Cognitive Network Management and Control with
Significantly Reduced State Sensing

Arman Rezaee, Student Member, Vincent W.S. Chan, Life Fellow IEEE, Fellow OSA
Claude E. Shannon Communication and Network Group, RLE
Massachusetts Institute of Technology, Cambridge MA, USA
Emails: {armanr, chan}@mit.edu

Abstract—Future networks have to accommodate an increase
of 3-4 orders of magnitude in data rates with very heterogeneous
session sizes and sometimes with strict time deadline require-
ments. The dynamic nature of scheduling of large transactions
and the need for rapid actions by the Network Management
and Control (NMC) system, require timely collection of network
state information. Rough estimates of the size of detailed net-
work states suggest large volumes of data with refresh rates
commensurate with the coherence time of the states (can be
as fast as 100 ms), resulting in huge burden and cost for the
network transport (~300 Gbps/link) and computation resources.
Thus, judicious sampling of network states is necessary for
a cost-effective network management system. In this paper,
we consider a construct of an NMC system where sensing
and routing decisions are made with cognitive understanding
of the network states and short-term behavior of exogenous
offered traffic. We have studied a small but realistic example
of adaptive monitoring based on significant sampling techniques.
This technique balances the need for accurate and updated state
information against the updating cost and provides an algorithm
that yields near optimum performance with significantly reduced
burden of sampling, transport and computation. We show that
our adaptive monitoring system can reduce the NMC overhead
by a factor of 100 in one example. The essential spirit of the
cognitive NMC is that it collects network states ONLY when
they matter to the network performance.

I. INTRODUCTION

We are in the midst of a major technological storm that
will change the landscape of networking for years to come.
According to Cisco, IP video traffic will be 82 percent of
all 1P traffic by 2021, up from 73 percent in 2016 [1], [2].
The same reports forecast live video to grow 15-fold while
virtual reality and augmented reality traffic will increase 20-
fold in the same period. The bursty and dynamic nature of the
traffic generated by these applications require quick (100 ms-
1s) network adaptation to maintain quality of service and
experience [3]. Unfortunately, current Network Management
and Control (NMC) systems are much too slow and their
operational paradigm does not scale well with network size
and traffic intensity.

To illustrate the efficacy of our cognitive management
approach, we will use an example that primarily focuses on
challenges involved with ‘shortest path’ routing in dynamic
networks. In this context, an NMC system has to monitor the
state of queues throughout the network to decide which path(s)

This work is sponsored by NSF NeTS program, Grant No. #6936827 and the
HKUST/MIT programs.

should be used to connect different origin-destination (OD)
pairs. In practice, various shortest path algorithms (Bellman-
Ford, Dijkstra, etc.) are used to identify the optimal shortest
path. The correctness of these algorithms requires the assump-
tion that after some period of time the system will settle
into its steady state. We refer interested readers to [4] for a
thorough explanation of these issues. With the dynamic nature
of current and future networks, the steady state assumption is
particularly not valid, nonetheless the basic functional unit of
these algorithms can be adapted to address the new challenges.
Shortest path routing algorithms assign a length/weight to
each link of the network; this length is usually a proxy for
traffic congestion on the link but can also incorporate other
factors. Depending on the specific implementation, the length
may depend on the number of packets waiting in the queue,
loading of the output line, or the average packet delay on
the link during a pre-specified amount of time. Neighboring
nodes exchange their estimated shortest distances to all other
nodes periodically and new information will be disseminated
throughout the network after a few rounds of exchanges.
Suppose the routing table for each node contains the
available paths to each destination and the latest estimates
of their lengths, as shown in Table I. Given this table, a
node can identify the shortest path to all destinations, but
more importantly it can use the relative difference between
the length of the shortest path and that of other paths to
determine the likelihood that the identity of the shortest path
changes in the near future. As a result, as opposed to

Table I: Partial routing table maintained by node A

Path
B—-C—-D-—Y
E—-F—>G-—>Y

H—>I->Y
J—>K—>Z
L—>M—Z
N—-O—P—7Z

Destination

Y

Length

O 3 K00 W N

updating the whole table at a minimum rate required for all
dynamic situations, each entry of the routing table will be
updated only when it can be of significant value to the optimal
operation of the network. It is in this sense that we refer
to our technique as significant sampling. To illustrate this
principle, we will focus primarily on a simplified model where
an OD pair is connected via exactly two independent paths
with time varying lengths/weights. Within this framework, we

develop an adaptive monitoring system that determines the
value of updating the length/weight of a given path as well
the cost associated with the updating process. This allows
the NMC system to optimally allocate its resources to collect
and disseminate information regarding the state of network
elements according to their importance.

