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a b s t r a c t

Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to
model certain biological phenomena. We derive a complete characterization of NCFs with

the largest average sensitivity, expressed in terms of a simple structural property of the

NCF. This characterization provides an alternate, but elementary, proof of the tight upper

bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also
utilize the characterization to derive a closed form expression for the number of NCFs that

have the largest average sensitivity.

© 2018 Elsevier B.V. All rights reserved.

1. Definitions, problem formulation and prior work

1.1. Nested canalyzing functions

Boolean functions arise in many different application areas (see, for example [ , ]). A class of Boolean functions, called2 3

nested canalyzing functions (NCFs), was introduced in [ ] to model the behavior of certain biological systems. We follow7

the presentation in [ ] in defining such a Boolean function. (For a Boolean value , the complement is denoted by .)10 b b

Definition 1.1. LetX x= { 1, x2 , . . . , xn} { }denote a set of Boolean variables. Letn π be a permutation of 1, , . . . ,2 n . A Boolean

function (f x1, x2, . . . , xn) over is in the variable orderX nested canalyzing xπ(1), xπ(2), . . . , xπ( )n with canalyzing values

a1, a2, . . . , an and canalyzed values b1, b2, . . . , bn if can be expressed in the following form:f

f x( 1, x2 , . . . , xn ) =






b1 if xπ(1) = a1

b2 if xπ(1) ̸= a1 and xπ(2) = a2

.

..
.
..

bn if xπ(1) ̸= a1 and . . . xπ(n−1) ̸= an−1 and xπ( )n = an

bn if xπ(1) ̸= a1 and . . . xπ( )n ̸= an
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Fig. 1. The hypercube for the 3-variable Boolean function (f x1 , x2, x3) = x1 ∨ (x2 ∧ x3). The value of the function for each of the eight assignments isf

also shown. Edges of the hypercube where the end points have different values for are shown as dashed lines. The table shows the sensitivity of eachf

assignment to function .f

For convenience, we will use a computational notation to represent NCFs. For 1 , line of our representation has≤ i n≤ i

the following form:

xπ( )i : ai −→ bi

We say that xπ( )i is the that is in line , withcanalyzing variable tested i ai and bi denoting respectively the canalyzing and
canalyzed values in line as before, 1 .We refer to each such line as a .When none of the conditions ‘‘i ≤ i n≤ rule xπ( )i = ai ’’

is satisfied, we have line 1 with the ‘‘Default’’ rule for which the canalyzed value isn+ bn:
Default: bn
In the remainder of this paper, we will refer to the above specification of an NCF as the simplified representation

and assume (without loss of generality) that each NCF is specified in this manner. The simplified representation provides

the following convenient computational view of an NCF. Lines defining an NCF are considered sequentially in a top-down

manner. The computation stops at the first linewhere the specified condition is satisfied, and the value of the function is the
canalyzed value on that line. We now present an example of an NCF using the two representations mentioned above.

Example 1. Consider the function (f x1 , x2, x3) = x1 ∨ (x 2 ∧ x3). This function is nested canalyzing using the identity
permutation on 1 2 3 with canalyzing values 1 0 0 and canalyzed values 1 0 0. We first show how this function canπ { , , } , , , ,

be expressed using the syntax of .Definition 1.1

f x( 1, x2 , x3 ) =






1 if x1 = 1

0 if x1 ̸= 1 and x2 = 0

0 if x1 ̸= 1 and x2 ̸= 0 and x3 = 0
1 if x1 ̸= 1 and x2 ̸= 0 and x3 ̸= 0

A simplified representation of the same function is as follows.

x 1 : −→1 1

x 2 : −→0 0

x 3 : −→0 0

Default: 1

Many researchers have studied mathematical properties of NCFs and pointed out the importance of NCFs in modeling
biological phenomena (e.g., [ , , – ]). Since our focus is on the sensitivity of NCFs, we now introduce the relevant7 8 10 14

concepts.

1.2. Sensitivity of a Boolean Function

Consider a Boolean function (f x1, x2 , . . . , xn) of variables. An is a vector (n assignment α a1 , a2, . . . , an), with ai ∈ { }0, 1

being the value assigned to variable xi, 1 . Let≤ i n≤ Hn denote the hypercube formedby the 2
n different assignments in the

following manner: each node of Hn represents an assignment, and there is an edge between two nodes if the corresponding

assignments differ in one bit (i.e., the between the two assignments is equal to 1). An exampleexactly Hamming distance
of the hypercube for the 3-variable Boolean function (f x1, x2, x3 ) = x1 ∨ (x2 ∧ x3) (used in ) is shown inExample 1

Fig. 1.

