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Abstract

We present a novel fine-tuning algorithm

in a deep hybrid architecture for semi-

supervised text classification. During

each increment of the online learning pro-

cess, the fine-tuning algorithm serves as

a top-down mechanism for pseudo-jointly

modifying model parameters following a

bottom-up generative learning pass. The

resulting model, trained under what we

call the Bottom-Up-Top-Down learning al-

gorithm, is shown to outperform a vari-

ety of competitive models and baselines

trained across a wide range of splits be-

tween supervised and unsupervised train-

ing data.

1 Introduction

Recent breakthroughs in learning expressive neu-

ral architectures have addressed challenging prob-

lems in domains such as computer vision, speech

recognition, and natural language processing. This

success is owed to the representational power af-

forded by deeper architectures supported by long-

standing theoretical arguments (Hastad, 1987).

These architectures efficiently model complex,

highly varying functions via multiple layers of

non-linearities, which would otherwise require

very “wide” shallow models that need large quan-

tities of samples (Bengio, 2012). However, many

of these deeper models have relied on mini-batch

training on large-scale, labeled data-sets, either us-

ing unsupervised pre-training (Bengio et al., 2007)

or improved architectural components (such as ac-

tivation functions) (Schmidhuber, 2015).

In an online learning problem, samples are pre-

sented to the learning architecture at a given rate

(usually with one-time access to these data points),

and, as in the case of a web crawling agent, most

of these are unlabeled. Given this, batch training

and supervised learning frameworks are no longer

applicable. While incremental approaches such

as co-training have been employed to help these

models learn in a more update-able fashion (Blum

and Mitchell, 1998; Gollapalli et al., 2013), neural

architectures can naturally be trained in an online

manner through the use of stochastic gradient de-

scent (SGD).

Semi-supervised online learning does not only

address practical applications, but it also reflects

some challenges of human category acquisition

(Tomasello, 2001). Consider the case of a child

learning to discriminate between object categories

and mapping them to words, given only a small

amount of explicitly labeled data (the mother

pointing to the object), and a large portion of un-

supervised learning, where the child comprehends

an adult’s speech or experiences positive feedback

for his or her own utterances regardless of their

correctness. The original argument in this respect

applied to grammar (e.g., Chomsky, 1980; Pullum

& Scholz, 2002). While neural networks are not

necessarily models of actual cognitive processes,

semi-supervised models can show learnability and

illustrate possible constraints inherent to the learn-

ing process.

The contribution of this paper is the develop-

ment of the Bottom-Up-Top-Down learning al-

gorithm for training a Stacked Boltzmann Ex-

perts Network (SBEN) (Ororbia II et al., 2015)

hybrid architecture. This procedure combines

our proposed top-down fine-tuning procedure for

jointly modifying the parameters of a SBEN with

a modified form of the model’s original layer-wise

bottom-up learning pass (Ororbia II et al., 2015).

We investigate the performance of the constructed

deep model when applied to semi-supervised text

classification problems and find that our hybrid ar-

chitecture outperforms all baselines.
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2 Related Work

Recent successes in the domain of connection-

ist learning stem from the expressive power af-

forded by models, such as the Deep Belief Net-

work (DBN) (Hinton et al., 2006; Bengio et al.,

2007) or Stacked Denoising Autoencoder (Vincent

et al., 2010), that greedily learn layers of stacked

non-linear feature detectors, equivalent to levels of

abstraction of the original representation. In a va-

riety of language-based problems, deep architec-

tures have outperformed popular shallow models

and classifiers (Salakhutdinov and Hinton, 2009;

Liu, 2010; Socher et al., 2011; Glorot et al.,

2011b; Lu and Li, 2013; Lu et al., 2014). How-

ever, these architectures often operate in a multi-

stage learning process, where a generative archi-

tecture is pre-trained and then used to initialize pa-

rameters of a second architecture that can be dis-

criminatively fine-tuned (using back-propagation

of errors or drop-out: Hinton et al., 2012). Sev-

eral ideas have been proposed to help deep mod-

els deal with potentially uncooperative input dis-

tributions or encourage learning of discriminative

information earlier in the process, many leverag-

ing auxiliary models in various ways (Bengio et

al., 2007; Zhang et al., 2014; Lee et al., 2014). A

few methods for adapting deep architecture con-

struction to an incremental learning setting have

also been proposed (Calandra et al., 2012; Zhou

et al., 2012). Recently, it was shown in (Oror-

bia II et al., 2015) that deep hybrid architectures,

or multi-level models that integrate discriminative

and generative learning objectives, offer a strong

viable alternative to multi-stage learners and are

readily usable for categorization tasks.

