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1. Definitions, problem formulation and prior work
1.1. Nested canalyzing functions

Boolean functions arise in many different application areas (see, for example [2,3]). A class of Boolean functions, called
nested canalyzing functions (NCFs), was introduced in [7] to model the behavior of certain biological systems. We follow
the presentation in [ 10] in defining such a Boolean function. (For a Boolean value b, the complement is denoted by b.)

Definition 1.1. LetX = {x1, x2, ..., Xn} denote a set of nBoolean variables. Let r be a permutation of {1, 2, ..., n}. ABoolean
function f(x;, x5, ..., X,) over X is nested canalyzing in the variable order X,(1), X;(2), . . . , Xz(n) With canalyzing values
ai, a, ..., ap and canalyzed values b1, by, .. ., by if f can be expressed in the following form:

b1 lf Xﬂ(]) =
b, if X;1) # @ and x;0) = @y
fi %, %) = { ¢
by if ) # @ and ... Xppoqy # iy and Xy = @y
bn if Xz(1) # a1 and ... Xz(n) # Gu
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Fig. 1. The hypercube for the 3-variable Boolean function f(x;, x5, X3) = X1 V (X, A x3). The value of the function f for each of the eight assignments is
also shown. Edges of the hypercube where the end points have different values for f are shown as dashed lines. The table shows the sensitivity of each
assignment to function f.

For convenience, we will use a computational notation to represent NCFs. For 1 < i < n, line i of our representation has
the following form:

Xn@) + G —> bi

We say that x,(; is the canalyzing variable that is tested in line i, with a; and b; denoting respectively the canalyzing and
canalyzed values in line i as before, 1 < i < n. We refer to each such line as a rule. When none of the conditions “x,; = @”
is satisfied, we have line n + 1 with the “Default” rule for which the canalyzed value is b,:

Default: b,

In the remainder of this paper, we will refer to the above specification of an NCF as the simplified representation
and assume (without loss of generality) that each NCF is specified in this manner. The simplified representation provides
the following convenient computational view of an NCF. Lines defining an NCF are considered sequentially in a top-down
manner. The computation stops at the first line where the specified condition is satisfied, and the value of the function is the
canalyzed value on that line. We now present an example of an NCF using the two representations mentioned above.

Example 1. Consider the function f(x1, X2, X3) = X1 V (X2 A x3). This function is nested canalyzing using the identity
permutation 7z on {1, 2, 3} with canalyzing values 1, 0, 0 and canalyzed values 1, 0, 0. We first show how this function can
be expressed using the syntax of Definition 1.1.

[1 ifxlzl
_Jo ifx; Z#1andx, =0
fx 2, %) = 4 g if X, # 1and x, # 0 and x3 =0
1 if x; # 1and x; # 0 and x3 # 0

A simplified representation of the same function is as follows.

Xx1:1 — 1
Xx:0 — 0
X3:0—>O
Default: 1

Many researchers have studied mathematical properties of NCFs and pointed out the importance of NCFs in modeling
biological phenomena (e.g., [7,8,10-14]). Since our focus is on the sensitivity of NCFs, we now introduce the relevant
concepts.

1.2. Sensitivity of a Boolean Function

Consider a Boolean function f(x;, %, .. ., x,) of n variables. An assignment « is a vector (a;, ay, ..., a,), with g; € {0, 1}
being the value assigned to variable x;, 1 < i < n. Let H, denote the hypercube formed by the 2" different assignments in the
following manner: each node of H, represents an assignment, and there is an edge between two nodes if the corresponding
assignments differ in exactly one bit (i.e., the Hamming distance between the two assignments is equal to 1). An example
of the hypercube for the 3-variable Boolean function f(xq, X5,%3) = Xx; V (X3 A X3) (used in Example 1) is shown in
Fig. 1.

