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Abstract

This paper improves on several aspects of

a sieve-based event ordering architecture,

CAEVO (Chambers et al., 2014), which

creates globally consistent temporal rela-

tions between events and time expressions.

First, we examine the usage of word em-

beddings and semantic role features. With

the incorporation of these new features, we

demonstrate a 5% relative F1 gain over our

replicated version of CAEVO. Second, we

reformulate the architecture’s sieve-based

inference algorithm as a prediction rerank-

ing method that approximately optimizes a

scoring function computed using classifier

precisions. Within this prediction rerank-

ing framework, we propose an alternative

scoring function, showing an 8.8% relative

gain over the original CAEVO. We further

include an in-depth analysis of one of the

main datasets that is used to evaluate tem-

poral classifiers, and we show that in spite

of the density of this corpus, there is still

a danger of overfitting. While this paper

focuses on temporal ordering, its results

are applicable to other areas that use sieve-

based architectures.

1 Introduction

Narratives that describe a series of events rarely do

so in order. Basic rules of journalism dictate that

important information leads a news report, and ac-

cordingly, algorithms that re-order events chrono-

logically need to combine a wealth of contextual,

rhetorical, and commonsense information.

Most research on event ordering aims to pro-

duce only partial orderings of event mentions

and time expressions (Bethard and Martin, 2007;

Cheng et al., 2007; UzZaman and Allen, 2010;

Llorens et al., 2010; Bethard, 2013). In the past,

labeled corpora used for training and evaluation

contained only small subsets of pairs of events

and times. Some of these corpora, like Time-

bank, have annotations restricted to salient, eas-

ily labeled pairs within the same document. Other

more recent data sets contain annotations that form

timelines of events that involve common entities

(Pustejovsky et al., 2003; Minard et al., 2015).

Due to the lack of consistency of annotations

across event pairs, it is difficult to use these cor-

pora in accurately measuring the practical perfor-

mance of event ordering algorithms.

Richer datasets are becoming available that pro-

vide more complete event orderings which in-

clude logically implied relations that are less ev-

ident from local text features. In particular, the

TimeBank-Dense corpus provides a significantly

more dense and complete set of annotations, al-

lowing for the evaluation of methods that make

use of broad contextual information across many

event pairs (Cassidy et al., 2014). One method that

has been developed to leverage such information

is CAEVO—a sieve-based architecture that made

the first effort toward dense event ordering (Cham-

bers et al., 2014). This method maintains tran-

sitivity constraints across independent predictions

from several specialized classifiers. More specifi-

cally, the architecture runs a series of “sieve” clas-

sifiers with their predictions ranked in order by

precision using a held-out dataset. The higher pre-

cision classifiers are ranked more highly in the se-

ries, and predictions are expanded by transitivity

rules (e.g. if event e1 is before e2, and e2 is be-

fore e3, then e1 is before e3) after each individual

classifier generates its predictions. The high den-
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sity of the constructed prediction graph allows the

transitivity rules to generate accurate predictions

for links that would otherwise be difficult to pre-

dict from the text.

This paper proposes improvements to CAEVO

with respect to (1) feature engineering within ma-

chine learned sieves, (2) generalization of the

sieve-based architecture to facilitate higher per-

forming sieve prediction rerankings, and (3) the

leveraging of unlabeled data. First, for our fea-

ture engineering improvements, we are motivated

by the fact that TimeBank-Dense contains a rel-

atively small training sample, and so we extend

the feature sets for the architecture’s machine

learned classifiers to include features that encode

lexical information about events in relatively low

dimensional spaces based on word embeddings

(Mikolov et al., 2013) and semantic role labeling

(SRL) annotations (Gildea and Jurafsky, 2002).

Second, our generalization of the sieve-based ar-

chitecture allows us to experiment with alterna-

tive methods for establishing the precedence rank-

ing of sieve predictions. Furthermore, we iden-

tify an approximate upper bound on any rank-

ing method’s performance. Lastly, in our exper-

iments with unlabeled data, we analyze the effect

of changing the density of the architecture’s pre-

diction graph. Our hypothesis is that increasing

the number of predictions on unlabeled data will

increase performance on labeled data through the

application of CAEVO’s transitivity constraints.

Our extensions produce new state-of-the-art re-

sults on the original test split of TimeBank-Dense

(8.8% F1 increase). Beyond this, we describe al-

ternative evaluations on other splits of the data in

order to analyze the effect of the common small

sizes of temporal corpora like TimeBank-Dense.