With a slight abuse of notation, we let ( ) denote the value of the function for the assignment represented by the nodef v f

v ∈ Hn . We can now define the necessary concepts related to the of the Boolean function as follows.sensitivity f
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Definition 1.2. Consider a Boolean function (f x1, x2, . . . , xn) of variables. Letn Hn denote the hypercube formed by the 2
n

assignments to the variables of .f

(i) For any assignment , the of , denoted by ( ), is the number of neighbors of inv sensitivity v q v w v Hn such that

f f q H( )v ̸= ( ). Formally,w ( ) = { is a neighbor of inv | w w: v n and ( ) ( )} .f w ̸= f v |
(ii) The of the function , denoted by ( ), is the largest sensitivity value overall the assignments to . Formally,sensitivity f σ f f

σ v v( )f = {max q( ) : ∈ Hn}.

(iii) The of the function , denoted by ( ), is the sum of the sensitivity values over all the assignments tototal sensitivity f γ f
f f. Formally, (γ ) =


v∈Hn
q( ).v

(iii) The of the function , denoted byaverage sensitivity f σ ( ), is the ratio of the total sensitivity of to 2f f
n (the total number

of assignments to ). Formally,f σ γ /( )f = ( )f 2n.

Example 2. Consider again the 3-variable NCF (f x1 , x2, x3 ) = x1 ∨ (x2∧ x3). The hypercube corresponding to this function
is shown in . The figure also shows the sensitivity of each assignment to the function . From the table, it can be seenFig. 1 f

that the sensitivity of is 2 and its total sensitivity is 10. Hence, the average sensitivity of is 10 2f f / 3 = 5/4.

1.3. Related work and our contributions

There is extensive literature on the sensitivity of various classes of Boolean functions (e.g., [ , , ]). For a discussion on1 15 18

how the stability of a Boolean network is related to the sensitivities of the update functions used in the network, the reader

is referred to [ , , ]. Observations regarding the relationship between the sensitivity and the computational complexity8 10 11

of a Boolean function are presented in [ , ]. Li and Adeyeye [ ] present lower and upper bounds on the sensitivity of any1 15 12
NCF. Li et al. [ , ] conjectured that the average sensitivity of any NCF is strictly less than 4 3. This conjecture was proved13 14 /

by Klotz et al. [ ] by establishing a tight upper bound on the average sensitivity of any NCF. Their methods rely on Fourier9

analysis of Boolean functions [ ].16

In this paper, we derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms

of a simple structural property of the NCF. In particular, we prove that an NCF has the largest average sensitivity iff the

canalyzed value in every even canalyzing line in its simplified representation is the complement of the canalyzed value in

the preceding odd line, except for the last line when the number of variables is even. (It is permissible for the canalyzed

value in an odd numbered line to be the same as the one in the preceding even numbered line.) A formal statement of this

property is provided in . This characterization leads to an alternate, but elementary, proof of the tight upperTheorem 2.9

bound established in [ ] on the average sensitivity of any NCF. We also utilize the characterization to derive a closed form9

expression for the number of NCFs that have the largest average sensitivity.

Researchers have also studied the class of -canalyzing functions, which generalize the class of nested canalyzingk

functions [ , ]. A -canalyzing function of variables specifies canalyzing rules for of the variables, and the default line4 5 k n k≥ k

specifies a Boolean function of the remaining variables. The parameter is referred to as the . Thus, an k− k canalyzing depth

nested canalyzing function of variables has a canalyzing depth of . He and Macauley [ ] develop techniques that providen n 4

an algebraic characterization of all Boolean functions in terms of their canalyzing depth; they use this characterization
to obtain a closed form expression for the number of -variable Boolean functions with a canalyzing depth of . Kadelkan k

et al. [ ] study a more general notion of sensitivity (called -sensitivity) for -canalyzing functions. They show that the5 c k

stability of a Boolean network whose update functions are -canalyzing functions can be expressed as a weighted sum ofk

the -sensitivities of the update functions. In another paper, Kadelka et al. [ ] study a different generalization of nestedc 6

canalyzing functions where the values of the variables and the functions are from a finite field whose number of elements

is a prime. They present a parameterized polynomial form for such functions and show how the representation is useful in

computing several characteristics (e.g., the -sensitivity and network stability) of generalized nested canalyzing functions.c

2. NCFs with maximum average sensitivity: a structural characterization

2.1. Notation and terminology

Let (f x1, x2, . . . , xn) be a Boolean function of variables specified as an NCF. Throughout this section, wewill assume thatn

f is specified using the simplified representation for NCFs introduced in Section . Without loss of generality, we assume1
that the nested canalyzing order is ⟨x1, x2, . . . , xn⟩ so that xi is the canalyzing variable being tested in line , 1 .i ≤ i n≤

Further, let ai −→ bi be the rule on line , 1 . As in Section , an assignment is a vector (i ≤ i n≤ 1.2 α a1 , a2, . . . , an), with
ai ∈ { }0, 1 being the value assigned to variable xi , 1 . Given an assignment , the value assigned by to the variable≤ i n≤ α α

xi is denoted by (α xi).