With a slight abuse of notation, we let f(v) denote the value of the function f for the assignment represented by the node
v € Hp. We can now define the necessary concepts related to the sensitivity of the Boolean function f as follows.
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Definition 1.2. Consider a Boolean function f(x1, X2, .. ., Xp) of n variables. Let H, denote the hypercube formed by the 2"
assignments to the variables of f.

(i) For any assignment v, the sensitivity of v, denoted by q(v), is the number of neighbors w of v in H, such that
f(v) # f(w).Formally, g(v) = [{w : w is aneighbor of v in Hyand f(w) # f(v)}].

(ii) The sensitivity of the functionf, denoted by o (f), is the largest sensitivity value over all the assignments to f. Formally,
o(f) = max{q(v) : v € H,}.

(iii) The total sensitivity of the function f, denoted by y (f), is the sum of the sensitivity values over all the assignments to
f.Formally, y(f) = Zean(v).

(iii) The average sensitivity of the function f, denoted by o (f), is the ratio of the total sensitivity of f to 2" (the total number
of assignments to f). Formally, o(f) = y(f)/2"

Example 2. Consider again the 3-variable NCF f(x;, x,, X3) = X1 V (x3 A X3). The hypercube corresponding to this function
is shown in Fig. 1. The figure also shows the sensitivity of each assignment to the function f. From the table, it can be seen
that the sensitivity of f is 2 and its total sensitivity is 10. Hence, the average sensitivity of f is 10/23 = 5/4.

1.3. Related work and our contributions

There is extensive literature on the sensitivity of various classes of Boolean functions (e.g., [1,15,18]). For a discussion on
how the stability of a Boolean network is related to the sensitivities of the update functions used in the network, the reader
is referred to [8,10,11]. Observations regarding the relationship between the sensitivity and the computational complexity
of a Boolean function are presented in [1,15]. Li and Adeyeye [12] present lower and upper bounds on the sensitivity of any
NCF. Li et al. [ 13,14] conjectured that the average sensitivity of any NCF is strictly less than 4/3. This conjecture was proved
by Klotz et al. [9] by establishing a tight upper bound on the average sensitivity of any NCF. Their methods rely on Fourier
analysis of Boolean functions [16].

In this paper, we derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms
of a simple structural property of the NCF. In particular, we prove that an NCF has the largest average sensitivity iff the
canalyzed value in every even canalyzing line in its simplified representation is the complement of the canalyzed value in
the preceding odd line, except for the last line when the number of variables is even. (It is permissible for the canalyzed
value in an odd numbered line to be the same as the one in the preceding even numbered line.) A formal statement of this
property is provided in Theorem 2.9. This characterization leads to an alternate, but elementary, proof of the tight upper
bound established in [9] on the average sensitivity of any NCF. We also utilize the characterization to derive a closed form
expression for the number of NCFs that have the largest average sensitivity.

Researchers have also studied the class of k-canalyzing functions, which generalize the class of nested canalyzing
functions [4,5]. A k-canalyzing function of n > k variables specifies canalyzing rules for k of the variables, and the default line
specifies a Boolean function of the remaining n — k variables. The parameter k is referred to as the canalyzing depth. Thus, a
nested canalyzing function of n variables has a canalyzing depth of n. He and Macauley [4] develop techniques that provide
an algebraic characterization of all Boolean functions in terms of their canalyzing depth; they use this characterization
to obtain a closed form expression for the number of n-variable Boolean functions with a canalyzing depth of k. Kadelka
et al. [5] study a more general notion of sensitivity (called c-sensitivity) for k-canalyzing functions. They show that the
stability of a Boolean network whose update functions are k-canalyzing functions can be expressed as a weighted sum of
the c-sensitivities of the update functions. In another paper, Kadelka et al. [6] study a different generalization of nested
canalyzing functions where the values of the variables and the functions are from a finite field whose number of elements
is a prime. They present a parameterized polynomial form for such functions and show how the representation is useful in
computing several characteristics (e.g., the c-sensitivity and network stability) of generalized nested canalyzing functions.