This analysis is critical for future work in tempo-

ral ordering, and sheds further light on previous

work’s results.

2 Related Work

Early work on event ordering focused on develop-

ing machine-learned classifiers that label the tem-

poral relations between small subsets of pairs of

events within documents using lexical and syntac-

tical features (Bethard and Martin, 2007; Cheng

et al., 2007; UzZaman and Allen, 2010; Llorens

et al., 2010; Bethard, 2013). Later work lever-

aged information across pairwise predictions by

imposing transitivity constraints using techniques

like integer linear programming and Markov logic

networks (Bramsen et al., 2006; Chambers and Ju-

rafsky, 2008; Tatu and Srikanth, 2008; Yoshikawa

et al., 2009). CAEVO followed these and other

hybrid rule-based approaches (D’Souza and Ng,

2013), but with the transitivity constraints yielding

larger gains in performance for the more complete

temporal graph constructed on the TimeBank-

Dense corpus (Cassidy et al., 2014; Chambers

et al., 2014).

The TimeBank-Dense corpus provides a signifi-

cantly more dense and complete set of annotations

compared to previous corpora.1 TimeBank-Dense

extends a subset of the original TimeBank cor-

pus with annotations for (almost) all event-time,

time-time, and event-time pairs across consecu-

tive sentences, as well as relations to the doc-

ument creation time. This dense corpus facili-

tated the evaluation of CAEVO—a sieve-based ar-

chitecture which maintains transitivity constraints

across independent predictions from several spe-

cialized classifiers.

Recent work has focused on the construction

of timelines of related events, using SRL an-

notations to determine which events are related

through common actors (Laparra et al., 2015). In

addition, other work has outperformed the orig-

inal CAEVO with a 2.2% relative F1 gain on

TimeBank-Dense using word embedding features

within a stacked ensemble of event-event, event-

time, and event-creation-time logistic regression

classifiers (Mirza and Tonelli, 2016). We draw

inspiration from this recent work by incorporat-

ing SRL and word embedding features into the

machine-learned CAEVO sieves.

The CAEVO architecture is itself inspired by

the sieve-based architectures that have been suc-

cessfully applied to event and entity coreference

as well as spatial relation extraction tasks (Lee

et al., 2012, 2013; D’Souza and Ng, 2015). Years

since CAEVO’s introduction, a coreference sieve

architecture still achieves top performance (Lee

et al., 2017). The key idea behind these archi-

tectures is to combine information from several

classifiers by assigning precedence to predictions

according to the reliability of the classifier from

which they originate. A precision-ranked series of

1The new corpus is the result of several TempEval com-
petitions (Verhagen et al., 2007, 2010; UzZaman et al., 2012)
which prompted efforts to develop more complete event or-
dering annotations (Bramsen et al., 2006; Kolomiyets et al.,
2012; Do et al., 2012).
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“sieve” classifiers generate predictions, and pre-

dictions from the more reliable sieves earlier in the

series inform the predictions of the less reliable

sieves later in the series. Generally, the predic-

tions from a highly-ranked sieve can inform a low-

ranked sieve in several ways, but within CAEVO,

predictions from early classifiers are coupled via

transitive inference rules to generate an expanding

set of predictions that override output from less re-

liable classifiers later on in the series. In the next

section, we describe a more generic view of this

architecture which will motivate alternative meth-

ods for assigning precedence to predictions from

the collection of classifiers.

3 Generalizing Sieve Architectures

Sieve architectures are used in many areas such as

entity coreference, relation extraction, and tempo-

ral ordering. A core contribution of this paper is a

generalization of how these models score and rank

their decisions. Like other sieve models, CAEVO

uses a precision-ranked series of classifiers (i.e.

“sieves”) coupled with transitivity constraints to

provide a solution to the event ordering task. How-

ever, prior work has not investigated alternatives to

the coarse-grained precision-based rankings pro-

vided by the architecture. This section gives a

generalized formal view on this precision-ranked

setup, and Section 4.3.1 describes our experiments

with new alternatives to traditional sieve archi-

tectures that are available within our generalized

view.

Informally speaking, a sieve architecture ap-

plies a sequence of classifiers that each make

their own independent labeling decisions, and the

architecture resolves conflicts between these de-

cisions by assigning precedence to those which

have higher estimated precision. The architecture

estimates the precision for each sieve on a de-

velopment set of data, and associates all predic-

tions from a given sieve with this precision esti-

mate. These precision scores determine an over-

all ranking to predictions within the final system.