For text-based classification, a dominating

model is the support vector machine (SVM)

(Cortes and Vapnik, 1995) with many useful in-

novations to yet further improve its discrimina-

tive performance (Subramanya and Bilmes, 2008).

When used in tandem with prior human knowl-

edge to hand-craft good features, this simple ar-

chitecture has proven effective in solving practical

text-based tasks, such as academic document clas-

sification (Caragea et al., 2014). However, while

model construction may be fast (especially when

using a linear kernel), this process is costly in

that it requires a great deal of human labor to an-

notate the training corpus. Our approach, which

builds on that of (Ororbia II et al., 2015), provides

a means for improving classification performance

when labeled data is in scarce supply, learning

structure and regularity within the text to reduce

classification error incrementally.

3 A Deep Hybrid Model for

Semi-Supervised Learning

To directly handle the problem of discriminative

learning when labeled data is scarce, (Ororbia II

et al., 2015) proposed deep hybrid architectures

that could effectively leverage small amounts of

labeled and large amounts of unlabeled data. In

particular, the best-performing architecture was

the Stacked Boltzmann Experts Network (SBEN),

which is a variant of the DBN. In its construction

and training, the SBEN design borrows many re-

cent insights from efficiently learning good DBN

models (Hinton et al., 2006) and is essentially a

stack of building block models where each layer

of model parameters is greedily modified while

freezing the parameters of all others. In con-

trast to the DBN, which stacks restricted Boltz-

mann machines (RBM’s) and is often used to ini-

tialize a deep multi-layer perceptron (MLP), the

SBEN model is constructed by composing hybrid

restricted Boltzmann machines and can be directly

applied to the discriminative task in a single learn-

ing phase.

The hybrid restricted Boltzmann machine

(HRBM) (Schmah et al., 2008; Larochelle and

Bengio, 2008; Larochelle et al., 2012) building

block of the SBEN is itself an extension of the

RBM meant to ultimately perform classification.

The HRBM graphical model is defined via pa-

rameters Θ = (W,U,b, c,d) (where W is the

input-to-hidden weight matrix, U the hidden-to-

class weight matrix, b is the visible bias vector, c is

the hidden unit bias vector, and d is the class unit

bias vector), and is a model of the joint distribu-

tion of a binary feature vector x = (x1, · · · , xD)
and its label y ∈ {1, · · · , C} that makes use of a

latent variable set h = (h1, · · · , hH). The model

assigns a probability to the triplet (y,x,h) using:

p(y, x,h) =
e−E(y,x,h)

Z
, (1)

p(y, x) =
1

Z

∑

h

e−E(y,x,h) (2)

where Z is known as the partition function. The

model’s energy function is defined as
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E(y, x,h) = −hT Wx−bT x−cT h−dT ey−hT Uey.

(3)

where ey = (1i=y)
C
i=1 is the one-hot vector en-

coding of y. It is often not possible to compute

p(y, x,h) or the marginal p(y, x) due to the in-

tractable normalization constant. However, ex-

ploiting the model’s lack of intra-layer connec-

tions, block Gibbs sampling may be used to draw

samples of the HRBM’s latent variable layer given

the current state of the visible layer and vice versa.

This yields the following equations:

p(h|y, x) =
∏

j

p(hj |y, x),

p(hj = 1|y, x) = σ(cj + Ujy +
∑

i

Wjixi)
(4)

p(x|h) =
∏

i

p(xi|h),

p(xi = 1|h) = σ(bi +
∑

j

Wjihj)
(5)

p(y|h) =
edy+

∑
j Ujyhj

∑
y⋆ e

dy⋆+
∑

j Ujy⋆hj
(6)

where σ(v) = 1/(1 + e−v). Classification may

be performed directly with the HRBM by using its

free energy function F (y, x) to compute the con-

ditional distribution

p(y|x) =
e−F (y,x)

∑
y⋆∈{1,··· ,C} e

−F (y⋆,x)
(7)

where the free energy is formally defined as

−F (y, x) = (dy +
∑

j

ψ(cj + Ujy +
∑

Wjixi))

(8)

and ψ is the softplus activation function ψ(v) =
log(1 + ev).

