watson, and Toleman make the explicit distinction

between programming knowledge (language syntax and semantics)

and programming strategies [3]. Their ‘strategy guide’ discusses

abutment, nesting, and merging as ways for integrating strategies;

their assignments require students to apply specific strategies in

their solutions. Our work, in contrast, focuses on problem-level

techniques (such as cleaning data) rather than code-level techniques

(such as merging code). Our work also asks students to discuss

design tradeoffs, as a way of triangulating what they understand

about patterns.

3 COGNITIVE FOUNDATIONS OF

RECALLING SOLUTIONS

Strategies for teaching planning build on results on how people

construct programs at a cognitive level. Given a programming prob-

lem, programmers (subconsciously) identify solutions to similar

problems and adapt them to the problem at hand [11, 12, 14, 18].

Repeated application of a pattern helps programmers form a mental

schema for that problem (which can be recalled later for solving

other problems); repeated use of a schema strengthens recall [8, 10].

This basic architecture underlies approaches to teaching patterns

explicitly. Research has identified a difference between knowl-

edge schemas and strategy schemas (as both de Raadt et al. and

Caspersen cite [1, 3]): this difference implies that students may

require less direct practice to internalize a new (strategic) pattern

that builds on already-internalized knowledge schemas.

The distinction between knowledge and strategy schemas frames

our experiment because our lecture shows students new ways to

cluster subtasks of programming problems. All of our participants

had been writing list traversals prior to the experiment. The lecture

showed new high-level ways to decompose a problem into (po-

tentially multiple) list traversals. Our study asks whether students

would apply these high-level strategies to new problems based just

on the single lecture (without us telling them which solution style

to produce, as other pattern-based studies have done [3]).

4 STUDY DESIGN

4.1 Study Components

Our study contained three components:1

(1) A pre-assessment (section 4.3) in which students produced so-

lutions to 2ś3 programming problems. In one course, students

also preference-ranked solutions to 3 different problems.

(2) A single 50-minute lecture (section 4.4) on planning and design

tradeoffs, framed by the pre-assessment problems. The same

professor gave the same lecture in both courses.

(3) A post-assessment (section 4.5) in which students were asked

to (a) produce two solutions with different plans to each of

4 programming problems and (b) to preference rank between

their solutions (with justification).

We did not ask for multiple solutions on the pre-assessment because

we couldn’t find a way to explain what would distinguish solutions

before doing the intervention lecture.

The questions in the pre- and post-assessment were carefully

chosen to introduce some broadly-applicable strategies in multi-

task programming problems:

• Noisy data that could be cleaned prior to the main computation.

1Actual pre- and post-assessment questions and a full technical report are at
https://github.com/franciscastro/koli-2017.

• Flattened data that could be parsed (or reshaped) to a structure

that was better suited to the main computation.

• Data that could be truncated to a prefix of interest for the main

computation.

In addition, the post-work included computations that targeted a

projection of the data (say to a specific field within an object). We

did not emphasize projection in the pre-assessment as students had

experience with this idea from other assignments in both courses.

The lecture discussed cleaning, parsing, and truncating in the

context of the pre-assessment problems. We also discussed various

design tradeoffs that these offered, including impact on run-time

efficiency, ability to adapt the solution to a different dataset, and

readability and maintainability of the resulting code.

4.2 The Host Courses

We conducted the study in two first-year CS courses at different

universities. Each course was taught by one of the authors. Students

in both courses had some prior programming experience, though it

differed both across and within the populations.

• CrsA is an accelerated CS1 course that compresses much of the

first year into a semester. Most students have prior experience,

usually with imperative or object-oriented programming in Java

or Python. The course is taught in Pyret, a functional language

with syntax reminiscent of Python.

• CrsB is a CS2 course on object-oriented programming and data

structures, taught in Java. Students feed into the course from

one of two CS1 courses taught in functional programming: one

for novice programmers (CrsBnvc), and one for non-novices

(CrsBexp). Students from CrsBnvc have seen little to no imper-

ative programming prior to CrsB, while students from CrsBexp

have prior experience similar to that of CrsA.

Students in both courses had previously learned functional pro-

gramming with the How to Design Programs [4] curriculum. Prior

to the pre-assessment, CrsB had covered both kinds of for loops

for iterating over Java linked lists. In-class examples of for-loops

consisted of simple list traversals that accumulated answers (such

as summing a given field across a list of objects) or filtering out a

subset of elements. The pre-assessment was the first assignment in

the course on programming with lists and for-loops.

Sampled Populations. There were 75 students in CrsA and 290 in

CrsB. While all students completed the study, our (manual) analysis

uses a sample based on final course grade. We sampled up to 10

students from each passing grade (A, B, and C) in each of the three

populations (CrsA, CrsBnvc, CrsBexp). The grade bands were not

significant in our analysis, so we do not discuss them further.

4.3 Pre-Assessment

The programming problems for the pre-assessment came from

Fisler et al.’s recent study [6]. We used slightly different problems

in each course to accommodate different student preparation (such

as whether they knew string manipulation).

In CrsA, the pre-assessment consisted of programming solutions

to Palindrome, Sum Over Table, and Adding Machine. It also asked

students to preference-rank given solutions for the Rainfall, Length

of Triples, and Shopping Cart problems.