When labeling a new test document, the archi-

tecture chooses predictions from all higher preci-

sion sieves over predictions from lower precision

sieves. But this common ranking of predictions is

coarse-grained, so this paper proposes other ways

of ordering the classifier predictions. Figure 1 il-

lustrates the difference between prediction rank-

ings from traditional sieve architectures and our

P=.82

P=.75

P=.72

a b c

Figure 1: Sieve classifier decisions as ranked in a

sieve architecture: (a) three sieves with their preci-

sions, (b) each sieve’s decisions ranked as in a tra-

ditional system, (c) a potential ranking influenced

by precision, but not strictly bound to it.

alternatives. The middle column shows the strict

prediction ordering given by traditional sieve sys-

tems, but the fuzzy ordering in the right column is

possible within our proposed alternative architec-

tures. Section 4.3.1 explores this in depth.

We now formally define a typical sieve architec-

ture (in terms of the temporal ordering domain).

Consider the set of event mentions E, time

expressions T , and temporal relation types L =
{BEFORE, AFTER, INCLUDES, INCLUDED, SIMULTANEOUS, VAGUE}.

We desire an architecture that encodes functions

fee : E × E → L, fet : E × T → L, and

ftt : T × T → L which accurately classify

relations between event-event, event-time, and

time-time pairs, respectively. The gold-standard

annotations within our corpora are logically

consistent, so we can assume that the true event

orderings induced by the functions fee, fet, and

ftt conform to the transitivity constraints given in

Table 1.

Algorithm 1 depicts a generalized view of the

CAEVO architecture which encodes approxima-

tions to the desired fee, fet, and ftt labeling func-

tions (and this view also applies to other typical

sieve systems). The algorithm combines predic-

tions from a set of sieve classifiers F̂ that pro-

vide partial approximations to fee, fet, and ftt

within restricted syntactic contexts. As described

by Chambers et al. (2014), F̂ contains both rule

based and machine-learned classifiers. In this pa-
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Constraints

BEFORE(o1, o2), BEFORE(o2, o3) → BEFORE(o1, o3)

BEFORE(o1, o2), INCLUDES(o2, o3) → BEFORE(o1, o3)

BEFORE(o1, o2), SIMULTAN(o2, o3) → BEFORE(o1, o3)

INCLUDED(o1, o2), BEFORE(o2, o3) → BEFORE(o1, o3)

INCLUDED(o1, o2), INCLUDED(o2, o3) → INCLUDED(o1, o3)

INCLUDED(o1, o2), SIMULTAN(o2, o3) → INCLUDED(o1, o3)

INCLUDED(o1, o2), AFTER(o2, o3) → AFTER(o1, o3)

INCLUDES(o1, o2), INCLUDES(o2, o3) → INCLUDES(o1, o3)

INCLUDES(o1, o2), SIMULTAN(o2, o3) → INCLUDES(o1, o3)

SIMULTAN(o1, o2), BEFORE(o2, o3) → BEFORE(o1, o3)

SIMULTAN(o1, o2), INCLUDED(o2, o3) → INCLUDED(o1, o3)

SIMULTAN(o1, o2), INCLUDES(o2, o3) → INCLUDES(o1, o3)

SIMULTAN(o1, o2), SIMULTAN(o2, o3) → SIMULTAN(o1, o3)

SIMULTAN(o1, o2), AFTER(o2, o3) → AFTER(o1, o3)

AFTER(o1, o2), INCLUDES(o2, o3) → AFTER(o1, o3)

AFTER(o1, o2), SIMULTAN(o2, o3) → AFTER(o1, o3)

AFTER(o1, o2), AFTER(o2, o3) → AFTER(o1, o3)

BEFORE(o1, o2) → AFTER(o2, o1)

AFTER(o1, o2) → BEFORE(o2, o1)

INCLUDES(o1, o2) → INCLUDED(o2, o1)

INCLUDED(o1, o2) → INCLUDES(o2, o1)

SIMULTAN(o1, o2) → SIMULTAN(o2, o1)

VAGUE(o1, o2) → VAGUE(o2, o1)

Table 1: Transitivity and symmetry constraints

in C from Equation 1 and Algorithm 1. In this

list, every constraint applies to events and/or times

o1, o2 and o3. We abbreviate “SIMULTANEOUS”

with “SIMULTAN” due to space constraints.

per, our experiments focus on the machine learned

sieves that give within-sentence event-event pre-

dictions (EEWS), within-sentence event-time pre-

dictions (ETWS), within-syntactic dominance re-

lation event-event predictions (EED), and event to

document creation time relations (EDCT).

