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Abstract—Real-Time Calculus (RTC) is a powerful framework
for modeling and worst-case performance analysis of networked
systems. GPC and AND are two fundamental components in
RTC, which model priority-based resource arbitration and syn-
chronization operations, respectively. In this paper, we revisit
GPC and AND. For GPC, we develop tighter output arrival
curves to more precisely characterize the output event streams.
For AND, we first identify a problem in the existing analysis
method that may lead to negative values in the output curves,
and present corrections to the problem. Then we generalize AND

to synchronize more than two input event streams. We implement
our new theoretical results and conduct experiments to evaluate
their performance. Experiment results show significant improve-
ment of our new methods in analysis precision and efficiency.

I. INTRODUCTION

Real-Time Calculus (RTC) [1], [2] is a theoretical frame-

work for performance analysis of networked embedded sys-

tems, which is rooted in the Network Calculus theory [3].

RTC uses variability characterization curves (called curves

for short) [4] to model workload and resource, and analyzes

workload flows through a network of processing and com-

munication resources to bound the worst-case performance of

the system. Comparing to the traditional real-time scheduling

theory, RTC uses much more general workload and resource

models, and thus can model a much wider range of realistic

systems. At the same time, its closed-form analytical bounds

also provide much higher analysis efficiency compared to

state-based modeling and analysis techniques such as model

checking [5], [6]. Due to these advantages, RTC has drawn

considerable attention from both academia and industry in

recent years, and has been successfully applied to solve many

realistic problems.

RTC uses different abstract components to model different

resource arbitration schemes or operational semantics. Two

fundamental abstract components in RTC are GPC [2] and

AND connector [4]. GPC (Greedy Processing Component)

essentially models priority-based resource arbitration among

multiple workload streams sharing the same hardware plat-

form. GPC is the most widely used building block in RTC

due to the universal use of fixed-priority scheduling in practice.

AND connector is another important component in RTC,

which models synchronization of events from two streams.

AND is widely used in many application domains such as

sensor networks and IoT, where the states of different parts

of the system with the same time stamp should be fused to

derive useful information about the system.

This paper makes a revisit to GPC and AND in RTC. We

present new results to fix problems in existing RTC theory,

improve the analysis precision as well as make it more general.

Due to the wide usage of GPC and AND, our new results are

significant to the whole RTC framework. More specifically,

we make the following contributions in the paper.

For GPC, we derive tighter output arrival curves to more

precisely bound the timing behavior of output event streams.

The original output arrival curves of GPC were developed

about 15 years ago [1], [2], as a major foundational result

of the RTC framework. Since then, no improvement has ever

been made, although it is widely known that these bounds are

not tight. This paper for the first time makes these bounds

tighter. The key idea is to utilize the remaining service curve

to refine the information about how much resource can be

actually consumed, and exclude the unused resource when

computing the output arrival curves.

For AND connector, we make contributions in two aspects:

• We identify and fix a problem in the existing analysis

method for AND in [4] that may lead to negative values

in the lower output curves. We present new lower output

curves to fix the problem.

• We generalize AND to support synchronization of more

than two input event streams. The original AND only has

two input ports. A straightforward way for the general-

ization is to model a multi-input AND as several dual-

input AND connectors cascaded together. However, this

straightforward generalization is both imprecise and inef-

ficient. We present a more elegant way to generalize AND

to multiple inputs, which outperforms the straightforward

generalization approach in terms of both precision and

efficiency.

Finally, we conduct experiments to evaluate our new results

in different aspects, with randomly generated system models

under different configurations. Experiment results show signif-

icant improvement of our new methods in analysis precision

and efficiency.



II. RELATED WORK

There has been previous efforts to improve the analysis

accuracy of the RTC theory. The first direction models the

system using a state-based model, such as timed automata [7]

or event count automata [5], which can then be analyzed using

standard verification techniques. These approaches can provide

tight bounds; however, as is with verification, they suffer from

the state explosion problem. To solve this efficiency issue,

prior work has developed interfacing techniques [8], [9] that

combine RTC with state-based approaches. Our improved RTC

analysis can be transparently integrated into these interfacing

techniques to analyze the RTC components, thus improving

their overall analysis results.

Beyond state-based approaches, the trajectorial approach

has been developed [10] to bound the end-to-end analysis of

distributed systems. This approach gives better accuracy than

RTC does, but its fixed point computation is also much more

expensive than RTC.

Within the RTC context, Bouillard [11] has developed a

tighter analysis for blind multiplexing and FIFO networks

using linear programming. Our work focuses on improving

the output bound of a single component (GPC and multi-input

AND), and thus it is orthogonal to the work in [11].

In [12], the analysis of AND was studied with the so-called

standard event models, which are special cases of the curves in

RTC. The analysis techniques in [12] cannot handle AND with

general curves as inputs. A hybrid framework was proposed

in [13] for analyzing real- time embedded systems combining

RTC and Timed Automata. In principle, the timed automata

component can be used to model synchronization operations.

However, this approach is still limited by the low efficiency

for model-checking the timed automata, although the state

space has already been significantly reduced comparing with

modeling the whole system with a timed automata network.