2. NCFs with maximum average sensitivity: a structural characterization
2.1. Notation and terminology

Let f(x1, X2, ..., Xn) be a Boolean function of n variables specified as an NCF. Throughout this section, we will assume that
f is specified using the simplified representation for NCFs introduced in Section 1. Without loss of generality, we assume
that the nested canalyzing order is (xq, x5, ..., x5) SO that x; is the canalyzing variable being tested in linei, 1 <i < n.
Further, let s — b be the ruleon linei, 1 < i < n. As in Section 1.2, an assignment « is a vector (a;, ay, ..., a,), with
a; € {0, 1} being the value assigned to variable x;, 1 < i < n. Given an assignment «, the value assigned by « to the variable
X; is denoted by «(x;).

2.2. Proof outline for our results

We show that for any n, any NCF f with n variables has maximum total sensitivity (and hence maximum average
sensitivity) if and only if each even numbered rule (with the possible exception of the last rule when n iseven) has a different
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Table 1
Values of sets from Definition 2.1 for the NCF f(x1, Xy, X3) = X V (X3 A X3).
Set  Value
S {(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0, 1)}
S {(0,0,1),(0,1, 1)}
S3 {(0,1,0),(0,1, 1)}
W, {(0,0,0),(0,0,1),(0, 1,0),(0,1,1),(1,0,0),(1,0, 1), (1,1, 0),(1, 1, 1)}
W, {(0,0,0),(0,0,1),(0, 1,0),(0, 1, 1)}
Wi {(0,1,0),(0,1, 1)}
V53 {(0,0,0),(0,0,1),(0, 1,0)}
Z3 {(Ov lv 1)}

canalyzed value compared to the preceding rule. This result (Theorem 2.9) provides a characterization of NCFs with the
largest average sensitivity. To prove this result, we define certain subsets of assignments to f and establish some properties
of these sets. In turn, these properties allow us to prove some relationships (Lemmas 2.5-2.7) between the rules used to
define an NCF f and its total sensitivity y(f). Once Theorem 2.9 is established, we obtain closed form expressions for the
maximum total sensitivity (Theorem 2.11) for odd and even values of n using simple summations.

2.3. Definitions and lemmas used to establish our characterization

We begin with the definitions of some subsets of assignments to an NCF f.

Definition 2.1.

(a) For1 <i <n, S; denotes the set of assignments « such that complementing the value of «(x;) changes the value of f.
(b) For1 <i <n, W; denotes the set of assignments « such that forallj, 1 <j <i, a(x;) = .
(c) For2 <i <n, Z; denotes the set of assignments « € W; such thatf(«) = b;_;.

As will be shown (Lemma 2.2), sets S;, 1 < i < n, determine the total sensitivity of f. Set W; contains all the 2"
assignments to f. For 1 < i < n and for any assignment « ¢ W, complementing any of the bits in positions i through
n cannot change the value of f. Sets Z;, 2 < i < n, help in establishing some relationships among the sizes of sets
Si 1 <i<n (Lemmas 2.5-2.7).

Example 3. Consider the function f(x{, X,, X3) = X; V (X, A X3) from Examples 1 and 2. For this function, the values of the
various sets are shown in Table 1. These values can be verified using the NCF representation of f presented in Example 1 and
the hypercube shown in Fig. 1.

The following lemma points out some properties of sets S;, 1 <i <n.
Lemma 2.2. (i) The total sensitivity of f is given by y(f) = 2;1|51~|. (ii) 1S,] =

Proof. To prove Part (i), consider the hypercube representation of the function f. Each edge {u, v} of the hypercube where
f(u) # f(v)contributes 2 to the total sensitivity y(f), and the other edges do not contribute to y(f). For any edge {u, v}
where f(u) # f(v),the assignments corresponding to u and v differ in exactly in one position, say positioni. By the definition
of Si, the assignments corresponding to u and v appear in set S. Thus, y (f) = Y__,ISil.