Given a set of unlabeled data points D ⊆ (E ∪
T )× (E ∪T ), Algorithm 1 uses the sieves in F̂ to

construct a set of predictions F̂D = {(d, f̂(d), f̂) |
d ∈ D, f̂ ∈ F̂} where each prediction is indexed

with its associated sieve f̂ . The algorithm then

sorts and partitions F̂D according to a prediction

scoring function s : (D × L × F̂ ) → R. Finally,

the returned set of predictions R is constructed by

iteratively adding predictions from F̂D in descend-

ing order (with respect to s) while applying con-

straints C. C consists of the transitive rules (de-

picted in Table 1) along with the constraint that

prior predictions in R cannot be overwritten by

later predictions. The rules C are applied at each

iteration by extending the current predictions with

those implied by transitivity.

Algorithm 1 Sieve Inference

1: function SIEVEINFERENCE

2: Input F̂ := learned and rule-based sieves
3: Input D := data to classify
4: Input s := prediction scoring function
5: Input C := constraint application function

6: F̂D ← {(d, f̂(d), f̂) | d ∈ D, f̂ ∈ F̂}

7: P ← F̂D sorted and partitioned by s
8: R← {}
9: for i := 1 to |P | do

10: R← C(Pi ∪R)
return R

One of the weaknesses of CAEVO (and other

sieve-based systems) addressed in this paper is

that its scoring function, s(d, f̂(d), f̂), is simply

the precision of f̂ as measured on held-out data.

All predictions made by f̂ must have the same

ranking score (see Figure 1 again). This coarse-

ranking is likely to be sub-optimal relative to rank-

ings based on other scoring functions.

We can motivate improvements to Algorithm 1

by viewing it as a greedy approximation to the op-

timization problem which chooses a set of scored

predictions according to:

R = arg max
S⊆F̂D

(

∑

p∈S

s(p)
)

subject to C (1)

Given the view that CAEVO is providing a so-

lution to the objective in Equation 1 using Algo-

rithm 1, it is straightforward to see possible direc-

tions for improvement. Namely, the architecture

can be improved through changes to the sieves F̂ ,

the scoring methods s, the constraints C, the data

D, and the underlying greedy approximation algo-

rithm. Intuitively, if we want Equation 1 to give a

highly accurate set of predictions, then we should

pick an F̂ to contain more accurate classifiers 2,

an s which ranks correct predictions above incor-

rect predictions, and a large set D which enables C

to propagate precise labels from easy-to-classify

data samples onto hard-to-classify data samples.

Notably, CAEVO’s rigid choice of scoring func-

tion s to be the precision of f̂ only allows s to

give a coarse-grained scoring, which can score in-

correct predictions higher than correct predictions.

2This includes possibility that one or more f̂ ∈ F̂ could
be parameterized by more complex function approximators,
such as neural networks (LeCun et al., 2015).
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Furthermore, CAEVO’s sieve-inference in Algo-

rithm 1 is greedy, and other methods like inte-

ger linear programming (ILP) which provide bet-

ter solutions to Equation 1 might yield more accu-

rate predictions. Lastly, CAEVO limits D to only

contain labeled evaluation data without taking ad-

vantage of constraints imposed across unlabeled

event pairs. These observations motivate several

of the extensions we describe and experiment with

below.

4 Models and Experiments

In our experiments, we replicate CAEVO, add new

features to the sieves, modify the scoring func-

tion, and include larger amounts of related unla-

beled data to further constrain the predictions. Un-

less otherwise noted, results are computed using

the original train-dev-test split of the TimeBank-

Dense and original CAEVO experiments (Cham-

bers et al., 2014; Cassidy et al., 2014).

4.1 Replication

We replicate the CAEVO architecture within a

more generic framework with the aim of substan-

tiating and extending the CAEVO results from

Chambers et al. (2014). The replication process al-

lows us to validate the robustness of the originally

published results while determining their sensitiv-

ity to various parameter settings.

We reconstruct features within an alternative

feature engineering pipeline, and ensure that the

feature matrices match those from the original sys-

tem. During this process, we observed two issues

in the original system. First, features based on

gold-standard event “tense”, “aspect”, and “class”

were not included in the machine-learned mod-

els that produced the reported results even though

they were described in the original paper (they ap-

pear to have been inadvertently configured off). In

light of this, we leave these features out of our

replicated architecture, but add them into the re-

vised architecture in our feature engineering ex-

periments. Second, the EEWS, EED, and ETWS

sieves in CAEVO used a minimum feature oc-

currence cutoff of 2 across training data whereas

EDCT used a cutoff of 1. We experiment with dif-

ferent settings of these values in the next section.