III. RTC BASICS

RTC models event stream flows through a network of

processing and communication resources by components con-

nected with their input and output ports. The workload and

resource are modeled by variability characterization curves

(curves for short) [4]. Each type of component models a

particular resource arbitrary policy or operational semantic,

supported by closed-form formula to transform the input

curves into the output curves, and the worst-case delay and

backlog bounds.

A. Arrival and Service Curves

RTC uses variability characterization curves (curves for

short) to describe timing properties of event streams and

available resource:

Definition 1 (Arrival Curve): Let R[s, t) denote the total

amount of requested capacity to process in time interval [s, t).
Then, the corresponding upper and lower arrival curves are

denoted as αu and αl, respectively, and satisfy:

∀s < t, αl(t− s) ≤ R[s, t) ≤ αu(t− s) (1)

where αu(0) = αl(0) = 0.

Definition 2 (Service Curve): Let C[s, t) denote the

amount of events that the resource can process in time

interval [s, t). Then, the corresponding upper and lower

service curves are denoted as βu and βl, respectively, and

satisfy:

∀s < t, βl(t− s) ≤ C[s, t) ≤ βu(t− s) (2)

where βu(0) = βl(0) = 0.

For simplicity of presentation, we use a curve pair f =
(fu, f l) to represent both the upper and lower curves.

B. GPC: Greedy Processing Component

A GPC processes events from input (described by arrival

curves αu and αl) in a greedy fashion, as long as it complies

with the availability of resources (described by service curves

βu and βl). Input events are backlogged in a FIFO buffer if

currently no resource is available. When the available resource

arrives, the first event in the buffer is processed and the

corresponding output event is generated (described by output

arrival curves α′u and α′l). If the buffer is empty, the resource

will be passed to the subsequent component (described by

remaining service curves β′u and β′l):

αu′

= min((αu⊗βu)�βl, βu) (3)

αl′ = min((αl�βu)⊗βl, βl) (4)

βu′

= (βu − αl)�0 (5)

βl′ = (βl − αu)⊗0 (6)

where

(f⊗g)(∆) , inf
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f⊗g)(∆) , sup
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f�g)(∆) , sup
λ≥0

{f(∆ + λ)− g(λ)}

(f�g)(∆) , inf
λ≥0

{f(∆ + λ)− g(λ)}

The amount of events in the input buffer, i.e., the backlog,

can be bounded by max(0, V (αu, βl)), where V (f, g) gives

the maximal vertical distance from curve f to curve g:

V (f, g) , max(0, sup
λ≥0

{f(λ)− g(λ)})

The delay of events can be bounded from above by H(αu, βl),
where H(f, g) gives the maximal horizontal distance from

curve f to curve g

H(f, g) , sup
λ≥0

{inf{ε ≥ 0 : f(λ) ≤ g(λ+ ε)}}

Multiple GPCs are connected into a network. The output

arrival and resource curves of one GPC are used as the input

for the analysis of the downstream nodes along the event and

resource flow.



(a) GPC (b) AND

Fig. 1. Schematic of GPC and AND.

C. AND Connector

Another useful abstract component is the AND connector

[4], which combines two input event streams into a single

combined stream. Data arriving on one input stream must be

buffered until partner events arrive on the other input stream.

Partnering events join together and immediately pass the AND

connector, and consequently either of the internal buffers is

empty at any point of time. The two input event streams are

characterized by arrival curves αu
1 , α

l
1 and αu

2 , α
l
2. In [4], the

following output curves αu
1,2 and αl

1,2 are used to upper and

lower bound the combined event streams at the output:

αu
1,2 =max(min(αu

1�αl
2 +B1 −B2, α

u
2 )),

min(αu
2�αl

1 +B2 −B1, α
u
1 )) (7)

αl
1,2 =max(min(αl

1�αu
2 +B1 −B2, α

l
2),

min(αl
2�αu

1 +B2 −B1, α
l
1)) (8)

where B1 and B2 denote the initial buffer levels of the two

input streams. Later in Section V, we will show that there is

a problem with the lower output bound in above, and also

present a correction for it.

The delay of events at two inputs is bounded by

d1 ≤ H(αu
1 +B1, α

l
2 +B2)

d2 ≤ H(αu
2 +B2, α

l
1 +B1)

and the backlog at the two input buffers are bounded by

b1 ≤ max(0, V (αu
1 +B1, α

l
2 +B2))

b2 ≤ max(0, V (αu
2 +B2, α

l
1 +B1))

IV. IMPROVING GPC

Our tighter output arrival curves are obtained by modeling

the operational semantics of GPC in a more subtle way.

In GPC, when the buffer is empty, the available resource

will not be consumed. Instead, it will be directly sent to the

output resource interface. In other words, only a portion of

the input resource is actually consumed to process the events.

If we classify the input resources into two types, (i) the input

resources that are actually consumed to process events and (ii)

the input resources that are not consumed, then eliminating all

the type (i) resources from the input resource stream will not

affect the timing behavior of output event stream.

Based on the above observation, we develop a new way to

model the semantics of GPC, as shown in Figure 2. Inside

the GPC, a controller classifies the input resources into the

above mentioned two types by checking whether the input

Fig. 2. A new model of the GPC semantics.

buffer is empty. If yes, the controller will send the resource to

output resource interface. Otherwise, the resource will be sent

to GPC’and perform the actual event processing functionality

of GPC, which is modeled by effective service curve:

Definition 3 (Effective Service Curve): Let E[s, t) denote

the amount of resource actually sent to GPC’ to process the

events in time interval [s, t), then the corresponding upper

and lower effective service curves are denoted as γu and γl,

respectively, and satisfy:

∀s < t, γl(t− s) ≤ E[s, t) ≤ γu(t− s) (9)

where γu(0) = γl(0) = 0.