2.2. Proof outline for our results

We show that for any , any NCF with variables has maximum total sensitivity (and hence maximum averagen f n

sensitivity) if and only if each evennumbered rule (with the possible exception of the last rule when is even) has a differentn
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Table 1
Values of sets from for the NCF (Definition 2.1 f x1 , x2, x3 ) = x1 ∨ (x2 ∧ x3).

Set Value

S1 { }(0, , , , , , , , , , , , , , , , ,0 0) (1 0 0) (0 1 0) (1 1 0) (0 0 1) (1 0 1)

S2 { }(0, , , , ,0 1) (0 1 1)

S3 { }(0, , , , ,1 0) (0 1 1)

W1 { }(0, , , , , , , , , , , , , , , , , , , , , , ,0 0) (0 0 1) (0 1 0) (0 1 1) (1 0 0) (1 0 1) (1 1 0) (1 1 1)

W2 { }(0, , , , , , , , , , ,0 0) (0 0 1) (0 1 0) (0 1 1)

W3 { }(0, , , , ,1 0) (0 1 1)

Z2 { }(0, , , , , , , ,0 0) (0 0 1) (0 1 0)

Z3 { }(0, ,1 1)

canalyzed value compared to the preceding rule. This result ( ) provides a characterization of NCFs with theTheorem 2.9

largest average sensitivity. To prove this result, we define certain subsets of assignments to and establish some propertiesf

of these sets. In turn, these properties allow us to prove some relationships ( – ) between the rules used toLemmas 2.5 2.7

define an NCF and its total sensitivity ( ). Once is established, we obtain closed form expressions for thef γ f Theorem 2.9

maximum total sensitivity ( ) for odd and even values of using simple summations.Theorem 2.11 n

2.3. Definitions and lemmas used to establish our characterization

We begin with the definitions of some subsets of assignments to an NCF .f

Definition 2.1.

(a) For 1 ,≤ i n≤ S i denotes the set of assignments such that complementing the value of (α α x i) changes the value of .f

(b) For 1 ,≤ i n≤ Wi denotes the set of assignments such that for all , 1 , (α j ≤ j i α xj) = aj.

(c) For 2 ,≤ i n≤ Zi denotes the set of assignments α ∈ Wi such that ( )f α = bi−1 .

As will be shown ( ), setsLemma 2.2 Si , 1 , determine the total sensitivity of . Set≤ i n≤ f W1 contains all the 2
n

assignments to . For 1 and for any assignmentf ≤ i n≤ α ̸∈ Wi, complementing any of the bits in positions throughi

n f Zcannot change the value of . Sets i , 2 , help in establishing some relationships among the sizes of sets≤ i n≤
Si, 1 ( – ).≤ i n≤ Lemmas 2.5 2.7

Example 3. Consider the function (f x1, x2, x3) = x1 ∨ (x2 ∧ x3) from and . For this function, the values of theExamples 1 2

various sets are shown in . These values can be verified using the NCF representation of presented in andTable 1 f Example 1

the hypercube shown in .Fig. 1

The following lemma points out some properties of sets Si , 1 .≤ i n≤

Lemma 2.2. (i) The total sensitivity of f is given by fγ ( ) =

n

i=1
|Si| |. (ii) Sn | = 2.

Proof. To prove Part (i), consider the hypercube representation of the function . Each edge of the hypercube wheref {u, v}

f u f f f u( ) ̸= ( ) contributes 2 to the total sensitivity (v γ ), and the other edges do not contribute to (γ ). For any edge { , v}
where ( ) ( ), the assignments corresponding to and differ inexactly in oneposition, say position . By thedefinitionf u ̸= f v u v i

of Si , the assignments corresponding to and appear in setu v Si. Thus, ( )γ f =

n

i=1|Si|.
To prove Part (ii), we consider the given NCF representation of and observe that the two assignmentsf

a1, a2, . . . , an−1, 0) and a1, a2 , . . . , an−1, 1)

are both in Sn . Any other assignment has the value ai in position for some , so the value of is determined before linei i n< f

n fof the NCF representation is reached. Thus, for any such assignment, the value of remains unchanged when the bit in

position is complemented. Therefore, such an assignment is not inn Sn , and hence |Sn | = 2. □

We now prove some lemmas that point out properties of sets Si , Wi and Zi , 1 .≤ i n≤

Lemma 2.3. (i) For i n, W1 ≤ ≤ | i| = 2n i− +1
. (ii) For i n, S1 ≤ ≤ i ⊆ Wi.