To construct an N-layer SBEN (or N-SBEN), as

was shown in (Ororbia II et al., 2015), one may

learn a stack of HRBMs in one of two ways: (1)

in a strict greedy, layer-wise manner, where lay-

ers are each trained in isolation on all of the data

samples one at a time from the bottom-up; or (2)

in a more relaxed disjoint fashion, where all layers

are trained together on all of the data but still in a

Figure 1: Architecture of the SBEN model. The

model in feedforward mode can be viewed as a

directed model, however, during training, connec-

tions are bi-directional.

layer-wise bottom-up pass. To properly compute

intermediate data representations during training

and prediction in the SBEN, one must combine

Equations 4 and 7. (The specific procedure for do-

ing this can be found in the computeLayerwiseS-

tatistics sub-routine in Algorithm 1.) This gives

rise to the full SBEN architecture, which is de-

picted in Figure 1.

3.1 Ensembling of Layer-Wise Experts

The SBEN may be viewed as a natural vertical en-

semble of layer-wise “experts”, where each layer

maps latent representations to predictions, which

differs from standard methods such as boosting

(Schapire, 1990). Traditional feedforward neural

models propagate data through the final network

to obtain an output prediction yt from a penulti-

mate layer for a given xt. In contrast, this hybrid

model is capable of a producing a label yn
t at each

level n for xt.

To vertically aggregate layer-wise expert out-

puts, we compute a simple mean predictor,

p(y|x)ensemble, as follows:

p(y|x)ensemble =
1

N

N∑

n=1

p(y|x)n (9)

This ensembling scheme provides a simple way to

incorporate acquired discriminative knowledge of

different levels of abstraction into the model’s fi-

nal prediction. We note that the SBEN’s inherent

layer-wise discriminative ability stands as an alter-

native to coupling helper classifiers (Bengio et al.,

2007) or the “companion objectives” (Lee et al.,

2014).
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3.2 The Bottom-Up-Top-Down Learning

Algorithm

With the SBEN architecture defined, we next

present its simple two-step training algorithm,

or the Bottom-Up-Top-Down procedure (BUTD),

which combines a greedy, bottom-up pass with a

subsequent top-down fine-tuning step. At every

iteration of training, the model makes use of a sin-

gle labeled sample (taken from an available, small

labeled data subset) and an example from either a

large unlabeled pool or a data-stream. We describe

each of the two phases in Sections 3.2.1 and 3.2.2.

3.2.1 Bottom-Up Layer-wise Learning (BU)

The first phase of N-SBEN learning consists of

a bottom-up pass where each layerwise HRBM

can be trained using a compound objective func-

tion. Data samples are propagated up the model

to the layer targeted for layer-wise training using

the feedforward schema described above. Each

HRBM layer of the SBEN is greedily trained us-

ing the frozen latent representations of the one be-

low, which are generated by using the lower level

expert’s input and prediction. The loss function

for each layer balances a discriminative objective

Ldisc, a supervised generative objective Lgen, and

an unsupervised generative objectiveLunsup, fully

defined as follows:

Lsemi(Dtrain,Dunlab) = γLdisc(Dtrain)

+αLgen(Dtrain)

+βLunsup(Dunlab)

(10)

Unlike generative pre-training of neural architec-

tures (Bengio et al., 2007), the additional free pa-

rameters γ, α, and β offer explicit control over

the extent to which the final parameters discovered

are influenced by generative learning (Larochelle

et al., 2012; Ororbia II et al., 2015). More im-

portantly, the generative objectives may be viewed

as providing data-dependent regularization on the

discriminative learning gradient of each layer.