To prove Part (ii), we consider the given NCF representation of f and observe that the two assignments

(a1, az, ..., @Gn—1, 0)and (a1, @, ..., Gn_1, 1)

are both in S,,. Any other assignment has the value g; in position i for some i < n, so the value of f is determined before line
n of the NCF representation is reached. Thus, for any such assignment, the value of f remains unchanged when the bit in
position n is complemented. Therefore, such an assignment is not in S,,, and hence |S,| = 2. O

We now prove some lemmas that point out properties of sets S;, W; and Z, 1 <i <n.
Lemma23. (i)For 1 <i<n, |W;| = 2", (ii) For 1<i<n, S; C W,

Proof. Part (i) follows from the fact that W; has one member for each assignment of values to the last n — i 4 1 variables.

For Part (ii), consider any assignment « ¢ W,;. We will show that @ ¢ S;. Since « ¢ W;, there is aj < i such that
a(x;) = a;. Let j be the smallest such value. Then, f(a) = by, and the value of f remains unchanged if the value of variable x;
is complemented. So, o ¢ S;. O

Please cite this article in press as: R.E. Stearns, et al., A characterization of nested canalyzing functions with maximum average sensitivity, Discrete Applied
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Lemma24. For 1 <i<n, |Si| = 2|Z41].

Proof. From Part (ii) of Lemma 2.3, S; € W,. Consider an assignment « in W;. There are two cases.

Case 1: «(x;) = a.Hence, f(«) = b;. Let & be the assignment obtained from « by changing x; to @;. Note that & € W, .

Changing the value of x; in o changes the value of f iff f(&) = b;, thatis, iff & € Z,;. Thus, the number of assignments «
inS;witha(x;) = a equals |Z]|.

Case 2: a(x;) = @;. In this case, note that @ € W ;. Changing the value of x; in o makes f have value b;, and so changes the
value of f iff f(«) = b, thatis, iff @ € Z ;. Thus, the number of assignments in S; with «(x;) = @;is also equal to |Z;,|.
The lemma follows. O

Lemma 2.5. Foranyn > landanyi, 1 <i <n, let f and g be two NCFs with the same sequence of n canalyzing variables, and
identical rules for variables x;, X, 1, . . ., X,,. Let Slf denote set S; for f and S¢ denote set S; for g. Then, |S’;| = |S?].

Proof. If i = n, then from Part (ii) of Lemma 2.2, |Sl.f| = |S‘ig| = 2.So,assume thati < n.For1 <j < n,let W]f and ij denote
sets W and Z; for f, and let ajf denote the canalyzing value of the rule for x; for f. Similarly, let W]‘-g and ng denote sets W;
and Z; for g, and leta }’.” denote the canalyzing value of the rule for x; for g. Consider an assignment o in Zif - Let af be the

assignment where x; = a}g for 1 < j < i,and x; has the same value as in of fori < j < n.Since f and g have identical rules for

variables xj, Xi11, . . ., Xn, assignment o is in WEH and g(e®) = f(of). Thus, o8 € Z,-il.Therefore, for each assignment in Z{H,
. . . . . g g f .. f g f g
there is a unique corresponding assignment in Z;, ,. Hence, |Z/ ;| > |Z ,|. Similarly, |Z; | > |Z] | Thus, |Z; || = |Z]I.

The result now follows from Lemma 2.4. O
Lemma 2.6. Foranyi, 1 <i <n, if bi # bit1, then |Si| + [Sit1] = 2"+,

Proof. Assume b; # b;, . Consider an assignment « in S;U S;, 1. From Part (ii) of Lemma 2.3, we can assume that « is of the
form

(ai, ..., Gi_1, Ci, Ciz1s Cizas ---» Cn).