Proof. Part (i) follows from the fact thatWi has one member for each assignment of values to the last 1 variables.n i− +

For Part (ii), consider any assignment α ̸∈ Wi . We will show that α ̸∈ Si . Since α ̸∈ Wi , there is a such thatj i<

α(xj) = aj. Let j
′ be the smallest such value. Then, ( )f α = bj′ , and the value of remains unchanged if the value of variablef xi

is complemented. So, α ̸∈ Si . □
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Lemma 2.4. For i n, S1 ≤ < | i| = |2 Zi+1|.

Proof. From Part (ii) of ,Lemma 2.3 Si ⊆ Wi . Consider an assignment inα Wi . There are two cases.

Case 1: (α xi ) = ai . Hence, ( )f α = bi . Let α̂ αbe the assignment obtained from by changing xi to ai . Note that α̂ ∈ Wi+1.
Changing the value of xi in changes the value of iff (α f f α̂) = bi , that is, iff α̂ ∈ Zi+1 . Thus, the number of assignments α
in Siwith (α xi ) = ai equals |Zi+1 |.

Case 2: (α xi) = ai . In this case, note that α ∈ Wi+1 . Changing the value of xi in makes have valueα f bi , and so changes the

value of iff ( )f f α = bi , that is, iff α ∈ Zi+1. Thus, the number of assignments in Si with (α xi) = ai is also equal to |Z i+1|.
The lemma follows. □

Lemma 2.5. For any n and any i, i n, let f and g be two NCFs with the same sequence of n canalyzing variables, and≥ 1 1 ≤ ≤
identical rules for variables xi, xi+1 , x. . . , n . Let S

f

i
denote set Si for f and S

g

i
denote set Si for g. Then, S|

f

i
| = |Sg

i
|.

Proof. If , then from Part (ii) of ,i n= Lemma 2.2 |Sf
i
| = |Sg

i
| = ≤ ≤2. So, assume that i < n. For 1 j n W, let

f

j
and Z

f

j
denote

sets Wj and Zj for , and letf a
f

j
denote the canalyzing value of the rule for xj for . Similarly, letf W

g

j
and Z

g

j
denote setsWj

and Zj for , and letg a
g

j
denote the canalyzing value of the rule for xj for . Consider an assignmentg αf in Z

f

i+1
. Let αg be the

assignment where xj= a
g

j
for 1 , and≤ j i< xj has the same value as in α f for . Since and have identical rules fori j n≤ ≤ f g

variables xi, xi+1, . . . , xn, assignment α
g is inW

g

i+1 and (g αg ) (= f αf ). Thus, αg ∈ Zg
i+1 . Therefore, for each assignment in Z

f

i+1,

there is a unique corresponding assignment in Z
g

i+1
. Hence, |Z

g

i+1
| ≥ |Z

f

i+1
| |. Similarly, Z

f

i+1
| ≥ |Z

g

i+1
| |. Thus, Z

f

i+1
| = |Z

g

i+1
|.

The result now follows from . Lemma 2.4 □

Lemma 2.6. For any i, i n, if b1 ≤ < i ̸= bi+1, then S| i| + |Si+1| = 2n i− +1
.

Proof. Assume bi ̸= bi+1 . Consider an assignment inα Si∪ S i+1. From Part (ii) of , we can assume that is of theLemma 2.3 α

form

a1, . . . , ai−1, ci, c i+1, ci+2, . . . , cn).

Wepartition the2n i− +1 assignments of this form into four groups, based on thevalues of ci and ci+1. Each of these four groups

contains 2n i− −1 assignments. For each such group, we now compute the number of assignments contributed by the group

to sets Si and Si+1.

Group 1: ci = ai and ci+1 = ai+1. Then ( )f α = bi , α ∈ Si , and α ̸∈ Si+1 . Group 1 adds 2
n i− −1 assignments to Si , and none to

Si+1.

Group 2: ci = ai and ci+1 = ai+1 . Then ( )f α = bi, α ̸∈ Si+1 , and α ∈ Si iff for the Group 4 assignment α′ =
a1 , . . . , ai−1, ai, ai+1, ci+2, . . . , cn), (f α ′) = bi . Group 2 adds some assignments to Si , whose number is discussed below,

and none to Si+1.

Group 3: ci = ai and ci+1 = ai+1. Then ( )f α = bi+1, α ∈ Si , and α ∈ Si+1 iff for the Group 4 assignment α ′ =
a1 , . . . , ai−1, ai, ai+1, ci+2, . . . , cn), (f α′ ) = bi. Group 3 adds 2

n i− −1 assignments to Si, and some assignments to Si+1, whose

number is discussed below.