The objectives themselves are defined as:

Ldisc(Dtrain) = −

|Dtrain|∑

t=1

log p(y|xt), (11)

Lgen(Dtrain) = −

|Dtrain|∑

t=1

log p(yt, xt), and (12)

Lunsup(Dunlab) = −

|Dunlab|∑

t=1

log p(xt) (13)

where Dtrain = {(xt, y)} is the labeled training

data-set and Dunlab = {(ut)} is the unlabeled

training data-set. The gradient for Ldisc may be

computed directly, which follows the general form

∂ log p(yt|x)

∂θ
= −Eh|yt,xt

[
∂

∂θ
(E(yt, xt,h))

]

+Ey,h|,x

[
∂

∂θ
(E(y, x,h))

]

(14)

and can be calculated directly (see Larochelle et

al., 2012 , for details) or through a form of Drop-

ping, such as Drop-Out or Drop-Connect (Tom-

czak, 2013). The generative gradients themselves

follow the form

∂ log p(yt, x)

∂θ
= −Eh|yt,xt

[
∂

∂θ
(E(yt, xt,h))

]

+Ey,x,h

[
∂

∂θ
(E(y, x,h))

]

(15)

and, despite being intractable for any sample

(xt, yt), may be approximated via the contrastive

divergence procedure (Hinton, 2002). The in-

tractable second expectation is replaced with a

point estimate using a single Gibbs sampling step.

To calculate the generative gradient for an unla-

beled sample u, a pseudo-label must be obtained

by using a layer-wise HRBM’s current estimate of

p(y|u), which can be viewed as a form of self-

training or Entropy Regularization (Lee, 2013).

The online procedure for computing the genera-

tive gradient (either labeled or unlabeled example)

for a single HRBM can be found in Ororbia et al.,

(2015).

Setting the coefficients that control learning ob-

jective influences can lead to different model con-

figurations (especially with respect to γ) as well as

impact the gradient-based training of each model

layer (i.e., α and β). In this paper, we shall ex-

plore two particular configurations, namely 1) by

setting γ = 0 and α = 1, which leads to con-

structing a purely generative model of Dtrain and
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Algorithm 1 Top-down fine-tuning of an N-SBEN (ensemble back-propagation). Note that “·” indicates

a Hadamard product, ξ is an error signal vector, the prime superscript indicates a derivative (i.e., σ′ means

derivative function of the sigmoid), and ẑ is the symbol for linear pre-activation values.

Input: (xt, yt) ∈ D, learning rate λ and model parameters Θ = {Θ1,Θ2, ...,ΘN}
function FINETUNEMODEL((xt, yt), λ, Θ)

Ω← ∅, xn ← xt, yn ← ∅ ⊲ Initialize list of layer-wise model statistics & variables

// Conduct feed-forward pass to collect layer-wise statistics

for Θn ∈ Θ do

(hn, ẑn, y
h
n,xn)← COMPUTELAYERWISESTATISTICS(xn,Θn)

Ωn ← (hn, ẑn, y
h
n, xn), xn ← hn, yn ← yh

n

// Conduct error back-propagation pass to adjust layer-wise parameters

ξl ← ∅
for l← N, l−−, while l ≥ 1 do

(hl, ẑl, y
h
l ,xl)← Ω[l] ⊲ Grab relevant statistics for layer l of model

if i = N then

(▽disc, ξl)← COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ∅,hn, ẑ,Θl)
else

ξl ← ξl · σ
′(ẑl)

(▽disc, ξl)← COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ξl,hn, ẑ,Θl)

Θn ← Θn − λ(▽disc)

function COMPUTELAYERWISESTATISTICS(xt,Θn)

yh
t ← p(yt|xt,Θn) ⊲ Equation 7 under the layerwise model

ẑ← c +Wxt + Ueyt ⊲ Can re-use ẑ to perform next step

ht ∼ p(h|y
h
t , xt,Θn) ⊲ Equation 4 under the layerwise model

return (ht, ẑ, y
h
t , xt)

function COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ξl,hn, ẑ,Θl)

o← p(y|hn,Θl), ξ ← softmax′(o) · −(yt/o)
▽U ← ξhT

n ,▽d ← ξ, ξ ← Uξ, ξ ← ξ · σ′(ẑ)
if ξl 6= ∅ then

ξ ← ξ · ξl
▽W ← ξxT

l ,▽c ← ξ,▽b ← 0,▽U ←▽U + (ξeT
yt

), ξ ←W T ξ
return (▽← (▽W ,▽U ,▽b,▽c,▽d), ξ)

Dunsup, and 2) by setting γ = 1 with α freely

varying (which recovers the model of Ororbia et

al., 2015). In both scenarios, β is allowed to vary

as a user-defined hyper-parameter. The second set-

ting of γ allows for training the SBEN directly

with only the bottom-up phase defined in this sec-

tion. However, if the first setting is used, a sec-

ond phase may be used to incorporate a top-down

fine-tuning phase. A bottom-up pass simply en-

tails computing this compound gradient for each

layer of the model for 1 or 2 samples per training

iteration. Notice that the first scenario reduces the

number of hyper-parameters to explore in model

selection, requiring only an appropriate value for

β to be found.