We partition the 21 assignments of this form into four groups, based on the values of ¢; and ¢+ 1. Each of these four groups
contains 2"~ assignments. For each such group, we now compute the number of assignments contributed by the group
tosets S and Si; 4.

Group 1: ¢ = a; and ¢i+1 = ai+1. Then f(a) = bi, o € S, and « ¢ Sit1. Group 1 adds on—i—1 assignments to §;, and none to

Sit1-

Group 2: ¢ = ¢ and cit1 = Gi+1. Then f(«) = by, o &€ Sit1,and o € §; iff for the Group 4 assignment o =
(ar,...,G-1, @, Ait1, Gi+2, ..., Cn), f(a’) = b;. Group 2 adds some assignments to S;, whose number is discussed below,
and none to S;_ ;.

Group 3: ¢; = @ and ciy1 = ait1. Then f(a) = bit1, @ € Si, and @ € Sitq iff for the Group 4 assignment o’ =
(@i, ..., Tq_q, i Gigq, Cigas -+ - » Cn ) f(@') = bi. Group 3 adds 2"~ assignments to S;, and some assignments to S;. ;, whose

number is discussed below.

Group4: ¢; = G and ¢ = Gyq.Thena € S;ifff(a) = b, and « € S, iff f(a) = b;. Each of the 2"~"~! Group 4 assignments
is added to either S; or S, ;, but not both. Thus, Group 4 adds a total of 2"~ assignments to the sum |S;] + |Si 1].
Corresponding to each of the 2"—~1 Group 4 assignments, there is either a Group 2 assignment added to S;, or a Group 3
assignment added to Si+1, but not both. Thus, the number of Group 2 assignments added to S; plus the number of Group 3
assignments added to S;yq is 2",
When all four groups are considered, the total value of the sum |Si| + |S;,|is2"*'. O

Lemma 2.7. Consider a given n variable NCF f such that thereisak, 1 < k < n/2, with by,_1 = b . Then there is another NCF
g with the same number of variables such that the total sensitivity of g is greater than that of f.

Proof. Let k be the smallest value such that k < n/2 and b,;_; = bak. Then the total sensitivity y(f) = Z?zl |Si| is the sum
of the following three quantities:

1. YIS
2. |Sak-1]
3. Y iLalSil

Let g be the NCF obtained from f by changing the canalyzed output in the rule for variable x,,_; from by,_; to by,_4.
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We will show that the sums in Items 1 and 3 above have the same values for f and g. Subsequently, we will show that
value of the term in Item 2 is larger for g.

Consider the sum in Item 1 above. Note that Zizil_2|5,-| = ]l;l(|52]'_1 | + |Sj]). For each j < k, byj—1 # boj, so from
Lemma 2.6, the value of |S,;_;| + [Sj| is independent of the canalyzing output value in the rule for variable x,;_;, and so is
the same for f and g. Thus, the value of the sum in Item 1 above is the same for f and g.

Consider the sum in Item 3 above. By Lemma 2.5, this sum is also independent of the canalyzing output value in the rule
for variable x,,_4, and so is the same for f and g.

Now, consider the term in Item 2 above. Note that W5 is the same for f and g. For half the assignments in W5, we have
X2k = @, sothe value of f on all of these assignments is by,. Among the half of assignments in Wy for which xo, = @,
there are two that are also in W,,. Since f has complementary output values on these two assignments, there is at least one
assignment in Wy, with o = g for which f has value by. Thus, for more than half of the assignments in Wy, the value
of f is b, These assignments are not in Zy, for f, but are in Z,;, for g. Therefore, the value of |Z,;| for g is greater than |Z,|
for f. Thus, from Lemma 2.4, |Sy,_1]| for g is greater than |S,,_4| for f.

Considering all the three quantities above, we can conclude that the total sensitivity of g is greater than that
off. O

We end this section with a simple lemma which shows a property of the canalyzed value in the last rule of a simplified
representation of an NCF.