Group 4: ci = ai and ci+1 = ai+1. Then α ∈ Si iff ( )f α = bi , and α ∈ Si+1 iff ( )f α = bi . Each of the 2
n i− −1 Group 4 assignments

is added to either Si or S i+1, but not both. Thus, Group 4 adds a total of 2
n i− −1 assignments to the sum |Si| + |Si+1|.

Corresponding to each of the 2n i− −1 Group 4 assignments, there is either a Group 2 assignment added to Si , or a Group 3

assignment added to Si+1, but not both. Thus, the number of Group 2 assignments added to Si plus the number of Group 3

assignments added to Si+1 is 2
n i− −1.

When all four groups are considered, the total value of the sum |S i| + |Si+1| is 2
n i− +1. □

Lemma 2.7. Consider a given n variable NCF f such that there is a k, k n , with b1 ≤ < /2 2 1k− = b 2k. Then there is another NCF

g with the same number of variables such that the total sensitivity of g is greater than that of f .

Proof. Let be the smallest value such that 2 andk k n< / b2 1k− = b2k . Then the total sensitivity ( ) =γ f

n

i=1 |Si| is the sum
of the following three quantities:

1.
2 2k−
i=1

|Si|

2. |S 2 1k− |

3.

n

i k=2 |Si|.

Let be the NCF obtained from by changing the canalyzed output in the rule for variableg f x2 1k− from b2 1k− to b2 1k− .
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We will show that the sums in Items 1 and 3 above have the same values for and . Subsequently, we will show thatf g

value of the term in Item 2 is larger for .g

Consider the sum in Item 1 above. Note that
2 2k−
i=1 |Si| =


k−1
j=1 (|S2 1j− | + |S2j |). For each j < k b, 2 1j− ̸= b2j, so from

Lemma 2.6, the value of |S2 1j− | + |S2j| is independent of the canalyzing output value in the rule for variable x2 1k− , and so is

the same for and . Thus, the value of the sum in Item 1 above is the same for and .f g f g

Consider the sum in Item 3 above. By , this sum is also independent of the canalyzing output value in the ruleLemma 2.5

for variable x2 1k− , and so is the same for and .f g

Now, consider the term in Item 2 above. Note thatW2k is the same for and . For half the assignments inf g W2k, we have

x2k = a2k, so the value of on all of these assignments isf b2k. Among the half of assignments inW2k for which x2k = a2k,

there are two that are also inWn. Since has complementary output values on these two assignments, there is at least onef

assignment inW2k with x2k = a2k for which has valuef b2k. Thus, for more than half of the assignments inW2k, the value

of isf b2k. These assignments are not in Z2k for , but are inf Z2k for . Therefore, the value ofg |Z2k | |for is greater thang Z2k |
for . Thus, from ,f Lemma 2.4 |S2 1k− | |for is greater thang S2 1k− | for .f

Considering all the three quantities above, we can conclude that the total sensitivity of is greater than thatg

of . f □

We end this section with a simple lemma which shows a property of the canalyzed value in the last rule of a simplified

representation of an NCF.

Lemma 2.8. Suppose an NCF f with n variables is specified using the simplified representation. For any z , there is a∈ {0 1, }

representation for f that satisfies both of the following conditions: (i) the rule in line n has z as the canalyzed value and (ii) the

rules in lines 1 through n remain unchanged.− 1

Proof. Let line of the representation of ben f

xn : an −→ bn.

If z b̸= n, we change line ton

xn : an −→ z

and the default line to

Default : z.

It can be seen that these modifications leave the function unchanged. f □

2.4. A characterization of NCFs with maximum average sensitivity

We can now state and prove our characterization of NCFs with the largest total (and hence average) sensitivity.

Theorem 2.9. Let f be an NCF with n variables specified using the simplified representation. Then f has the largest total sensitivity

iff the canalyzed value on each computational rule with a line number of the form k with k n is different from the canalyzed2 2 <

value on the rule which precedes it.

Proof. Lemma 2.7 Lemma 2.8implies the ‘‘only if’’ part. From , we can assume without loss of generality that the canalyzed

values on rules 1 and are different. If we pair odd numbered rules with their subsequent even numbered rules (if any),n− n

Lemma 2.6 says the sensitivity due to the variables in this pair of rules is independent of the actual rules. If is odd, thenn

variable xn is unpaired, but from Part (ii) of ,Lemma 2.2 |Sn| is always 2. The theorem follows. □

Our next theorem uses the above characterization to derive an expression for the maximum total sensitivity of NCFs.We

use the following observation in proving that theorem.