It is easy to know the following lemma:

Lemma 1: Let C[s, t) denote the amount of available re-

source in time interval [s, t), C ′[s, t) denote the amount of

resource not used to process events in [s, t). Let E[s, t) denote

the amount of resource actually sent to GPC’ to process the

events in [s, t). For any time interval [s, t) it holds:

C[s, t) = E[s, t) + C ′[s, t)

Proof: Any available resource available in [s, t) is either

used to process the events (included in E[s, t)) or not (included

in C ′[s, t)).
By transferring this relation to the time interval domain, we

can compute γu by β and β′ as follows:

Lemma 2: For any time interval [s, t) with t − s = ∆,

E[s, t) is upper and lower bounded by

γu(∆) = inf
λ≥∆

{βu(λ)− β′l(λ)} (10)

γl(∆) = sup
0≤λ≤∆

{βl(λ)− β′u(λ)} (11)

Proof: We first prove (10). For any time interval [s −
ε1, t+ ε2) with ε1 ≥ 0 and ε2 ≥ 0, it holds E[s, t) ≤ E[s−
ε1, t+ ε2), so we have

E[s, t) = inf
ε1≥0∧ε2≥0

{E[s− ε1, t+ ε2)}

= inf
ε1≥0∧ε2≥0

{C[s− ε1, t+ ε2)− C ′[s− ε1, t+ ε2)}

≤ inf
ε1≥0∧ε2≥0

{βu(∆ + ε1 + ε2)− β′l(∆ + ε1 + ε2)}

= inf
ε≥0

{βu(∆ + ε)− β′l(∆ + ε)}

= inf
λ≥∆

{βu(λ)− β′l(λ)}



(a) Input arrival curves. (b) Upper output arrival curves.

Fig. 3. An example comparing the original and new upper output arrival
curves for GPC.

Then we prove (11). For any time interval [s + ε1, t − ε2)
with ε1 ≥ 0, ε2 ≥ 0 and ε1 + ε2 ≤ t − s, it holds E[s, t) ≥
E[s+ ε1, t− ε2), so we have

E[s, t)

= sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{E[s+ ε1, t− ε2)}

= sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{C[s+ε1, t−ε2)−C ′[s+ε1, t−ε2)}

≥ sup
ε1≥0∧ε2≥0∧ε1+ε2≤∆

{βl(∆−ε1−ε2)−β′u(∆−ε1−ε2)}

= sup
0≤ε≤∆

{βl(∆− ε)− β′u(∆− ε)}

= sup
0≤λ≤∆

{βl(λ)− β′u(λ)}

With the γu and γl obtained from the above lemma, now

we can compute the output arrival curves of GPC’. Note that

the operational semantics of GPC’ is exactly the same as the

original greedy processing component GPC, so we have the

following theorem:

Lemma 3: Given a GPC with input arrival curves αu, αl

and service curves βu, βl, and γu, γl computed by Lemma 2,

the output events can be upper bounded by:

αu′

= [(αu ⊗ γu) � γl] ∧ γu (12)

The new upper output arrival curve in the above lemma is

generally incomparable with the original one: sometimes our

new curve is tighter, sometimes the original one is tighter,

and sometimes the new curve and the original curve do not

dominate each other (one curve is tighter for some parts and

the other curve is tighter for some other parts). Therefore,

combining our new curve with the original one gives the best

result as stated in the following theorem:

Theorem 1: Given a GPC with input arrival curves αu, αl

and service curves βu, βl, and γu, γl computed by Lemma 2,

the output events can be upper bounded by:

αu′

= [(αu ⊗ γu) � γl] ∧ [(αu ⊗ βu) � βl] ∧ γu (13)

Similarly, by using γu and γl to replace βu and βl, we

can also get a new lower output arrival curve. However, this

yields a looser lower output arrival curve than the original

one. Therefore, for computing lower output arrival curve, we

should still use (4).

(a) Input arrival curves. (b) Lower output arrival curves.

Fig. 4. An example illustrating the negative value problem in original output
curves of AND.

An Example. We use a simple example to demonstrate our

new output arrival curve bounds. Suppose we have a strictly

periodic event arriving pattern with a period of 3 time units

(the processing of each event takes one time unit) and a TDMA

resource provides two time units of resource with a period

of 4 time units, the corresponding arrival and service curves

of which are shown in Figure 3-(a). The original and our

new output upper arrival curves, denoted by OLD and NEW

respectively, are shown in Figure 3-(b), where we can see our

new curve is tighter than the original one.

V. REVISING AND

We first identify the problem in existing analysis methods

of AND, and then present solutions to fix the problem.