Other minor bugs and the details of replication are

described in the appendix.

The R column of Table 2 gives micro-averaged

accuracies3 for the four machine-learned sieves

and the full replicated architecture. These accu-

racies reproduce the original CAEVO results up to

less than 1% discrepancy in accuracy due to ver-

sion differences between the machine-learning li-

braries and minor bugs in the original system. 4

4.2 Rich Feature Engineering

We extend our CAEVO replication with additional

knowledge of event attributes, word embeddings,

and SRL labels for each of the machine learned

sieves.

4.2.1 Event Attributes

As noted above, the original CAEVO paper had

reported the use of gold-standard TimeML tense,

aspect, class, polarity, and modality event attribute

features, but close inspection of the architecture

suggests that these features had been left out when

computing the final results. We experimented with

adding features computed from these attributes

into each of the machine-learned classifiers. For

each event in a given event-event or event-time

pair, we extend the feature vector with indicators

for possible values of each event attribute. Also,

for each event-event pair, we extend the feature

vector with indicators of whether the event at-

tributes are equal for the source and target (e.g.

equal tense), as well as features representing the

conjunction of each attribute across source and tar-

get (e.g. for the tense attribute, one of the indica-

tors is PAST-FUTURE, which is for a pair contain-

ing a past tensed event and a future tensed event).

The F1 scores computed on the TimeBank-

Dense test-set with the additional event attribute

features are given in the Ev column of Ta-

ble 2. Each machine-learned sieve increases in

F1, but the overall architecture decreases slightly.

This highlights the non-monotonic relationship

between the performance of individual sieves and

the performance of the overall architecture.

4.2.2 Semantic Role Labeling

We compute additional features from annota-

tions generated using the mate-tools SRL system

(Björkelund et al., 2009). Specifically, for a given

pair, we compute features representing SRL pred-

icates of the events as well as their conjunction.

3The micro-averaged accuracies are equivalent to micro-
averaged F1 scores computed on data for which some label is
output by a classifier.

4The results for the rule-based sieves are not shown, but
they match the original system exactly.
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Sieve R Ev SRL W2V R+ F+

EDCT .524 .547 .511 .524 .553 .553

ETWS .414 .450 .414 .450 .443 .480

EEWS .442 .466 .424 .450 .450 .456

EED .428 .500 .435 .473 .488 .466

Full .502 .495 .493 .504 .520 .527

Table 2: Micro-averaged accuracies on the

TimeBank-Dense test-set for machine-learned

sieves and the fully replicated architecture with

various feature extensions. Results are given for

our baseline CAEVO replication (R) and exten-

sions with gold-standard event attribute features

(Ev), SRL features (SRL), word embedding fea-

tures (W2V), all new features (R+), and all new

features with new feature count cutoffs (F+).

Also, we compute the shortest path between a pair

within the undirected graph formed by the SRL

predicates and arguments (i.e. where there are

nodes for predicate spans and argument spans, and

there is an edge between two spans if one is the ar-

gument of the other). As shown in Table 2 under

the SRL column, these features only give a minor

improvement in micro-averaged F1 for the EED

sieve, but hurt performance of the other sieves and

the architecture on the TimeBank-Dense test set.

However, we believe this may be due to over-

fitting, as we observe 3% and 4% gains for the

ETWS and EED sieves with these features on the

development set.

4.2.3 Word Embeddings

Given that recent work has shown improvements

using word embeddings (using log-linear neural

language models such as the Skip-Gram architec-

ture), we extend feature vectors with the word

vectors representing events and their similarity.

Following Mirza and Tonelli (2016), we use the

three million 300-dimensional word2vec vectors
5 pre-trained on part of the Google News dataset

(Mikolov et al., 2013). For each token span cor-

responding to either an event mention or time ex-

pression in a given pair datum, we extend the fea-

ture vector with normalized sums of word vectors

computed from tokens of the span. In addition, we

include the cosine similarity between the vectors

for the events in a pair, as well as a vector rep-

resenting the normalized difference between the

pair’s vectors. Micro-averaged F1 scores on the

TimeBank-Dense test set with these word embed-

5Pre-trained word vectors can be retrieved from https:

//code.google.com/archive/p/word2vec/.

ding features are given in the W2V column of Ta-

ble 2. The ETWS and EED sieves show improve-

ments of more than 3%, and the EEWS shows a

gain of about 1%. However, the F1 score for the

overall architecture remains nearly the same.