Observation 2.10. For any k ,≥ 1

k

p=1
22p = (4k+1 − 4)/3. □

Theorem 2.11. The total sensitivity f of an n-variable NCF f is at mostγ ( )
3
(2n − 1) if n is even and at most

3


2n −

2


if n

is odd.

Proof. Let be an NCFwith variables and the largest total sensitivity. By , wemay assume that in the definitionf n Theorem2.9

of , the canalyzed value on each computational rule with a line number of the form 2 with 2 is different from thef k k n<

canalyzed value on the rule which precedes it. We have two cases.
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Case 1: Suppose is even, so 2 for some . From , we can assume without loss of generality that then n = k k Lemma 2.8

canalyzed values on rules 1 and are different. The total sensitivity ( ) is given byn − n γ f

γ ( )f =

2k

i=1

|Si|

=

k

j=1

(|S2 1j− | + |S2j|)

=

k

j=1

22 2 2k− j+ (by Lemma 2.6).

Reindexing the last summation by letting 1 givesp k= + − j

γ ( )f =

k

p=1

22p

= (4k+1 − 4)/3 (by Observation 2.10)

=
4

3


2n − 1


(since 2 )n = k .

Case 2: Suppose that is odd, so 2 1 for some . The variables of can be paired except for the last. From Part (ii) ofn n = k+ k f

Lemma 2.2, |Sn| = 2. So, the total sensitivity γ ( ) is given byf

γ ( )f =

2 1k+

i=1

|Si|

= +2

k

j=1

(|S2 1j− | + |S2j|)

= +2

k

j=1

22 1 2 2k+ − j+ (by Lemma 2.6).

Reindexing the last summation by letting 1 givesp k= + − j

γ ( )f = +2

k

p=1

22 1p+

= +2 2

k

p=1

2
2p

= +2 2(4k+1− 4)/3 (by Observation 2.10)

= ·(4 2n − = +2)/3 (since n 2k 1)

=
4

3


2n −

1

2


.

This completes the proof of . Theorem 2.11 □

The following corollaries are immediate consequences of .Theorem 2.11

Corollary 2.12. The average sensitivityσ ( )f of an n variable NCF f is at most
3


1−

2n


if n is even and at most

3


1−

2n+1


if

n is odd. □

Corollary 2.13. The average sensitivity of any NCF is strictly less than . 4 3/ □

2.5. Additional observations

Klotz et al. [ ] obtain the following upper bound on average sensitivity9 σ ( ) of an NCF :f f

σ ( )f ≤
4

3
− 2−n−

1

3
2

−n
( 1)− n .
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When is even, the above expression becomes 4(1 1 2n − / n) 3.When is odd, the expression becomes 4(1 1 2/ n − / n+1) 3. Thus,/

our upper bound onσ ( ), stated in , exactly matches the one derived in [ ].f Corollary 2.12 9

Toshow that the upperbound is tight, two lowerbound examplesarepresented in [ , ]. Theseexamplesuse respectively9 14

the two alternating sequences 0 1 0 1 and 1 0 1 0 for the canalyzed values on consecutive rules of the⟨ , , , , . . . , ⟩ ⟨ , , , , . . . , ⟩

definition of the corresponding NCF. It readily follows from our characterization ( ) that these two sequencesTheorem 2.9

define NCFs with the largest average sensitivity. Our characterization, which captures sequences of canalyzing valuesall

that define NCFs with the largest average sensitivity, allows us to construct many other sequences to define such NCFs. For

example,when is amultiple of 4, eachof the twosequences of canalyzed values, namely 0 1 1 0 0 1 1 0 0 1 1 0n ⟨ , , , , , , , , . . . , , , , ⟩

and 1 0 0 1 1 0 0 1 1 0 0 1 , defines an NCF with the largest average sensitivity.⟨ , , , , , , , , . . . , , , , ⟩

2.6. Counting the number of NCFs with maximum average sensitivity

We now derive a closed form expression for the number of NCFs with variables and the largest average sensitivity.n

In proving this result ( ), we use (our characterization theorem), and the followingTheorem 2.15 Theorem 2.9 Lemma 2.8

observation.

Observation 2.14. Suppose an NCF f with n variables is specified using the simplified representation. For any q and for any≥ 2

i, i n q , if the q consecutive lines i, i , i q have the same canalyzed value, then the function remains1 ≤ ≤ − + 1 + 1 . . . , + − 1
unchanged if these q lines are permuted in any order without changing the other lines. □

We can now state and prove the main result of this section.