The rest of the paper is organized as follows: Section II
introduces the general stochastic model and establishes the
framework through which the monitoring process is optimized.
Section III-A assumes a Wiener process as the end-to-end
delay process and evaluates the benefits and shortcomings
of this model. Section III-B applies the framework to the
much richer Ornstein-Uhlenbeck process. Section IV extends
the results to general networks. A summary and concluding
remarks are provided in Section V.

II. PROBLEM SETUP — GENERAL MODEL

Suppose that an OD pair is connected via two independent
paths P, and P, as illustrated in Figure 1, and denote the
stochastically evolving weight of P; by X;(t). !

P1: Xq(t)

P2: Xo(t)
Figure 1: An OD pair with two independent paths.

Let us use X(t) to denote the stochastic process that
results from subtracting the weights of the two paths, i.e.,
X(t) = Xo(t) — X1(t). Clearly, continuous optimal routing
can be achieved if we know whether or not X (t) < Xs(t).
This is equivalent to knowing the sign of X (¢) for all ¢.
Since continuous monitoring of X () is far from cost effective,
our aim is to identify a strategy that specifies the best future
updating times based on the last observed value of X (¢). More
concretely, consider a sample function of X (¢) as shown in
Figure 2. Given X (¢¢), (i.e., the state of both elements at time
to), we would like to identify the next epoch ¢; for updating
our routing tables. When the value of the function at ¢, i.e.
X(t1), is realized, we will use it to determine the following
updating time ¢5 and so forth. Notice that 7;’s and X (¢;)’s are
the fundamental random variables defined recursively as

T; = f(X(ti71)>

Between two updating epochs ¢;—; and t;, the process
X (t) will evolve according to an underlying stochastic model.
Recall that P is the optimal route if X (¢) > 0 and P, is the
optimal route if X (¢) < 0. So the communicating OD pair
will experience an excess cost if the process X (t) changes
sign between two sampling epochs and the transmission route
is not adapted. Let us use C[;,_, 4, to denote the cost of
such errors during [t;—1,t;]. Without loss of generality, assume

and ti = ti,1 + T‘z

Ix; (t) can be the rate of transmission (messages/s) times the expected
delay/message on P;, which would give it units of delay/s.

X(t) X o(tn)
X(to) !
Q \ i i
1 1 i i 1 | t
to t £ tho1 tn T
+—r > >
T T T,

Figure 2: Illustration of n samples taken during a period 7.

X (t;—1) > 0 and suppose that the OD pair uses P; as the route
during [t;—1,t;]. Then the cost of error during this period is
simply the integral of X (¢) after the process experienced a
sign change

t;
C[tiflyti} = _/f X_<t) dzx
bi—1

where X ~(t) is the negative part of the function defined as
X7(t) = (X(t) — |X(t)])/2. When the stochastic nature of
the underlying process is known, a distribution is induced
over possible sample paths of X (t), and we can use this
distribution to compute the expected cost of error during this
period, denoted by E [C[ti—hti]]'

We shall now introduce the notion of updating cost to
capture the efforts required to collect and disseminate state
information throughout the network so that all routing tables
are up-to-date. Google Maps offers a great example of various
costs associated with such efforts, as the system gathers
congestion information from individual drivers on the road.
The GPS-enabled device will incur a data transmission cost by
using the wireless services, and will drain its battery as a result
of the required computation and communication. Furthermore,
there is a cost associated with reporting the latest congestion
information to all drivers. In general, the updating cost may
vary over time and can differ for various network elements, but
for simplicity we will use a single figure of merit, ¢, to account
for the cost. This is a caftchall quantity that should represent
the costs associated with collection and dissemination of the
routing information across the whole network. If we update the
routing tables by sampling the process n times during [0, 7], as
shown in Figure 2, then the expected total cost Crytq; resulting
from sampling and unintended errors is

n
E|Crota] = D (¢+E[Cuy) +E [Clrpirl
i=1

For a given time horizon [0, 7], an optimal offline sampling
strategy will identify the optimal number of samples and their
corresponding epochs to minimize the expected total cost.
Alternatively, we may choose to minimize the cost per unit
time for an infinite time horizon. These possible approaches
can be summarized as