A. Problem

Recall the original lower output curve in [4]:

αl
1,2 =max(min(αl

1�αu
2 +B1 −B2, α

l
2),

min(αl
2�αu

1 +B2 −B1, α
l
1))

We use the following example to illustrate its problem. Sup-

pose we have two strictly periodic event streams with periods

P1 = 5 and P2 = 4, and initial buffers B1 = B2 = 0. The

input curves are shown in Figure 4-(a). Then their upper and

lower arriving curves are

αu
1 (∆) = d∆/5e , αl

1(∆) = b∆/5c

αu
2 (∆) = d∆/4e , αl

2(∆) = b∆/4c

Let ∆ = 1, then following the definition of � we have

αl
1,2(1) = max (min (X1, 0) ,min (X2, 0))

where

X1 = inf
λ≥0

{b(1 + λ)/5c − dλ/4e}

≤ b(1 + 0.1)/5c − d0.1/4e = −1

X2 = inf
λ≥0

{b(1 + λ)/4c − dλ/5e}

≤ b(1 + 0.1)/4c − d0.1/5e = −1

So both X1 and X2 are negative, and consequently αl
1,2(1) is

also negative (the resulting output curve is shown as the dash

line in Figure 4). This violates the basic assumption for all the

computation rules in RTC that all curves are non-negative.



By having a closer look into the above example, we will

see that these negative values are actually a precision problem

rather than a correctness problem. αl is a lower bound for

the number output events, and a negative number is indeed a

correct lower bound. Therefore, for a single AND connector,

the original lower output curve is still correct, but just too

imprecise (even more imprecise than the naive lower bound 0
in some cases). However, when the AND connectors are put

into a RTC network, the effect of these negative curves will

propagate to other components, and eventually may cause in-

consistency to the operational semantics of the system model,

as all the computation rules in RTC are based on the implicit

assumptions that all curves are positive.

B. Solution

The problem mentioned above can be easily fixed by

changing all the negative values to 0. However, this quick

fix only superficially solves the negative value problem, but

does not really address the real source of pessimism behind

the problematic original lower output curve.

In the following, we present a new lower output curve for

AND. Our new result is tighter than the original one and

systematically solves the negative value problem.

Let Ri[s, t) denote the total number of events arrived in time

interval [s, t), and use Ri(t) to represent Ri[0, t) for short.

Moreover, we use [x]0 to denote max(x, 0) for simplicity.

We first quote a known result from [4]:

Lemma 4: Ri(t)−Rj(s) is upper and lower bounded by:

αl
i�αu

j (t− s) ≤ Ri(t)−Rj(s) ≤ αu
i �αl

j(t− s)

Theorem 2: The output event stream of an AND connector

with two input event streams characterized by arrival curves

α1 and α2 is lower bounded by the curve:

αl
1,2 =min(max(αl

1�αu
2 +B1 −B2, α

l
1),

max(αl
2�αu

1 +B2 −B1, α
l
2)) (14)

Proof: The backlogs of the two streams at time t are

b1(t) = [R1(t) +B1 − (R2(t) +B2)]
0

b2(t) = [R2(t) +B2 − (R1(t) +B1)]
0

Let R1,2[s, t) denote the number of output events in time

interval [s, t), which is the minimum between the events of

the two streams in this interval:

R1,2[s, t) = min(R1[s, t) + b1(s), R2[s, t) + b2(s))

= min(R1[s, t) + [R1(s)−R2(s) +B1 −B2]
0,

R2[s, t) + [R2(s)−R1(s) +B2 −B1]
0)

= min(max{R1[s, t), R1(t)−R2(s) +B1 −B2},

{R2[s, t), R2(t)−R1(s) +B2 −B1})

and by applying Lemma 4 we finally get

R1,2[s, t) ≥ min(max(αl
1�αu

2 +B1 −B2, α
l
1),

max(αl
2�αu

1 +B2 −B1, α
l
2))

by which the theorem is proved.

Fig. 5. Modeling a multi-input AND connector as cascaded dual-input AND

connectors.

The solid line in Figure 3-(b) is the lower output curve

generated by out new method. We can see that it does not

only solve the negative value problem, but also in general more

precise than the original curve even if the negative values are

changed to zero.

VI. GENERALIZING AND

Many realistic systems need to synchronize events from

more than two streams. In the following we generalize the

original dual-input AND connector to the multi-input setting.

A. The Cascaded Approach

A straightforward approach to analyze AND connectors

with multiple inputs is to model a multi-input AND connector

as several cascaded dual-input AND connectors. Figure 5

shows the cascaded modeling of a multi-input AND connector

with four input streams.

We use

(αi,j , Bi,j) = (αi, Bi) � (αj , Bj)

to represent the computation of output curves for an AND

connector with input curves αi and αj (using (7) to compute

the upper curves and using our new method (14) to compute

the lower curves) as well as the initial buffer level Bi,j for

this event stream that is useful when it is further combined

with other streams:

Bi,j = min(Bi, Bj)

In general, for n-input streams cascaded by dual-input AND

connectors in a particular order π = {α1, α2, · · · , αn} the

final output curve is computed by

(αand,π, Band) = (α1, B1) � · · · � (αn, Bn) (15)

The result of this approach is sensitive to the order to

cascade the inputs, and it is generally unknown which order

gives the best result. On the other hand, the output bounds

obtained with any of the pairing orders are valid. Therefore,

we can join the results with all the possible orders to get tighter

bounds:

Theorem 3: For multi-input AND connector, let Π be the

full permutation of {α1, · · · , αn}, i.e., the set of all possible

cascading orders of the input streams, and αu
and,π and αl

and,π

are the upper and lower output curves for a particular cascad-

ing order π ∈ Π, then output curves of the multi-input AND

connector is upper and lower bounded by:

αu
and = min

π∈Π
{αu

and,π}, αl
and = max

π∈Π
{αl

and,π}

The proof the theorem is straightforward and thus omitted.