4.2.4 Full Extension

We extend the machine learned sieves with the full

set of event attributes, SRL, and word embedding

features as described above. As shown under the

R+ column of Table 2, this yields a 2% gain in

micro-averaged F1 for the overall architecture as

well as gains for each individual sieve. Also, Sec-

tion 4.1 mentioned that the feature count cutoffs

in R and R+ are set to 1 for EDCT and 2 for all

remaining machine-learned sieves. For simplic-

ity, we set the cutoff to 1 across all sieves in F+,

yielding a 4% improvement in ETWS and minor

gains in EEWS and the full system over R+. Over-

all, our feature engineering efforts give F+ a 5%

relative gain (2.5% absolute) over the replicated

CAEVO architecture (R).

4.3 Modifying Sieve Inference

This section proposes new inference methods for

sieve architectures by varying the scoring func-

tion s and adding unlabeled data to D from Al-

gorithm 1 and Equation 1 in Section 3. This is a

core contribution that can benefit not just tempo-

ral ordering, but also other sieve systems applied

to other NLP tasks.

4.3.1 Alternative Scoring Methods

In the original CAEVO architecture’s implemen-

tation of Algorithm 1 from Section 3, the score

s(d, f̂(d), f̂) is computed as the precision of the

sieve f̂ on the development set. This greedy scorer

s gives a coarse-grain ranking of sieve predictions,

assigning equal precedence to all predictions from

a given sieve f̂ . Intuitively, if we want to produce

a higher accuracy architecture, then we should

adjust the scoring function s to score all correct

predictions more highly than all incorrect predic-

tions6. CAEVO’s use of f̂ precision in comput-

ing s is a coarse-grained heuristic in line with this

goal, but there are better choices.

Ideal Scorer In the best case, the F+* column

of Table 3 shows the micro-averaged F1 (equiv-

alent to accuracy) when s scores a prediction as

6Note that while such a choice of s should produce good
performance, this performance is not necessarily optimal un-
der the transitivity constraints.
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Data V CAEVO (R) F+ F+L F+S F+LU F+*

Dev .378 .481 .485 .490 .481 .491 .585

Test .403 .502 .527 .546 .521 .541 .642

Table 3: Micro-averaged F1 scores on the original TimeBank-Dense train-dev-test split for several

versions of the sieve architecture. Results are given for the VAGUE majority baseline (V), the CAEVO

replication (R), the architecture with the extended feature set (F+), and varying inference methods un-

der the extended feature set. The varying inference methods include an alternative prediction scoring

function s computed by precision of each sieve on each relation label (F+L), s computed by precision

multiplied by classifier probability estimates (F+S), s computed by precision on each label with extra

unlabeled data (F+LU), and s computed to produce near-optimal ordering (F+*).

s(d, f̂(d), f̂) = 1 if f̂(d) is the correct label

for datum d, and 0 otherwise. This near-optimal

choice of s in F+* gives a 10% gain over F+,

suggesting a large room for improvement by re-

ranking sieve predictions rather than improving

the accuracy of the individual sieves. This sug-

gests that architecture performance will increase

by improving the estimates of the prediction con-

fidence encoded by s, rather than improving the

predictions themselves.

New Scorers We thus consider several alterna-

tives for s. First, we attempted estimating s by

training a reranking logistic regression model to

predict whether f̂(d) is the correct label for d

within prediction (d, f̂(d), f̂). This approach did

not improve performance over other simpler ap-

proaches (possibly due to the small size of rerank-

ing training data), and so we only report results

for the simpler approaches. In one approach, mo-

tivated by the observation that precision varies

across relation labels, we compute s(d, f̂(d), f̂) as

the precision of f̂ for predictions with label f̂(d)
on the dev data. This sieve-label precision ap-

proach improves F1 over F+ as shown in the F+L

column of Table 3. In a second approach, we com-

pute s(d, f̂(d), f̂) as the precision of f̂ multiplied

by the probability assigned to f̂(d) by the logis-

tic regression model employed by f̂ . According to

the F+S column of Table 3, this approach does not

show improvement over F+.