argmin
n{t1 < <tn <7}

E {CTotal}

. . E |:CTotal]
or argmin lim ——=
n{t1 < <tn <7} TP T

The aforementioned formulations are not as useful in prac-
tice because routing and updating decisions should be made
in real-time. In other words, an NMC is interested in making
routing and sampling decisions for the immediate future and
cannot afford to plan too far into the future. Let us use
Clt,_, ;) (x) to denote the cost of error during [t;_1,;] given
that X (¢;—1) = . Then the most informative formulation

computes the optimal updating period T,; as

. c+E|Cy, 1z
T, (x) = argmin [Clter ()]
T;>0 T;
Furthermore, if X (¢) is Markovian, then the
distribution of its trajectory is only a function of

its last observed value. Hence, for Markov processes
E[Clit,4-(2)] =E[Clo-(z)]. As a result, for such
processes we can treat every sampled value as if it had
occurred at time zero. Using Cp(x) as a shorthand for
Clo,r)(), we can rewrite our optimization as

. +E|C
T, (x) = argmin M
>0 T

6]

This concludes our discussion of the general setting of
the problem and the relevant optimization formulations. The
following section focuses on appropriate delay models.

III. DELAY MODELS

Queues constitute one of the basic building blocks of a
communication network and have been extensively studied
for decades [5]. While queuing theory has provided immense
insight into the operation of data networks, it has struggled
in providing tractable expressions that deal with transient
behavior of queues (which is of immense importance to us!).
Referring to the transient behavior of an M/M/1 queue,
Kleinrock notes: “This last expression is disheartening. What
it has to say is that an appropriate model for the simplest
interesting queueing system [i.e. the M /M /1 queue] leads to
an ugly expression for the time-dependent behavior of its state
probabilities” [5]. Hence, we advocate an approach whereby
operational insights can be provided through judiciously cho-
sen alternative models which lend themselves to easier analysis
and can be insightful as engineering guidelines for the design
of future networks. Desirable transient models of delay in data
networks should have the following characteristics:

« Stability - the stochastic model of delay should be stable
so that linear combination of two or more such processes
will remain in the same family of distributions.

o Stochasticity - capture the rise in uncertainty about state
of the network as more time passes from last observation.

o Simplicity - provide a formulation that is amenable to
analysis and/or numerical computation.

It is often beneficial to approximate the process with an ap-
propriate diffusion process. The inherent structure of diffusion

processes makes it easier to avoid some of the combinatorial
challenges involved in the original problem. The following two
sections describe two such models of delay.

A. Wiener Process

Numerous successful attempts have been made at modeling
queuing delay as a Wiener process. Most notably, it has
been shown that the normalized queue length in heavy traffic
(i.e., as p — 1) can be approximated by a one-dimensional
reflected Wiener process, also known as the reflected Brownian
motion [6], [7]. Modeling the waiting time of customers as
a Wiener process satisfies our modeling criteria because 1)
Wiener process is stable, hence the waiting time of customers
in cascaded series of independent links would itself be a
Wiener process, 2) uncertainty in the realization of a sample
path of a Wiener process grows with time.

We shall define and note a few properties of the Wiener
process and refer the interested reader to [8] for a thorough
investigation of general properties of the Wiener process.

Definition 1. A real valued stochastic process {W (t) : t > 0}
is a Wiener process with a start at x € R if the following hold:
« W(0)==x
o the process has independent increments.
e forallt > 0 and h > 0, the increments W (t+h) — W (t)
are normally distributed with zero mean and variance h.
o the function W (t) is continuous almost surely.

Lemma 1. A Wiener process {W(t) : t > 0} with a start at
0, has following pdf and cdf functions

1 —x2
fW(t)(iE) \/TMGXP<%>

1 T
where erf(f) = % Jo e~ dz.

Recall that we used X (¢) to denote the stochastic process
that results from subtracting the weights of the two paths, i.e.
X(t) = Xo(t) — X1(t). If each X;(¢) is approximated as an
independent Wiener process, we can see that X (¢) is another
Wiener process with a start at X (0) = X5(0) — X;(0) and a
variance equal to the sum of the variances of the two processes.
Without loss of generality, suppose that X (¢) has a variance
of ot for some o € R, and assume that X (0) = = > 0. This
is equivalent to assuming X (¢) = x + aW(t). As before, we
will assume that the OD pair uses P; as the shortest route
until the next update time at ¢;. Noting that Wiener process
is Markovian and using Cr(z) as a shorthand for Cjo 7)(2),
we can see that routing through P; for 7" seconds will incur
the following cost of error