The computation of the maximum delay and backlog of each

stream also depends on the cascading order. For example, in

Figure 5, the maximal delay (backlog) of events in stream α1

should be counted as the sum of the delay (backlog) incurred

at AND1, AND2 and AND3, while for an event in stream α4

only the delay (backlog) at AND3 is counted. Obviously, to

compute a tight delay (backlog) bound for a stream αi, we

should use a cascading order in which αi only connects to the

last dual-input AND connector:

Theorem 4: A multi-input AND connector has n inputs

characterized by {α1, α2, · · · , αn}. The maximal delay and

backlog of events in a stream αi is upper bounded by

di ≤ H

(

αu
i +Bi, α

l∗ +min
i 6=j

{Bj}

)

bi ≤ max

(

0, V

(

αu
i +Bi, α

l∗ +min
i 6=j

{Bj}

))

where αl∗ is the output curve for joining the other n−1 input

streams using Theorem 3.

The proof the theorem is straightforward and thus omitted.

B. The Holistic Approach

In the following we present a new approach to compute

the output curve and delay/backlog bounds for multi-input

AND which is both more precise and more efficient than the

above straightforward approach. We call this new approach

the holistic approach, as it computes the desired results with

all the inputs curves at the same time (rather than computing

them step by step with two input curves at each step in the

cascaded approach).

Theorem 5: Given an AND connector with n inputs, which

are characterized by the input upper and lower curves

(αu
1 , α

l
1), (α

u
2 , α

l
2), · · · , (αu

n, α
l
n), and the initial buffer levels

B1, · · · , Bn, the output arrival curves are computed by:

αu
and = max

all k

{

min

(

min
i 6=k

{

αu
i �αl

k+Bi−Bk

}

, αu
k

)}

(16)

αl
and = min

all k

{

max

(

max
i 6=k

{

αl
k�αu

i +Bk−Bi

}

, αl
k

)}

(17)

The maximal delay and backlog of input i are bounded by

di = H

(

αu
i +Bi,min

j 6=i

{

αl
j +Bj

}

)

(18)

bi = max

(

V

(

αu
i +Bi,min

j 6=i

{

αl
j +Bj

}

)

, 0

)

(19)

Proof: We first prove (18). Let Ri(t) denote the accumu-

lated amount of arrived events of input i from time 0 to t.
The total amount of available events of input i until time t is

Ri(t) + Bi. Then min
i 6=j

{Rj(t) + Bj} is the minimum of the

available events among all the other inputs. So the maximal

delay of the event backlogged at input i at time t is

Fig. 6. The relation between Ψ(k) and Ψ′(k).

di(t) = inf{τ ≥ 0 : Ri(t) +Bi ≤ min
i 6=j

{Rj(t+ τ) +Bj}}

≤ sup
λ≤0

{inf{τ ≥ 0 : Ri(λ) +Bi ≤ min
i 6=j

{Rj(λ+ τ) +Bj}}

≤ sup
λ≤0

{inf{τ ≥ 0 : αu
i (λ) +Bi ≤ min

i 6=j
{αl

j(λ+ τ) +Bj}}

=H(αu
i +Bi,min

i 6=j
{αl

j +Bj})

Now we prove (19). The total amount of output events by

time t is R′(t) = min
all j

{Rj(t) + Bj}, so the buffer of input i

at time t is

bi(t) = [Ri(t)−R′(t)]0

= [Ri(t) +Bi − {min
all j

{Rj(t) +Bj}}]
0

= [Ri(t) +Bi − {min
i 6=j

{Rj(t) +Bj}}]
0

Therefore, we have

bi(t) = [max
i 6=j

{Ri(t)−Rj(t) +Bi −Bj}]
0 (20)

By applying Lemma 4 to this, we get

bi(t) ≤ [max
i 6=j

{αu
i �αl

j(0) +Bi −Bj}]
0

= [max
i 6=j

{(αu
i +Bi)�(αl

j +Bj)(0)}]
0

= max
i 6=j

{V (αu
i +Bi, α

l
j +Bj)}

= max{V (αu
i +Bi,min

i 6=j
{αl

j +Bj}), 0}

In the following we prove (16). Rand[s, t) denotes the

amount of output combined event generated in time interval

[s, t), which equals the minimum among all the inputs:

Rand[s, t) = min
all i

{Ri[s, t) + bi(s)} (21)

where bi(s) is the buffer level of input i at time s.