3.2.2 Top-Down Fine-tuning (TD)

Although efficient, the bottom-up procedure de-

scribed above is greedy, which means that the gra-

dients are computed for each layer-wise HRBM

independent of gradient information from other

layers of the model. One way we propose to

introduce a degree of joint training of param-

eters is to incorporate a second phase that ad-

justs the SBEN parameters via a modified form

of back-propagation. Such a routine can further

exploit the SBEN’s multiple predictors (or entry

points) where additional error signals may be com-

puted and aggregated while signals are reverse-

propagated down the network. We hypothesize

that holistic fine-tuning ensures that discrimina-

tive information is incorporated into the generative
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Algorithm 2 The Bottom-Up-Top-Down training procedure for learning an N-SBEN.

Input: (xt, yt) ∈ Dtrain, (ut) ∈ Dunlab, rates λ & β, p̄, & parameters Θ = {Θ1,Θ2, ...,ΘN}
function BOTTOMUPTOPDOWN((yt, xt, ut, λ, β, Θ)

APPLYBOTTOMUPPASS(yt, xt, ut, λ, γ = 0, α = 1, β, Θ) ⊲ See (Ororbia II et al., 2015)

// Up to two calls can be made to the top-down tuning routine

FINETUNEMODEL(xt, yt, λ, Θ) ⊲ See Algorithm 1 for details

vt ← pensemble(y|x,Θn) ⊲ Calculate pseudo-label probability using Equation 9

if max[vt] > p̄ then

vt ← TOONEHOT(vt) ⊲ Convert to 1-hot vector using argmax of model conditionals

FINETUNEMODEL(ut,vt, λ, Θ)

features being constructed in the bottom-up learn-

ing step. Furthermore, errors from experts above

are propagated down to lower layers, which were

initially frozen during the greedy, bottom-up train-

ing phase.

Fine-tuning in the context of training an SBEN

is different from using a pre-trained MLP that

is subsequently fine-tuned with back-propagation.

First, since the SBEN is a more complex architec-

ture than an MLP, pre-initializing an MLP would

be insufficient given that one would be tossing po-

tentially useful information stored in the SBEN’s

class filters (and corresponding class bias vectors)

of each layer-wise expert (i.e., U and d). Second,

merely using the SBEN as an intermediate model

ignores the fact the SBEN can already perform

classification directly. To avoid losing such infor-

mation and to fully exploit the model’s predictive

ability, we adapt the back-propagation algorithm

for training MLP’s to operate on the SBEN, which

we shall call ensemble back-propagation since

the fine-tuning method propagates error deriva-

tives down the network from many points of entry.

Ensemble back-propagation is described in Algo-

rithm 1.

With this second online training step, the

Bottom-Up-Top-Down (BUTD) training algorithm

for fully training an SBEN proceeds with a sin-

gle bottom-up modification step followed by a

single top-down joint fine-tuning step using the

ensemble back-propagation procedure defined in

Algorithm 1 for each training time step. A full

top-down phase can consist of up to two calls to

the ensemble back-propagation procedure. One

is used to jointly modify the SBEN’s parame-

ters with respect to the sample taken from Dtrain.

A second one is potentially needed to tune pa-

rameters with respect to the sample drawn from

Dunlab. For the unlabeled sample, if the high-

est class probability assigned by the SBEN (us-

ing Equation 9) is greater than a pre-set threshold

(i.e., max[pensemble(y|u)] > p̄), a pseudo-label is

created for that sample by converting the model’s

mean vector to a 1-hot encoding. The probability

threshold p̄ for the potential second call to the en-

semble back-propagation routine allows us to in-

corporate a tunable form of pseudo-labeling (Lee,

2013) into the Bottom-Up-Top-Down learning al-

gorithm.