T T
Cr(x) —/0 X—(1) dx:—/o min {X(£), 0} dt

T j—
= —xT—a/ min{W(t),x} dt
0 «

with an expected value of

—2T — a/OTE [min {W(t), j}] dt

Since =/« is a constant and is independent of W (t), we can
compute the distribution of the minimum as

Pr{min{W(t),_(f} < x} _ { fwm(ﬂf)

Hence,

E {CT@)} =

for z < =*
for z > =*

Putting it all together we have
VT (2Ta? + 2?) (22)
exp | —
3o/ 2m P\ "2a27

orfe T xT " x3
T A T (e T
aVv2T) | 2 602

which can be used with Eq. (1), as restated below, to get the
optimal sampling period

E [OT(J;)} =

T, (z) = argmin M
T>0 T
Interestingly, the shortest possible sampling period can be
computed by noting that E[Cr(z)] is strictly decreasing in x,
and thus for any 7" > 0 the expected cost of error is minimized
at z = 0. Solving the first order optimality condition gives us

187¢2\
062

win} (0) =17 0) = @
This is an important quantity as it constitutes a maximum up-
dating frequency for all “fixed-period” (i.e. uniform) updating
strategies. In other words, if the NMC updates occur any faster,
the cost of updates will be larger than the potential gains from
identifying the optimal route. Furthermore, Eq. (2) shows that
increasing the updating cost ¢ by a factor of ~ reduces the
frequency of updates (i.e. 1/7}) by a factor of v%/3; while
increasing parameter « has the inverse of that effect.

Noting the complexity of the general optimization, let us
use a simple first order method to approximate the optimal
updating period 7} . Furthermore, to simplify our notation, we
will assume that v = 1 in the remainder of this section.

VT (2T + 2?) exp (—%)
3v2r

- () [£+3]

o (c+E[Cr()|a=1]) _
aT T -

E[Cr(z)|la=1] =

hence,

10

\,\ 60 80
-5
-10 VI/\

-15

100]%%‘ 140

Figure 3: Sample path of a Wiener process, and associated
samples for ¢ = 1.

which can be solved numerically to obtain the optimal Tf
for any given z. It can be shown that solving Eq. (3) is
approximately equal to solving the following equation for T’

3
22 = Th L
187c?

Figures 3 depicts a sample path of X (¢t) = 1+ W(¢) (i.e.
X (0) =1 and a = 1). Red vertical lines are drawn to specify
the updating epochs as computed numerically according to
Eq. (3) for a sampling cost of ¢ = 1. Notice that we should
update more frequently when the process is close to zero. This
is because when X (t) = 0 the delay on both paths are very
similar and any small perturbation can change the identity
of the shortest path. Much more insight can be gained from
Figure 3, but for brevity and to avoid repetition we’ll postpone
this discussion to Section III-B.

B. Ornstein-Uhlenbeck Process

The Wiener process, W (t), discussed in Section III-A
lacks stationarity and rapidly wanders to infinity. The absence
of stationarity makes it impossible to reason about long-
term average behavior of our algorithm. To address this
deficiency, we will leverage the heavy-traffic results of Halfin
and Whitt [7], which show that when service times are expo-
nentially distributed, the sequence of appropriately normalized
queue lengths will converge to the Ornstein-Uhlenbeck (OU)
process. It is well known that the OU process is the only non-
trivial process that is simultaneously Gaussian, Markov, and
stationary; all of which are ideal for our purposes. Ornstein-
Uhlenbeck process is the continuous time analogue of the
discrete time auto-regressive AR(1) process and satisfies the
following stochastic differential equation:

dX (1) = 0(u — X (1)) dt + o dW (1)

where o > 0 is the standard deviation of the process and
W (t) denotes a standard Wiener process. Parameter y is the
long-term mean of the process, and 6 > 0 signifies the mean-
reversion speed. Parameter § may seem obscure at first glance,
and the reader may wonder which network characteristic is
captured by this parameter. To answer this question, note that

many mechanisms are employed to steer the network towards
a desirable stable state. As an example, consider the role
of congestion control in TCP, which regulates the rate of
packet transmission to achieve a high level of link utilization
while maintaining fairness and low delay. The magnitude of 0
roughly captures the strength and speed of such mechanisms
and the behavior of exogenous traffic. We should note that
linear combination of independent OU processes with the
same 6 results in another OU process with the same 6, while
variance and long-term mean parameters would be added in a
linear fashion.