In the following we prove

min
all i

{Ri[s, t) + bi(s)} = max
all k

{Ψ(k)} (22)

where

Ψ(k) = min

(

min
i 6=k

{Ri[s, t) + bi(s)} , Rk[s, t)

)

By the definition of Ψ(k) we know that for any k ∈ [1, n]

Ψ(k) ≤ min
all i

{Ri[s, t) + bi(s)} (23)



On the other hand, at least one of b1(s), b2(s), · · · , bn(s) must

be 0. Without loss of generality, let bx(s) = 0, then by the

definition of Ψ we have

Ψ(x) = min
all i

{Ri[s, t) + bi(s)} (24)

In summary, the LHS of (22) is no smaller than Ψ(k) for all

k ∈ [1, n], and there exists at least one Ψ(x) that equals to

the LHS (22), by which (22) is proved. Combining (21) and

(22) yields

Rand[s, t) = max
all k

{Ψ(k)} (25)

In the following we will derive an upper bound for

max
all k

{Ψ(k)}. Note that we will derive an upper bound for the

entire max
all k

{Ψ(k)}, rather than upper bounding Ψ(k) for each

k and then getting their maximum.

By applying (20) to Ψ(k), we have

Ψ(k) = min

(

min
i 6=k

{Ri[s, t) + [Ri(s) +Bi − σ]0}, Rk[s, t)

)

where

σ = min
i 6=j

{Rj(s) +Bj}

We define another function Ψ′(k) respect to k as follows:

Ψ′(k) = min

(

min
i 6=k

{Ri[s, t) + [Ri(s) +Bi − σ′]0}, Rk[s, t)

)

where

σ′ = Rk(s) +Bk

Now we discuss the relation between Ψ′(k) and Ψ(k). First,

since σ ≤ σ′, we know the general relation between Ψ′(k)
and Ψ(k):

Ψ′(k) ≤ Ψ(k)

Then we focus on the relation between Ψ′(k) and Ψ(k) with

a particular k satisfying bk(s) = 0 In this case, Rk(s) + Bk

must be no larger than Ri(s) + Bi for any i, which implies

σ = σ′. Therefore, we know bk(s) = 0 implies

Ψ(k) = Ψ′(k)

Moreover, by the definition of Ψ(k), we know Ψ(k) reaches

its maximal value with k if bk(s) = 0, i.e.,

Ψ(k) = min
all i

{Ri[s, t) + bi(s)} = max
all k

{Ψ(k)} (26)

Putting the above discussions together, the relation between

Ψ′(k) and Ψ(k) can be summarized as follows:

In general Ψ′(k) ≤ Ψ(k), while both of them reach

the same maximal value with a particular k satisfying

bk(s) = 0. Moreover, there must exist bk(s) = 0 among

{b1(s), b2(s), · · · , bn(s)} since at any time point at least one

of the stream buffers must be empty. These relations are

illustrated in Figure 6. Therefore, we can conclude that

max
all k

{Ψ(k)} = max
all k

{Ψ′(k)} (27)

In the following, we compute an upper bound for

max
all k

{Ψ′(k)}:

max
all k

{Ψ′(k)}

=max
all k

{min(min
i 6=k

{Ri[s, t) + [Ri(s) +Bi − σ′]0}, Rk[s, t))}

Ψ′(k) reaches the maximal value with k satisfying bk(s) = 0.

If bk(s) = 0, we know Ri(s) + Bi − Rk(s) − Bk ≥ 0, i.e.,

Ri(s) +Bi − σ′ ≥ 0, so the above equation is rewritten as

max
all k

{Ψ′(k)}

=max
all k

{min(min
i 6=k

{Ri(t)−Rk(s) +Bi −Bk}, Rk[s, t))}

and finally by (25), (27) and Lemma 4 we have

Rand[s, t)

≤max
all k

{min(min
i 6=k

{αu
i �αl

k +Bi −Bk}, α
u
k)}(t− s)

By now we have proved (16) for the upper output curve.

In the following we prove (17) for the lower output curve.

The amount of output events in [s, t) is the minimum

amount of events among all streams in this time interval:

Rand[s, t) = min
all k

{Rk[s, t) + bk(s)}

= min
all k

{

Rk[s, t)+[max
i 6=k

{Rk(s)−Ri(s)+Bk−Bi)}]
0

}

//by (19)

= min
all k

{

max(Rk[s, t),max
i 6=k

{Rk(t)−Ri(s)+Bk−Bi})

}

By Rk[s, t) ≥ αl
k(t− s) and Lemma 4, we get

Rand[s, t) ≥ min
all k

{

max

(

max
i 6=k

{αl
k�αu

i +Bk −Bi

}

, αl
k)

}

VII. EXPERIMENTAL EVALUATION

We implement our new theoretical results in RTC Toolbox

[14] and conduct experiments to evaluate their performance.

Experiments are conducted a computer with a 2.50GHZ Intel

Core i7 processor and 4.00 GB RAM.

A. Evaluation for GPC

We first evaluate the analysis precision improvement for

GPC. We compare two methods to compute output curves:

• GPC-Old: The original methods to compute the upper

and lower output arrival curves using (3) and (4).

• GPC-New: Computing the upper output arrival curve

using our new method in (13) and the lower output arrival

curve using the original method (4).

The input arrival curves are generated following the PJD

workload model [15] characterized by (p, j, d):

αu(∆) = min

(⌈

∆+ j

p

⌉

,

⌈

∆

d

⌉)

, αl(∆) =

⌊

∆− j

p

⌋
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Fig. 7. Experiment results for GPC.

Fig. 8. The 4× 4 RTC network.