The high-level view of the BUTD learning algo-

rithm is depicted in Algorithm 2.

4 Experimental Results

We investigate the viability of our deep hybrid ar-

chitecture for semi-supervised text categorization.

Model performance was evaluated on the WebKB

data-set 1 and a small-scale version of the 20News-

Group data-set 2.

The original WebKB collection contains pages

from a variety of universities (Cornell, Texas,

Washington, and Wisconsin as well as miscella-

neous pages from others). The 4-class classifica-

tion problem we defined using this data-set was

to determine if a web-page could be identified as

one belonging to a Student, Faculty, Course, or

a Project, yielding a subset of usable 4,199 sam-

ples. We applied simple pre-processing to the text,

namely stop-word removal and stemming, chose

to leverage only the k most frequently occurring

terms (this varied across the two experiments), and

binarized the document low-level representation

(only 1 page vector was discarded due to pres-

ence of 0 terms). The 20NewsGroup data-set, on

the other hand, contained 16242 total samples and

was already pre-processed, containing 100 terms,

binary-occurrence low-level representation, with

1The exact data-set we used can be found and downloaded
at http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

2The exact data-set we used can be found and downloaded
at http://www.cs.nyu.edu/r̃oweis/data.html.
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tags for the four top-most highest level domains

or meta-topics in the newsgroups array.

For both data-sets, we evaluated model gen-

eralization performance using a stratified 5-fold

cross-validation (CV) scheme. For each possible

train/test split, we automatically partitioned the

training fold into separate labeled, unlabeled, and

validation subsets using stratified random sam-

pling without replacement. Generalization perfor-

mance was evaluated by estimating classification

error, average precision, average recall, and av-

erage F-Measure, where F-Measure was chosen

to be the harmonic mean of precision and recall,

F1 = 2(precision · recall)/(precision + recall).

4.1 Model Designs

We evaluated the BUTD version of our model,

the 3-SBEN,BUTD, as described in Algorithm 2.

For simplicity, the number of latent variables at

each level of the SBEN was held equal to the di-

mensionality of the data (i.e., a complete repre-

sentation). We compared this model trained with

BUTD against a version utilizing only the bottom-

up phase (3-SBEN,BU) as in Ororbia et al. (2015).

Both SBEN models contained 3 layers of latent

variables.

We compared against an array of baseline clas-

sifiers. We used our implementation of an incre-

mental version of Maximum Entropy, or MaxEnt-

ST (which, as explained in Sarikaya et al., 2014,

is equivalent to a softmax classifier). Further-

more, we used our implementation of the Pega-

sos algorithm (SVM-ST) (Shalev-Shwartz et al.,

2011) which was extended to follow a proper

multi-class scheme (Crammer and Singer, 2002).

This is the online formulation of the SVM, trained

via sub-gradient descent on the primal objective

followed by a projection step (for simplicity, we

opted to using a linear-kernel). Additionally, we

implemented a semi-supervised Bernoulli Naive

Bayes classifier (NB-EM) trained via Expectation-

Maximization as in (Nigam et al., 1999). We

also compared our model against the HRBM

(Larochelle and Bengio, 2008) (effectively a sin-

gle layer SBEN), which serves as a powerful, non-

linear shallow classifier in of itself, as well as a

3-layer sparse deep Rectifier Network (Glorot et

al., 2011a), or Rect, composed of leaky rectifier

units.

All shallow classifiers (except NB-EM and the

HRBM) were extended to the semi-supervised set-
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Figure 2: Mean CV generalization performance as

a function of labeled sample subset size (using 200

features).

ting by leveraging a simple self-training scheme in

order to learn from unlabeled data samples. The

self-training scheme entailed using a classifier’s

estimate of p(y|u) for an unlabeled sample and,

if max[p(y|u)] > p̄, we created a 1-hot proxy

encoding using the argmax of model’s predictor,

where p̄ is a threshold meta-parameter. Since we

found this simple pseudo-labeling approach, sim-

ilar in spirit to (Lee, 2013), to improve the results

for all classifiers, and thus we report all results uti-

lizing this scheme. 3 All classes of models (SBEN,

HRBM, Rect, SVM-ST, MaxEnt-ST, NB-ST) were

subject to the same model selection procedure de-

scribed in the next section.