Theorem 2.15. For any n , let n denote the number of NCFs with n variables and maximum average sensitivity.≥ 1 Γ ( )

Then,

Γ ( )n =






2 if 1n =

8 if 2n =

4

3
n! 6⌊ ⌋n/2

if is odd and 3n ≥

16

27
n! 6n/2 if is even and 4n ≥ .

Proof. Wewill consider the above four cases separately.

Case 1: 1.n =

For 1, it can be seen from that the maximum average sensitivity is 1. Of the four possible Booleann = Corollary 2.12

functions of onevariable, it can beverified that there are exactly two NCFswith average sensitivityof 1: the functionidentity

defined by the rule 0 −→ −→0 (with default value 1) and the function defined by the rule 0complement 1 (with default

value 0).

Case 2: 2.n =
For 2, it can be seen from that the maximum average sensitivity is 1. By , we may assumen = Corollary 2.12 Lemma 2.8

that the canalyzed values on lines 1 and 2 are equal. Thus, for the first line, there are two choices for the canalyzing value

and two choices for the canalyzed value, giving a total of four choices. For each such choice, there are two choices for the

canalyzing value on the second line but only one choice for the canalyzed value on that line. This gives a total of eight choices

for the two lines. It can be verified that each of these eight choices leads to a distinct function with the maximum average

sensitivity of 1.

Case 3: is odd and 3.n ≥
Let 2 1 for some integer . Suppose we partition lines 1 through of the simplified representation of an NCFn = r + r n

into 1 blocks, where Block 0 consists only of line 1 and each of the remaining blocks (numbered 1 through ) consistsr + r r

of two consecutive lines numbered 2 and 2 1, 1 . We now evaluate the number of possible choices of rulesk k + ≤ k r≤

for each of these blocks in three stages: choices for Block 0, Blocks 1 through 1 and Block . (The last block needs to ber − r

considered separately since by , the two lines of the block can be assumed to have the same canalyzed values. ForLemma 2.8

1 1, the two lines in Block need not have the same canalyzed value.)≤ i r≤ − i

(i) 0: Recall that this block consists only of line 1. There are ways to choose the variable tested in line 1. For eachBlock n

such choice, there are two ways to choose the canalyzing value and two ways to choose the canalyzed value on that

line. Thus, there are 4 choices for the rule in Block 0. In other words, Block 0 contributes the factor 4 towards then n

required number of functions ( ).Γ n
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(ii) , where 1 1: Recall that Block consists of lines 2 and 2 1.Block k ≤ k r≤ − k k k +
When this block is considered, 2 1 test variables have been chosen for lines 1 through 2 1. Thus, lines 2k − k − k

and 2 1 use two of the remaining 2 1 variables. Hence, there are ( 2 1 2) choicesk+ n− k+ C n− k+ , 1 for the two test
variables on lines 2 and 2 1. Consider one such choice and letk k+ xα and xβ denote the two test variables used in Block

k. We have two subcases.
Subcase 3.(ii).1: Lines 2 and 2 1 have canalyzed values (i.e.,k k + different b2k ̸= b2 1k+ ).
Here, the two variables xα and xβ can be permuted in two ways between lines 2 and 2 1. For each suchk k +

permutation, there are two choices each for the canalyzing values in lines 2 and 2 1. However, there is only onek k+
choice for the canalyzed values on these lines since the canalyzed value on line 2 must bek b2 1k− (by ) andTheorem 2.9

that on line 2 1 must bek+ b2 1k− (by our assumption for this subcase). So, we get 2 2 2 = 8 choices in this subcase.× ×
Subcase 3.(ii).2: Lines 2 and 2 1 have the canalyzed value (i.e.,k k + same b2k = b2 1k+ ).

Here, by , permuting the two variables does not produce different functions. There are two choicesObservation 2.14

each for the canalyzing values on the two lines and only one choice for the canalyzed values on these lines (since they

must both be b2 1k− ). So, we get 2 2 = 4 choices in this subcase.×
Combining the two subcases, we conclude that for 1 1, Block contributes the factor 12 ( 2 1 2)≤ k r≤ − k C n − k + ,

= 6 ( 2 1)( 2 ) towards ( ).n− k + n − k Γ n
(iii) : Recall that this block consists of lines 2 1 and 2 1 .Block r r n= − r + = n

By , the canalyzed value on line 1 must beTheorem 2.9 n − bn−2, the complement of the canalyzed value on line
n n b− 2. From , we may assume that the canalyzed value on lineLemma 2.8 is also n−2. Thus, from , itObservation 2.14
follows that the function remains the same when lines 1 and 2 are permuted. Thus, we have two choices eachn− n−
for the canalyzing values on lines and 1 and only one choice for the canalyzed values on these lines. Therefore,n n −
Block contributes the factor of 4 towards ( ) in this case.r Γ n