The service curves are generated following the TDMA model

[14] characterized by (s, c, b):

βu(∆) =

(⌊

∆

c

⌋

· s+min(∆ mod c, s)

)

· b

βl(∆) =

(⌊

∆′

c

⌋

· s+min(∆′ mod c, s)

)

· b

where ∆′ = max(∆− c+ s, 0).
Figure 7-(a) and (b) show the experiment results with a

single GPC. The input arrival curves are randomly generated

by selecting the p, j and d values in the following ranges:

p ∈ [20, 50], i ∈ [10, 100] and d ∈ [1, 10]. The input service

curves have a fixed c = 60 and b = 1, and s varies for different

groups of experiments (corresponding to the x-axis). With each

s value, we perform 1000 experiments with both methods.

Figure 7-(a) reports the percentage of generated GPC for

which the output curve obtained by GPC-New is more precise

than GPC-Old. When s = 1, the long-term slope of the

service curves is smaller than the arrival curves, with which the

two methods perform the same. As s increases, the resource

becomes more sufficient, and the percentage of experiments in

which GPC-New is more precise becomes higher. Eventually,

when s ≥ 4, the long-term slope of resource curves is always

larger than the arrival curves, and our new method always

yields more precise results than GPC-Old.

Figure 7-(b) reports the distance between the upper output

arrival curves obtained by the two methods. The distance of

two curves f and g is defined as follows:

dist(f, g) =

∑n

∆=1
|(f(∆)− g(∆))|

n

Figure 7-(b) reports the results of dist(αu
old, α

u
new) with n =

200 and different s. For each s, the upper and lower ends of the

vertical segment represent the maximal and minimal distance,

and the cross symbol in the middle represents the average

distance of all the experiments with this s value. In general,

the distance between GPC-New and GPC-Old is larger when

s increases. In summary, Figure 7-(a) and (b) show that the

precision improvement of our new upper output arrival curves

is more significant with more sufficient resource.

In RTC, the final goal is to compute the backlog and

delay bounds of the event streams. Therefore, the precision

improvement in the output curves is meaningful only if it

leads to more precise backlog and delay bounds. Therefore, we

evaluate the backlog and delay bounds of a 4×4 RTC network,

as shown in Figure 8. The initial input arrival curves are

randomly generated in the same way as the above experiments,

and the initial input service curves are generated with s = 20,

c = 60 and b = 1. Figure 7-(c) shows the ratio between the

delay (backlog) bounds obtained using GPC-Old and those

obtained by GPC-New, namely the relative quality. Each

result for x-axis value i is the average of the delay (backlog)

relative quality of components in the ith column. Similar to

Figure 7-(b), the results include the minimal, maximal and

average relative quality for each group of experiments. We can

see that the precision improvement for delay (backlog) bounds

using our new output arrival curves is more significant for the

downstream components. This is because the precision gain in

output curves by our new method will be accumulated as the

curves propagate in the network.

B. Evaluation for Dual-Input AND

Recall that the negative value problem of the original lower

output curve in (8) can be fixed by changing the negative

values to 0, but the resulting output curves are still pessimistic.

Our new method does not only systematically solve the

negative value problem, but also can provide tighter results.

Next we evaluate the precision improvement of our new lower

output curves for dual-input AND connectors in (14). We

compare two methods to compute the lower output curves:

• AND-Naive: The lower output curve obtained by fixing

the negative value problem in the original lower output

curve in (8) by simply changing the negative values to 0.

• AND-New: Our new lower output curve in (14).
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Fig. 9. Experiment results for dual-input AND.

In all the experiments with AND (including the multi-input

AND in the next subsection), we use a revised version of the

PJD event model to generate input curves. For AND, if the

long-term slope of the input curves are different, the events

backlogged in the buffer of the one with lower slope will

increase infinitely. Therefore, AND is typically used to join

curves with the same long-term slope. However, in the original

PJD model [15], the long-term slope of a curve only depends

on the parameter p, which represents the period of the events.

Therefore, with the original PJD model, all the input curves to

AND must have the same period, which not only represents a

very special case but may lead to biased comparison results. In

order to cover more general cases and make our results more

convincing, we extend the PJD model from three parameters

(p, j, d) to four parameters (p, j, d, r):

αu(∆) = min

(⌈

(∆ + j)r

p

⌉

,

⌈

∆

d

⌉)

, αl(∆) =

⌊

(∆− j)r

p

⌋

With the extended model, the long-term slope of the curves

depends on the value of r
p

. Therefore, we can generate curves

with the same long-term slope but different periods.

The input curves are randomly generated by selecting the

p, j and d values in the same ranges as the experiments in

Figure 7-(a) and (b). For the two input curves of an AND,

their r values are derived so that the long-term slopes of

the two curves are the same. The initial buffer level of each

input stream is randomly chosen in the range [1, x], where x
corresponds to the x-axis in Figure 9. Similar to Figure 7-(a)

and (b), Figure 9-(a) reports the percentage of experiments

in which AND-New is more precise than AND-Naive, and

Figure 9-(b) reports the distance between the lower output

curves obtained by AND-New and AND-Naive. The results

show that the precision improvement of our new results is

more significant when the initial buffer level is smaller.

C. Evaluation for Multi-Input AND

Next we evaluate the generalization of AND to multiple

inputs. We first compare the output curves obtained by the

cascaded approach and the holistic approach:

• CAS-x: The cascaded approach to compute the output

curves in (15). Recall that the cascaded approach is sen-

sitive to the order to apply dual-input AND to the event

streams. The result with any order provides valid upper

and lower output curves, while joining the results with

different orders in general may improve the precision.