4.2 Model Selection

Model selection was conducted using a paral-

lelized multi-setting scheme, where a configura-

tion file for each model was specified, describing

a set of hyper-parameter combinations to explore

(this is akin to a course-grained grid search, where

the points of model evaluation are set manually a

priori). For the SBEN’s, we varied the learning

rate ([0.01, 0.25]) and β coefficient ([0.1, 1.0]) and

3All model implementations were computationally veri-
fied for correctness when applicable. Since most discrim-
inative objectives followed a gradient descent optimization
scheme and could be realized in an automatic differentiation
framework, we checked gradient validity via finite difference
approximation.
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Table 1: WEBKB categorization results on 1% of the training data labeled (8 examples per class), rest

unlabeled (i.e., 5-fold means with standard error of the mean, 250 features).

Error Precision Recall F1-Score

NB-EM 0.369± 0.039 0.684± 0.022 0.680± 0.028 0.625± 0.043
MaxEnt-ST 0.402± 0.026 0.623± 0.025 0.593± 0.015 0.583± 0.020
SVM-ST 0.342± 0.020 0.663± 0.010 0.665± 0.014 0.644± 0.015
HRBM 0.252± 0.023 0.740± 0.019 0.765± 0.016 0.741± 0.021
3-Rect 0.328± 0.020 0.673± 0.017 0.680± 0.021 0.654± 0.023
3-SBEN,BU 0.239± 0.015 0.754± 0.014 0.780± 0.016 0.754± 0.015
3-SBEN,BUTD 0.210± 0.011 0.786± 0.009 0.784± 0.014 0.777± 0.012

Table 2: 20NewsGroup data-set categorization results on 1% of the training data labeled (8 examples per

class), rest unlabeled (i.e., 5-fold means with standard error of the mean).

Error Precision Recall F1-Score

NB-EM 0.275± 0.006 0.7176± 0.010 0.6685± 0.010 0.6697± 0.010
MaxEnt-ST 0.335± 0.005 0.643± 0.007 0.643± 0.007 0.639± 0.007
SVM-ST 0.346± 0.008 0.669± 0.016 0.644± 0.012 0.634± 0.011
HRBM 0.284± 0.006 0.706± 0.012 0.699± 0.009 0.696± 0.008
3-Rect 0.318± 0.009 0.661± 0.011 0.661± 0.012 0.657± 0.011
3-SBEN,BU 0.270± 0.006 0.715± 0.009 0.714± 0.009 0.710± 0.007
3-SBEN,BUTD 0.256± 0.007 0.732± 0.005 0.727± 0.006 0.725± 0.006

experimented with stochastic and mean-field ver-

sions of the models 4 (we found that mean-field did

slightly better for this experiment and thus report

the performance of this model in this paper). The

HRBM’s meta-parameters were tuned using a sim-

ilar set-up to (Larochelle et al., 2012) with learn-

ing rate varied in ([0.01, 0.25]), α in ([0.1, 0.5]),
and β in ({0.01, 0.1}). For the SVM-ST algo-

rithm, we tuned its slack variable λ, searching in

the interval [0.0001, 0.5], for MaxEnt-ST its learn-

ing rate in [0.0001, 0.1], and for p̄ of all models

(shallow and deep) that used pseudo-labeling we

searched the interval [0.1, 1.0]. All models of all

configurations were trained for a 10,000 iteration

sweep incrementally on the data and the model

state with lowest validation error for that partic-

ular run was used. The SBEN, HRBM, and Rect

models were also set to use a momentum term of

0.9 (linearly increased from 0.1 in the first 1000

training iterations) and the Rect model made use

of a small L1 regularization penalty to encourage

additional hidden sparsity. For a data-set like the

20NewsGroup, which contained a number of unla-

beled samples greater than training iterations, we

view our schema as simulating access to a data-

4Mean-field simply means no sampling steps were taken
after computing probability vectors, or “means” in any stage
of the computation.

stream, since all models had access to any given

unlabeled example only once during a training run.