Let us suppose that weights of paths P, and P, can be
approximated by independent OU processes with the same 6;
then X (t) = Xo(t) — X1(t) is another OU process. A full
treatment of the general OU process is possible but due to
length limitations and to simplify our notation we shall focus
on the case where the difference process, X (t), has a long-
term mean of p = 0. This corresponds to the case where
the long-term mean delays of both paths are similar/equal.
Without loss of generality suppose X (0) = = > 0 and assume
that the OD pair use P; as the optimal route until the first
update epoch at 7. Then the solution to the aforementioned
stochastic differential equation can be written recursively as

t
X(t) = ze %4 a/ e 0t=9) qw,
0
which can be represented (conditioned on X (0) = x) via a

time-scaled Wiener process as
—6t
oe
X(t) = we ¥4 —
V20
As a result, the cost of error associated with mis-identifying
the shortest path during this period can be computed as

w (62915 _ 1)

11 T
Cr(z) = —/ X’(t)dx:—/ min {X(£), 0} dt
0 0
oz (e*QT — 1)
= 7
T -0t
o¢c
i W (e** —1),— e_et} dt
Anm{¢w (1), o
and

— /T min { 7 "y (e* —1) —a;e—“} dt
0 V20 ’

R /e”Tl min {W(y), %\/ﬁ}
0

- 3 3 d 4
20)! aipt @@

I /62”—1 min {W (y), h})
(20)% Jo (1+y)2

Equation (4) is the result of a simple change of variable

for y = e?’* — 1, and (5) simplifies the notation by defining
h= —x\/@/cr. Hence,
z (e T -1
o / E [min {W (). 1},
(20)% Jo (1+y)%

Using the same process used in Section III-A to compute the

expectation, we obtain
E {mln {W(y)JLH = _Ee(2) + B erfc (\/@>

which simplifies the expected cost of error to

z (e T -1
o207 _ 1 9
o VY 0x
+ —7 —exp|—5) d
40V 0r /0 (1+1y)2 P (yo*2) Y
o207 _q
T 1 Ox
+ = ———erfc | ——— | dy
40 Jo (14+y)z (?J(’)

It comes as no surprise that E[Cp(z)] is the central quantity
that dictates the behavior of the system, yet it presents a
formidable challenge to intuition. Fortunately, E[Cr ()] lends
itself to a piecewise linear approximation that sheds light on
its behavior. Let us start by evaluating E[C(z)] when z = 0,

o <ln (eeT +/e20T _1> iz e—20T)
20V/0n

despite the relative simplicity of this expression, we cannot
find an analytic solution to the following objective function,

. E|(C7(0
T, (0) = argmin w
T>0 T

E[Cr(0)] =

to obtain the first order optimality condition, let us differentiate
the aforementioned expression and expand it as a Taylor series,

O (cHE[CrO]) _ e o
or T T 3V2rVT
setting the sum of the first two terms equal to zero gives us,

1872\
0-2

o(T)

70~ (

incidentally, this expression is identical to Eq. (2) which
captured the shortest sampling period of a Wiener process.
This should not be surprising because at z = 0, the OU process
is not experiencing any mean reversion and is effectively
indistinguishable from a Wiener process.

The aforementioned result can be used to create a piecewise
linear approximation to E[C7(0)]. We can avoid the need for
an excessive number of linear segments by noting that we are
only interested in the behavior of the function near 7} (0), and
thus the simplest such approximation can be stated as

0 for T € [0,7T"]
E S . :
[Cr(O)] { m(T—T") forT>T
where m = am[g;(o)] = v 1279;2”* and T° =Ty (0).
T=T" "

To generalize our results to non-zero values of z, note that

IE [CT* (x)])

]E[C’T* (m)] ~~ E[C’T* (O)] +x (o

where .
e T 1

20

OE [Cp~ ()]
Ox

=0

Note that E[Cr(x)] is a non-negative quantity, and is
decreasing in z. As a result, we only need to consider the
effects of x on the non-zero portion of the approximation, and
find its corresponding interception point with the horizontal
axis. Putting it all together we have:

~ 0 fI‘TG[O,f(x)]
E[CT(:E)} ~ { m(T— f(:c)) fgr T> f(x)

*

where f(z) =T + Lw*gx

\/1—e—20T

This approximation éhgws that the initial routing decision
will remain correct for approximately f(x) seconds; con-
sequently the expected cost of error during this period is
approximately 0. As we pass the threshold of f(z) seconds,
it becomes likely that the originally selected path is no longer
optimal and routing erroneously through it will incur a cost
of m units per second. Continuing with our approximation,

c+Eler@)] [7 for T € [0, /(x)]
T m+iﬂx) for T > f(x)

T

The approximate cost rate function shows that if the update
epoch T occurs at or before f(x), we will only incur the
updating cost ¢, amounting to a cost rate of ¢/T. However, if
the updating epoch occurs after f(z), then the cost includes the
updating cost ¢, as well as the cost of error which accrues at
a rate of m units per second. Mathematically speaking, when
T € [0, f(z)], the objective function is decreasing with 7" and
reaches its minimum at 7' = f(x). On the other hand, when
T > f(x), an increase or decrease in the objective function
depends on the sign of ¢—m f(x). If this expression is greater
than zero, it will reach its infimum at infinity; otherwise the
minimum will occur at T = f(z). Putting it all together we
have

fl@) if c<mf(x)

. c+E [CT(x)]
argmin —————= ~ ¢ else

T>0 T

This gives us a clear description of the approximate al-
gorithm: if the cost of updating routing information is small
enough, i.e., if ¢ < mf(x), then we should update the routing
tables by sampling the process at T' = f(x). Otherwise, the
cost of updating is too large and we should continue our
previous routing decisions without any new samples.

As a result, if we constrain ourselves to cases were the
updating cost ¢ < mf(x), we get a simple expression for the
time until the next updating epoch, 7', as a function of the last
observed value of the process, x, namely

VT
———X
/1 _ e—20T" b
Figures 4 depicts a sample path of an OU process with o =
0.5, = 0.025 and an initial value of X (0) = 1. Red vertical

1— 670T*

Ty (z) =T + (6)

Figure 4: Sample path of an OU process with o = 0.5,0 =
0.025,29 = 1,¢=0.1.

lines are drawn to specify the updating epochs as suggested
by our algorithm and the red dots denote the sampled values
of the function. Notice that when the process is far from zero,
indicating that the delay of one of the paths is significantly
less than the other, we do not need to sample their weights
frequently. This matches our intuition because in this scenario
it is unlikely for the shorter/better path to get worse than the
second path in a short period of time. On the other hand,
when the process is close to zero, indicating that the weight of
both paths are very similar, we require more frequent samples.
The varying frequency of updates is revealed via the changing
density of the vertical red lines in the figure.

We should additionally note that the shortest updating
period occurs when the two paths have identical weights,
ie., * = 0. This corresponds to an updating period of
Ty (0) = (18mc? /02)1/ ®. Comparing our adaptive updating
method to a uniform one that samples at this rate, we see
a gain of

E [T} (z)] _ Ty (2) fix () (x) da
Ty (0) Ty (0)

where fix ()| (z) denotes the pdf of the (one-sided) OU
process. Recalling that the OU process is Gaussian we have

/| 0 22
f\X(t)\(I) = 2 71_0_26Xp<0_x2> fOI':I?ZO

After some algebra we get

G =

G

1 1—e T 1
14— 7

T /1 _ e—20T" 0+/0
1 on\13 /1 \YS
50" (i
* 0 \c (1447r>
where the approximation is accurate when 67" is small.
Note that the gain is inversely proportional to 6, and
as such it improves unboundedly as 6 goes to zero. This
is due to the fact that 6 represents the strength of mean-
reversion for this process (and is inversely proportional to the
coherence time of the process). As a result, when 6 is small the

process is not strongly attracted to its long-term mean, which
significantly reduces the chances of crossing the horizontal

%

100 T R RN

Gain

0.05 0.1 0.5 1 5
6

Figure 5: Gain of our adaptive sampling strategy (¢ = 1).

axis. For processes with small #, our adaptive algorithm
will automatically adopt a lower sampling rate resulting in
a significant reduction in sampling and updating costs. This
makes sense since processes with long coherence time are very
predictable and do not require much sampling. The gain will
also increase, though at a lower rate, when o increases, which
amplifies the wandering behavior of the process. Figure 5
depicts the gain as computed by Eq. (7).