In summary, when is odd and 3, the contributions of the various blocks towards ( ) are as follows: (a) Block 0n ≥ Γ n

contributes the factor 4 , (b) for each , 1 1, Block contributes the factor 6 ( 2 1)( 2 ) and (c)n k ≤ k r≤ − k n − k + n − k

Block contributes the factor 4. Therefore, for this case,r

Γ ( ) = 4n n×


r−1

k=1

6 ( 2 1)( 2 )n− k + n − k



× 4

= 16 6× r−1 × [n n n n r n r( − 1)( − 2) (. . . − 2 + 3)( − 2 + 2)]

= 16 6× ⌊ ⌋−n/2 1 × [n n n( − 1)( − 2) 4 3. . . · ] (since 2 1)n = r +
= (4 3) 6/ × ⌊ ⌋n/2 × !n

as indicated in the statement of the theorem.

Case 4: is even and 4.n ≥
Let 2 for some integer 2. We partition the -line simplified representation of an NCF into blocks, numbered 0n = r r ≥ n r

through 1 as follows: Block 0 consists only of line 1, each of the next 2 blocks (numbered 1 through 2) consists ofr − r − r −
two consecutive lines numbered 2 and 2 1, 1 2 and the last block consists of three lines, namely lines 2,k k+ ≤ k r≤ − n−
n n− 1 and . As in Case 3, we evaluate the number of possible choices of rules for each of these blocks in three stages.

(i) 0: As in Case 3(i), the number of choices contributed by this block is 4 .Block n

(ii) , where 1 2: As in Case 3(ii), the number of choices contributed by Block is 6 ( 2 1)( 2 ).Block k ≤ k r≤ − k n− k+ n− k

(iii) 1: This block consists of three lines, namely 2, 1 and . LetBlock r − n − n − n bn−2, bn−1 and bn denote the respective

canalyzed values. By ,wemayassume thatLemma 2.8 bn−1 = bn. By ,Theorem 2.9 bn−3 ̸= bn−2 .Wehave two subcases
depending on the values of bn−2 and bn−1 .

Subcase 4.(iii).1: Lines 2 and 1 have canalyzed values (i.e.,n − n − different bn−2 ̸= bn−1).
There are three choices for the test variable on line 2. There are two choices for the canalyzing value on eachn −

of the three lines in Block 1, but only one choice for the canalyzed value on each line (sincer − bn−3 ̸= bn−2 and

bn−2 ̸= bn−1 ). So, this subcase contributes 3 2× 3 = 24 choices.

Subcase 4.(iii).2: Lines 2 and 1 have the canalyzed value (i.e.,n − n − same bn−2 = bn−1).

Here, since all the three lines have the same canalyzed value, by , permuting test variables has noObservation 2.14

effect on the function. There are two choices for the canalyzing value on each of the three lines in Block 1, but onlyr −
one choice for the canalyzed value on each line (since bn−3 ̸= bn−2 and bn−2 = bn−1). So, this subcase contributes 2

3

= 8 choices.
Hence, the two subcases together contribute 24 8 = 32 choices.+

In summary, when is even and 4, the contributions of the various blocks towards ( ) are as follows: (a) Block 0n ≥ Γ n

contributes the factor 4 , (b) for each , 1 2, Block contributes the factor 6 ( 2 1)( 2 ) and (c) Blockn k ≤ k r≤ − k n− k+ n− k r

contributes the factor 32. Therefore, for this case,

1 For nonnegative integers and , where , we use ( ) to denote the Binomial coefficientp q p q≥ C p q,

p

q


, whose value is given by ( ) .p! [/ p q− !q!]
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Γ ( ) = 4n n×


r−2

k=1

6 ( 2 1)( 2 )n− k + n − k



× 32

= 128 6× r−2 × [n n n n r n r( − 1)( − 2) (. . . − 2 + 5)( − 2 + 4)]

= 128 6× ( 2) 2n/ − × [n n n( − 1)( − 2) 5 4. . . · ] (since 2 )n = r

= 128 6× ( 2) 3n/ − × !n

= (16 27) 6/ × n/2 × !n .

This completes the proof of . Theorem 2.15 □

3. Concluding remarks

Wepresented anelementaryproof of the conjecturebyLi et al. [ , ] that theaverage sensitivityof anyNCF is strictly less13 14

than 4/3. Our approach provides a characterization of NCFs with the largest average sensitivity. The upper bound resulting

from our method exactly matches the one derived in [ ] using Fourier analysis of Boolean functions. We also derived an9

expression for the number of NCFs with the largest average sensitivity. Our current work [ ] focuses on the analysis of17

discrete dynamical systems whose local functions are specified as NCFs.
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