4.3.2 Leveraging Unlabeled Data

CAEVO uses Algorithm 1 to draw inferences

about a data set D. In the original implementa-

tion, this set contained only the gold-standard la-

beled evaluation pairs within two sentence win-

dows. However, if D were expanded with other

unlabeled data points outside of two sentence win-

dows (for which it is easy to predict labels with

high precision), the transitivity constraints in C

might generate further high precision predictions

on the labeled data. Interestingly, this gives the ar-

chitecture the property that making a larger num-

ber of predictions on a logically connected set of

data can lead to higher overall performance on

subsets of that data. Given this observation, we ap-

ply the F+L version of the architecture to all pairs

of events and times within a document. The result-

ing F1 scores given this expansion of D with the

unlabeled TimeBank-Dense pairs are shown under

column F+LU of Table 3. Unfortunately, these

scores show no improvement over the scores un-

der column F+L which suggests that the architec-

ture did not draw high precision inferences from

the unlabeled data to labeled data. This may be

due to the lack of sieves tuned specifically to make

between-sentence unlabeled data predictions, or it

may be due to an inherent difficulty in making

these predictions over the labeled within-sentence

and consecutive sentence predictions.

5 Deep Dive into the Data

One of the difficulties facing the temporal order-

ing community is sparse data. This has been an

issue since the original TimeBank Corpus, and the

TimeBank-Dense Corpus had data expansion as

one of its core goals. However, we argue that

data sparsity is still a problem, and previous work

tends not to explore different test sets, potentially

misidentifying positive and negative results spe-

cific to particular splits of the data. This issue

seems especially relevant due to the small size of

the TimeBank-Dense data (only 5 documents in

dev and 9 documents in test for the original split

(Chambers et al., 2014)).

The underlying question is whether new re-

sults present a significant improvement upon older

ones. We consider multiple cross-validation splits
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of the data to get some sense about the answer

to this question. We chose this approach over

null-hypothesis significance testing due to limi-

tations induced by small sample size in conjunc-

tion with the dependencies between predictions

arising through the transitivity constraints. These

two issues render it difficult to make a hard de-

termination of significance in a way that does not

violate hypothesis testing assumptions. Instead,

our cross-validation splits give a weak qualitative

sense of the generalizability of our methods.

Our cross validation setup consisted of four

splits of the 36 documents with 5 documents per

test set and 4 documents per development set for

each split. Table 4 shows the micro-averaged F1

scores of the architectures described in the pre-

vious sections on each of these splits. Unsur-

prisingly, the results show that some architecture

scores were boosted while others lessened on these

alternative splits. Notably, the added features in

F+ still make consistent gains over the CAEVO

replication R, and the ideal scorer F+* makes con-

sistent large gains (as high as 18% on Fold 3, and

a low of 6% on Fold 1). However, F+L performs

well on the development sets but does not im-

prove performance on the test sets. We hypoth-

esize that F+L overfits to the development sets

due to their small size and the small number of

predictions available to compute sieve-label preci-

sions. The consistently large gains of F+L on the

dev sets suggest that the method will achieve high

performance as long as the precision estimates in

s are accurate, but the method requires more de-

velopment data than F+ to compute accurate esti-

mates without overfitting due to the large number

of sparsely distributed sieve-label combinations.

This extra analysis helps to highlight the poten-

tial for overfitting. We hope this encourages future

work to bear this in mind, and to also present re-

sults across multiple tests. Extra evaluations like

those in this section are often unexciting, but we

argue that it is of utmost importance that they

are conducted. This paper could have ended at

the previous section’s top test set results, but we

hope the reader sees extra value in the deep analy-

sis of one’s results.

6 Discussion

In the above experiments, we successfully repli-

cated the CAEVO system from Chambers et al.

(2014), and then proposed a generalization of the

sieve-based architecture that enabled several new

extensions and improvements. With the injection

of new features, we improve the overall system

with a 5% relative gain in F1. Furthermore, our

generalized version of CAEVO’s sieve architec-

ture allowed us to score and rank predictions based

on both label and sieve precision, raising the F1

results to an 8.8% relative improvement over our

replicated CAEVO (under F+L in Table 3). We

consider these results a new state-of-the-art on the

TimeBank-Dense corpus. In addition, the large

gains using a near-optimal scoring function (un-

der F+* in Table 3) suggest that future work might

make substantial progress by building further al-

ternative prediction scoring methods.

We also perform an in-depth analysis of our

improvements on alternative splits of the data.

Through this analysis, we find that our feature

engineering results are robust. More interest-

ingly, while the F+L scoring method gives in-

creased F1 on the original TimeBank-Dense split

and all cross-validation dev sets, it does not yield

improved performance on our alternative cross-

validation test sets. This analysis suggests signifi-

cant improvement for F+L over the original archi-

tecture, but with possible overfitting label-specific

precision estimates on our small amount of devel-

opment data.