IV. GENERALIZATIONS TO LARGE NETWORKS

Our analysis has so far focused on a single OD pair with
two independent paths. In this section we will show that the
basic operation can be extended to general networks. Recall
that the shortest path can be identified through a sequence
of pairwise comparisons of available paths. Furthermore, the
length of each path can be updated at a time determined by
our algorithm. To see the operation of such a system, let us
augment the routing table of I with an additional column to
track the variance of delay on each path, as shown in Table II.

Table II: Partial routing table maintained by node A

Destination Path Length | Variance
v B—-C—-D—=Y 2 4
E—-F—>G=Y 3 5
H—-I1-Y 8 1
7 J=+K—=Z 4 2
L—-M—2Z 7 4
N—-O—=P—=Z 9 7

Given the routing table in Table II, node A can query nodes
B and E, which are the first hops on the two shortest paths to
node Y, about their respective distances to node Y according

NZ3

to our sampling formula
v, T (187rc2)
/1 _ e—20T" 0 o2
where t =3 —-2=1,0 =+/4+5 = 3, and 0 is a global
parameter that depends on network protocols and network size.

The same procedure can be used to compute the updating time
for all other paths. When a link is shared between multiple OD

ol

1—e 0T

pairs, the algorithm simply picks the smallest sampling time
from those computed for all OD pairs.

Not only is the proposed algorithm simple to understand and
implement, it also addresses an often-overlooked byproduct of
traditional routing protocols. It was shown in [9] that routing
updates can inadvertently become synchronized, causing insta-
bility as well as untimely and unmanageable bursts of traffic.
To address such issues, a whole host of ad-hoc randomization
procedures have been incorporated into commercial routers.
In contrast, our algorithm requires each node to independently
measure the variance of delay on each of its outgoing links.
Given the unique geographical location of each node within the
network and expected difference in their measurements, it is
unlikely for the routing updates to synchronize, thus avoiding
the need for explicit randomization procedures.

V. CONCLUSION

In this paper, we introduced a new algorithm that allows
us to capture the tradeoff between monitoring and optimal
operation of a network. We introduced the concept of sam-
pling/updating cost to capture the cost associated with the
collection and dissemination of routing information within a
network. We further studied two stochastic models of delay,
namely the Wiener process and the Ornstein-Uhlenbeck pro-
cess and showed that we can dynamically adjust the sampling
times of each link based on their instantaneous significance
to network management. The gain (as reduction in number
of samples) over the traditional uniform sampling was 100
in one example. We concluded our remarks by extending our
notions to general networks and suggest that a network can
be operated in a decentralized fashion at high performance
using significant sampling and reporting of its network states,
allowing the NMC system to be scalable. The essential spirit
of the cognitive NMC is that it collects network states ONLY
when they matter to the network performance.

REFERENCES

[1] “The zettabyte era: Trends and analysis,” June 2017. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index- vni/vni-hyperconnectivity- wp.html

[2] “Cisco vni: Forecast and methodology, 2016-2021,” June
2017. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index- vni/
complete-white-paper-c11-481360.html

[3] V. W. Chan and E. Jang, “Cognitive all-optical fiber network architecture,”
in Transparent Optical Networks (ICTON), 2017 19th International
Conference on. IEEE, 2017, pp. 1-4.

[4] D. Bertsekas and R. Gallager, Data Networks (Second Edition.).
Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

[5] L. Kleinrock, Queueing Systems Volume I: Theory. New York: John
Wiley & Sons, 1975, vol. 1.

[6] J.F. C.Kingman, “The single server queue in heavy traffic,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 57, no. 4, pp.
902-904, 1961.

[7]1 S. Halfin and W. Whitt, “Heavy-traffic limits for queues with many
exponential servers,” Operations research, vol. 29, no. 3, 1981.

[8] P. Morters and Y. Peres, Brownian motion. Cambridge University Press,
2010.

[9] S. Floyd and V. Jacobson, “The synchronization of periodic routing
messages,” IEEE/ACM transactions on networking, vol. 2, no. 2, pp. 122—
136, 1994.

Upper

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

	Introduction
	Problem Setup – General Model
	Delay Models
	Wiener Process
	Ornstein-Uhlenbeck Process

	Generalizations to Large Networks
	Conclusion
	References