5.1 The View from CrsA

The data from CrsA suggest that our lecture had a significant im-

pact on students’ planning behavior. Figure 1 and Figure 2 show the

structures that CrsA students used in Adding Machine on the pre-

assessment and Earthquake Monitor on the post-assessment, respec-

tively. We contrast these two problems because of their similarity.

Students took a variety of approaches in the pre-assessment, with

some using parsing. Usage of parsing jumps significantly (p < .006

with a McNemar’s test) in the post-assessment: about 70% of CrsA

students used parsing in one of their two Earthquake Monitor solu-

tions. Even inData Smoothing, roughly the same number of students

chose to parse as did a single data traversal. Thus, there is strong

evidence that CrsA students learned parsing as a strategy.

Significant contrasts also arise when we examine CrsA students’

ranking preferences between the two assessments. The following

table shows evolution in criteria mentioned per student across the

pre- and post-assessments. The table shows that many students

both dropped and added criteria.

Criterion
Pre, not

post

Post, not

pre

Pre and

post

Efficiency 31 - 36

Structure 24 9 15

Aesthetics 14 1 35

Maintainability 7 20 3

All in all, the lecture had the impact we hoped for in CrsA: stu-

dents showed their ability to produce solutions with multiple plans;

most students raised more issues when discussing tradeoffs among

solutions; and many students changed the solution structures that

they preferred in the post-assessment (which is merely a sign that

the lecture impacted their thinking, not that their analyses neces-

sarily grew more accurate).

5.2 The View from CrsB

CrsB offers a more nuanced picture of the lecture’s impact, which

is less significant. We also see interesting differences between

CrsBnvc and CrsBexp, and between CrsA and CrsBexp, who had

been working in different programming languages despite a fairly

common curriculum (and common programming language) just a

month or two prior to the study.

Figure 3 contrasts the Earthquake Monitor solutions across all

three populations in the post-assessment. Two observations jump

out. First, a significant percentage of students in CrsB were unable

to solve the problem at all (the łNo Codež group): of the 45 students

sampled, 11 turned in no solution (9 fromCrsBnvc, 2 fromCrsBexp),

while another 6 students turned in only one. Of those with only

one, half used parsing while the others did a loop-based traversal

or nested traversal. In contrast, there was only one łNo Codež in

CrsA. We suspect that the łNo Codež s came partly from the lack

of programming experience in CrsBnvc and partly from students

running out of time (Earthquake Monitor was the last problem on

the assignment, which was due just before a mid-course holiday.)

Setting łNo Codež aside, the dominant solution structures differ

across the populations: łParse Firstž dominates in CrsA, łSingle

Traversalž dominates in CrsBnvc, while these two are fairly even

Figure 3: Earthquake Monitor structures, post-, all three

in CrsBexp. This suggests that parsing strategies may require more

programming experience for students to adopt.

On Data Smoothing, the two CrsB populations are more similar

to each other, with much heavier use of łSingle Traversalž solutions,

especially compared to the dominance of łExtractFirstž solutions in

CrsA. Programming language constructs are a likely factor. Most

of the CrsA students used a built-in map function to extract the

heart rates from the health records. While Java 8 provides map, it is

somewhat clumsy to use and only a handful of CrsB students had

been exposed to it. A basic Java for loop is straightforward for Data

Smoothing, so we should hardly be surprised that students used it.

Of the 45 CrsB students, 16 produced two Data Smoothing solu-

tions with the same high-level structure. This suggests that many

CrsB students didn’t really understand the idea of multiple pro-

gram plans just from the single lecture, or perhaps that the alternate

plans for Data Smoothing were too subtle for many students. Of the

strategies provided by the lecture (cleaning, parsing, and truncat-

ing), only parsing applies to Data Smoothing; if parsing was indeed

too hard for students, they would have been left without named

strategies to apply to the problem. The pre-assessment data did not

shed light, as all but one student used a łSingle Traversalž structure

to program Rainfall. Prior experience is not the explanation either:

these 16 students were roughly evenly split between CrsBnvc and

CrsBexp. Whether CrsB students would have understood this idea

better had they also done ranking tasks on the pre-assessment is a

question for future studies.

5.3 Preference Ranking of Own Post Solutions

The post-assessment asked students in both courses to state a pref-

erence between the approaches taken in their solutions to each

problem. In CrsA, students had a significant preference for parsing

first, which suggests at least the ability to recognize the lecture’s

views on structures that better decomposed plans.

In CrsB, the most interesting finding was the lack of criteria

that students mentioned. Of the 45 students sampled: only 15 men-

tioned any criteria at all; 9 didn’t submit a ranking; the other 21

just described their code (6 of these were from CrsBexp, the rest

	Abstract
	1 Introduction
	2 Related Work
	3 Cognitive Foundations of Recalling Solutions
	4 Study Design
	4.1 Study Components
	4.2 The Host Courses
	4.3 Pre-Assessment
	4.4 The Lecture
	4.5 Post-Assessment

	5 Analysis
	5.1 The View from CrsA
	5.2 The View from CrsB
	5.3 Preference Ranking of Own Post Solutions
	5.4 Changes in Solution Structures

	6 Discussion and Future Work
	References