4.3 Model Performance

We first conducted an experiment, using the We-

bKB data-set, exploring classification error as a

function of labeled data subset cardinality (Fig-

ure 2). In this setup, we repeated the strati-

fied cross-fold scheme for each possible labeled

data subset size, comparing the performance of

the SVM model against 3-SBEN,BU (blue dot-

ted curve) and 3-SBEN,BUTD (green dash-dotted

curve). We see that as the number of labeled ex-

amples increases (which entails greater human an-

notation effort) all models improve, nearly reach-

ing 90% accuracy. However, while the perfor-

mance difference between models becomes negli-

gible as the training set becomes more supervised,

as expected, it is in the less scarce regions of the

plot we are interested in. We see that for small

proportions, both variants of the SBEN outper-

form the SVM, and furthermore, the SBEN trained

via full BUTD can reach lower error, especially

for the most extreme scenario where only 8 la-

beled examples per class are available. We no-

tice a bump in the performance of BUTD as nearly

the whole training set becomes labeled and posit

that since the BUTD involves additional pseudo-
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Table 3: Top-most words that the SBEN (BUTD) model associates with the 4 NewsGroup meta-topics.

Meta-Topic Associated Terms

comp.* windows, graphics, card, driver, scsi, dos, files, display
rec.* players, hockey, season, nhl, team, league, baseball, games
sci.* orbit, shuttle, space, earth,mission, nasa,moon, doctor
talk.* jews, christian, religion, jesus, bible, war, israel, president

labeling steps (as in the top-down phase), there is

greater risk of reinforcing incorrect predictions in

the pseudo-joint 5 tuning of layerwise expert pa-

rameters. For text collections where most of the

data is labeled and unlabeled data is minimal, only

a simple bottom-up pass is needed to learn a good

hybrid model of the data.

The next set of experiments was conducted with

only 1% of the training sets labeled. We observe

(Tables 1 and 2) that our deep hybrid architec-

ture trained via BUTD outperforms all other mod-

els with respect to all performance metrics. While

the SBEN trained with simply an online bottom-up

performs significantly better than the SVM model,

we note a further reduction of error using our pro-

posed BUTD training procedure. The additional

top-down phase serves as a mechanism for uni-

fying the layer-wise experts, where error signals

for both labeled and pseudo-labeled examples in-

crease agreement among all model layer experts.

For the 20NewsGroup data-set, we conducted a

simple experiment to uncover some of the knowl-

edge acquired by our model with respect to the tar-

get categorization task. We applied the mechanism

from (Larochelle et al., 2012) to extract the vari-

ables that are most strongly associated with each

of the clamped target variables in the lowest layer

of a BUTD-trained SBEN. The top-scored terms

associated with each class variable are shown in

Table 3, using the 10 hidden nodes most highly

triggered by the clamped class node, in a model

trained on all of the 20NewsGroup data using a

model configuration determined from CV results

for the 20NewsGroup data-set reported in the pa-

per. Since the SBEN is a composition of layer-

wise experts each capable of classification, we

note that this procedure could be applied to each

level to uncover which unobserved variables are

most strongly associated with each class target.

We speculate that this could serve the basis for un-

5We use the phrase “pseudo-joint” to differentiate a model
that has all its parameters trained jointly from our own, where
only the top-down phase of BUTD introduces any form of
joint parameter modification.

covering the model’s underlying learnt hierarchy

of the data and be potentially used for knowledge

extraction, a subject for future work in analyzing

black box neural models such as our own.

5 Conclusions

We presented the Bottom-Up-Top-Down proce-

dure for training the Stacked Boltzmann Experts

Network, a hybrid architecture that balances both

discriminative and generative learning goals, in

the context of semi-supervised text categorization.

It combines a greedy, layer-wise bottom-up ap-

proach with a top-down fine-tuning method for

pseudo-joint modification of parameters.

Models were evaluated using two text corpora:

WebKB and 20NewsGroup. We compared re-

sults against several baseline models and found

that our hybrid architecture outperformed the oth-

ers in all settings investigated. We found that

the SBEN, especially when trained with the full

Bottom-Up-Top-Down learning procedure could

in some cases improve classification error by as

much 39% over the Pegasos SVM, and nearly 17%
over the HRBM, especially when data is in very

limited supply. While we were able to demon-

strate the viability of our hybrid model when using

only simple surface statistics of text, future work

shall include application of our models to more

semantic-oriented representations, such as those

leveraged in building log-linear language models

(Mikolov et al., 2013).
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