CAS-x represents the final results obtained by joining

results with x randomly selected orders.

• HOL: The holistic approach to compute the output curves

using (16) and (17).

Figure 10 shows experiment results with AND with four

input streams. There are in total 4!/2 = 12 different cascading

orders for a four-input AND. Figure 10-(a) reports the percent-

age of experiments that HOL is more precise than CAS-x, and

Figure 10-(b) reports the distance between the output curves

obtained by CAS-x and HOL, with x being 1, 3, 6 and 12,

respectively. The input curves are generated in the same way

as in Section VII-B.

We also compare the time consumed by the analysis of each

four-input AND by different methods in Figure 10-(c). The

input curves are generated in a similar way with above, and

the only difference is that we change the range for selecting

the period p: the lower bound is 10, while the upper bound

is 15, 20, · · · , 40 (the values on the x-axis). The initial buffer

level is in the range [1, 5]. The experiment results show that the

HOL method is consistently efficient: it on average takes less

than 0.1 second, and rarely exceeds 1 second. However, the

efficiency of the cascaded approach is much lower. Even CAS-

1 (only one cascading order is analyzed) is much slower than

HOL. The time consumption of CAS-x increases exponentially

as the range of periods increases.

The low efficiency of the cascaded approach is because of

the “period explosion” problem [16]. In RTC, the curves are

conceptually infinite, which are not implementable. Practical

implementations of RTC, such as the RTC Toolbox [16], are

restricted to a class of regular curves [16], which can be

efficiently represented by finite data structures but are still

expressive enough to model most realistic problems. A regular

curve consists of an aperiodic part, followed by a periodic part.

Each part is represented by a concatenation of linear segments.

Generally, the computation time and memory requirement

of an operation between two curves are proportional to the

number of segments contained by the curves. The number

of segments of a curve representing a PJD event model is

generally proportional to its period. The period of the output

curve of a dual-input AND is the hyperperiod of the two

input curves. In the cascaded approach, the period of the event

stream increases exponentially as it travels through the dual-

input AND, which leads to the low efficiency of the cascaded

approach. When periods of the input curves are selected from

a wider range, the resulting hyperperiod of them is larger,

and thus the efficiency of the cascaded approach is worse. By

contrast, the holistic approach in (16) and (17) only performs

corresponding operations on each pair of the input curves,

which avoids the above “period explosion” problem.

Finally, we compare the precision and computation effi-

ciency of the delay (backlog) bounds using the cascaded

method (Theorem 4) and holistic method (Theorem 5) for

four-input AND. The input curves are generated in the same

way as the corresponding experiments in above. Figure 10-

(d) and (e) report the percentage of experiments where the

holistic approach gives more precise results and ratio between



 0

 5

 10

 15

 20

 25

 30

 35

 40

3 5 7 9 11

P
er

ce
n

ta
g

e 
(%

)

Buffer Range

CAS-12
CAS-6
CAS-3
CAS-1

(a) Percentage.

 0

 0.05

 0.1

 0.15

 0.2

3 5 7 9 11

D
is

ta
n

ce

Buffer Range

CAS-12
CAS-6
CAS-3
CAS-1

(b) Distance.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

15 20 25 30 35 40

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Period Range

CAS-12
CAS-6
CAS-3
CAS-1
HOL

(c) Execution Time.

 40

 50

 60

 70

 80

 90

 100

3 5 7 9 11

P
er

ce
n

ta
g

e 
(%

) 

Buffer Range

BACKLOG
DELAY

(d) Percentage.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

3 5 7 9 11

R
el

at
iv

e 
Q

u
al

it
y

Buffer Range

BACKLOG
DELAY

(e) Relative Quality.

 0

 5

 10

 15

 20

15 20 25 30 35 40

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Period Range

HOL
CAS

(f) Execution Time.

Fig. 10. Experiment results for multi-input AND.

the delay (backlog) bounds by the cascaded approach and by

the holistic approach. Figure 10-(f) gives the time consumption

of the two approaches, where the holistic approach on average

takes less than 0.1 second, while the time consumption of the

cascaded approach is much longer and increases exponentially

as the period range is larger. Note that to compute the

delay and backlog bounds of an event stream in a four-input

AND, we only need to compute the output curve joining the

remaining three streams, so the time consumption is lower

than the experiments in Figure 10-(c) which join all the four

streams. In summary, to generalize AND to support multiple

inputs, our new holistic approach is not only more precise but

also significantly more efficient than the naive approach by

cascading dual-input AND.

VIII. CONCLUSION

In this paper, we improve the two widely used components,

GPC and AND, in real-time calculus. First, we develop a

more precise method to compute the upper output arrival

curve of GPC. The key idea of our new method is to use

the remaining service curves to refine the information about

how much resource is actually consumed to process the input

events. Second, we identify and fix a problem in the existing

analysis method of AND. Third, we study the analysis of

AND connectors with more than two inputs (called multi-

input AND). We first present a straightforward generalization

approach by modeling a multi-input AND as several cascaded

dual-input AND, then present a holistic approach for the

generalization which is more precise and efficient.
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