Finally, we presented the first experiments that

leveraged unlabeled data. These experiments gave

negative results, but we believe future research

might see improvements through inference over

unlabeled data by (1) improving the precision

of unlabeled data predictions (through the incor-

poration of precise between-sentence prediction

sieves), (2) increasing the density of the unlabeled

data (e.g. by including easy-to-predict cross-

document links between related events), (3) in-

creasing the number of constraints across the data

through the incorporation of sieves for additional

tasks like event and entity coreference (coref), or

(4) increasing the size of the data for more reliable

evaluation and training. With respect to (4), we

hypothesize that although Timebank-Dense con-

tains more temporal relations than other tempo-

ral corpora, it is still small in size. Our hope for

future work is to extend the data set with more

dense annotations, but spread across a larger num-

ber of document contexts, such that different scor-

ing and inference methods may be robustly trained

and evaluated.
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Split Data V CAEVO (R) F+ F+L F+S F+LU F+*

Fold 0
Dev .385 .574 .571 .596 .593 .596 .676

Test .400 .503 .535 .534 .530 .534 .632

Fold 1
Dev .435 .519 .537 .592 .543 .592 .663

Test .312 .443 .503 .501 .506 .501 .558

Fold 2
Dev .450 .522 .542 .555 .521 .516 .684

Test .462 .528 .540 .507 .541 .506 .706

Fold 3
Dev .436 .536 .562 .575 .535 .573 .664

Test .470 .484 .497 .500 .500 .497 .682

Table 4: Micro-averaged F1 scores on four cross-fold validation train-dev-test splits of TimeBank-Dense

for the sieve architectures defined in Table 3. The new features in F+ make conistent gains across folds,

and the ideal scorer F+* demonstrates consistently large room for improvement using alternative scoring

methods. The F+L model still performs well on the dev sets, but it gives no performance gains on test

sets. This suggests the danger of overfitting the scoring functions s within sieve architectures, as the

sieve-label precision scores use in F+L were computed over a small, four document dev set in each fold.

In sum, we present a new state-of-the-art event

ordering model. Furthermore, we propose a gen-

eralized approach to classifier ranking that is ap-

plicable to all sieve architectures (not just tempo-

ral ordering). Instead of producing coarse-grained

ranking of classifier predictions, our proposal se-

lects more fine-grained, higher performing predic-

tion rerankings. In addition, we show temporal or-

dering gains using SRL and word embedding fea-

tures. The code for our event-ordering architec-

tures and experiments is publicly available7. We

hope that this work will encourage further efforts

in dense event ordering research.
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A Replication Details

While replicating CAEVO, we did not find any

major issues that significantly change the results

reported in the original paper. However, we found

the following minor bugs: (1) bias features are in-

cluded in the EEWS, EED, and ETWS machine-

learned sieves but not in EDCT, (2) the computa-

tion of dependency path features does not always

compute the shortest paths, and (3) code that com-

putes token paths is specified to only compute for

paths with length less than 4, but does not do this

correctly. In our replicated version, we remove

each of these bugs.

We also noticed the following quirks in the orig-

inal system:

• Features based on gold-standard event tense,

aspect, and class were not included in the

machine-learned models that produced the

reported results even though they were de-

scribed in the original CAEVO paper.

• The EEWS, EED, and ETWS sieves were

trained using feature matrices with a mini-

mum feature occurrence count of 2 across

training data whereas EDCT has a minimum

feature occurrence count of 1. We know of

no motivation for setting this parameter dif-

ferently for the EDCT sieve, but resetting it

to 2 within EDCT drops its performance to

below the “All Vague” baseline sieve, result-

ing it from it being effectively removed from

the system, and yielding a 5% drop in perfor-

mance. The sensitivity of the overall system’s

performance to this parameter setting high-

lights the importance of using enough data to

acquire accurate precision estimates to deter-

mine the prediction scoring.

• The EED sieve had a lower precision estimate

than EEWS, but EEWS makes predictions on

a superset of the event pairs for which EED

makes predictions. This means that EED has

no functional relevance with respect to the

performance of the original architecture.

The replication process also revealed the sen-

sitivity of the results to the details of feature en-

gineering and feature selection. Overall, the pro-

cess confirmed that minor flaws and oddities will

likely remain in complicated architectures like

CAEVO after they have been documented, and it

can be worthwhile to repeatedly inspect and repli-

cate these systems to ensure that they function as

specified.
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