Lemma 2.8. Suppose an NCF f with n variables is specified using the simplified representation. For any z € {0, 1}, there is a
representation for f that satisfies both of the following conditions: (i) the rule in line n has z as the canalyzed value and (ii) the
rules in lines 1 through n — 1 remain unchanged.

Proof. Let line n of the representation of f be
X,: a, — b,

Ifz # b,, we change line n to
Xn: Qn —> Z

and the default line to
Default : z.

It can be seen that these modifications leave the function f unchanged. O

2.4. A characterization of NCFs with maximum average sensitivity

We can now state and prove our characterization of NCFs with the largest total (and hence average) sensitivity.

Theorem 2.9. Let f be an NCF with n variables specified using the simplified representation. Then f has the largest total sensitivity
iff the canalyzed value on each computational rule with a line number of the form 2k with 2k < n is different from the canalyzed
value on the rule which precedes it.

Proof. Lemma 2.7 implies the “only if” part. From Lemma 2.8, we can assume without loss of generality that the canalyzed
values on rules n — 1 and n are different. If we pair odd numbered rules with their subsequent even numbered rules (if any),
Lemma 2.6 says the sensitivity due to the variables in this pair of rules is independent of the actual rules. If n is odd, then
variable x, is unpaired, but from Part (ii) of Lemma 2.2, |S,]| is always 2. The theorem follows. O

Our next theorem uses the above characterization to derive an expression for the maximum total sensitivity of NCFs. We
use the following observation in proving that theorem.

Observation 2.10. Foranyk > 1, Y0 2% = (4+1—4)/3. D

Theorem 2.11. The total sensitivity y () of an n-variable NCF f is at most % (2" — 1) if nis even and at most % (2” — %) if n
is odd.

Proof. Let f be an NCF with n variables and the largest total sensitivity. By Theorem 2.9, we may assume that in the definition
of f, the canalyzed value on each computational rule with a line number of the form 2k with 2k < n is different from the
canalyzed value on the rule which precedes it. We have two cases.

Please cite this article in press as: R.E. Stearns, et al., A characterization of nested canalyzing functions with maximum average sensitivity, Discrete Applied
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Case 1: Suppose n is even, so n = 2k for some k. From Lemma 2.8, we can assume without loss of generality that the
canalyzed values on rules n — 1 and n are different. The total sensitivity y (f) is given by

2k

y(f) =Y ISl
i=1

k
= (S 1+ IS,

=1
k
= Z 22k=2i+2 (by Lemma 2.6).
j=1

Reindexing the last summation by lettingp = k 4+ 1 — j gives

k
y() =) 2*
p=1

= (4“1 —4)/3 (by Observation 2.10)

:%1 (2" —1) (sincen = 2k).

Case 2: Suppose that nis odd, so n = 2k 4 1 for some k. The variables of f can be paired except for the last. From Part (ii) of
Lemma 2.2, |Ss| = 2. So, the total sensitivity y (f) is given by

2k+1

v(f) =Y Isil

i=1

k
=2+ (IS-1]+ 15])
=1
k
=24 Z 2212142 (hy Lemma 2.6).
=1

Reindexing the last summation by lettingp = k + 1 — j gives

k
y(f) =2+ 27"
p=1

k
=2+2) 2%
p=1

= 2 +2(4*1 — 4)/3 (by Observation 2.10)
=(4-2" —-2)/3 (sincen = 2k+1)

_A (]
3 2)
This completes the proof of Theorem 2.11. O

The following corollaries are immediate consequences of Theorem 2.11.

Corollary 2.12. The average sensitivity o (f ) of an n variable NCF f is at most % (1 - 2%) if nis even and at most % (1 - ) if
nisodd. O

Corollary 2.13. The average sensitivity of any NCF is strictly less than 4/3. O

2.5. Additional observations

Klotz et al. [9] obtain the following upper bound on average sensitivity o' (f ) of an NCF f:

4 1
of) < - —27"— —27"—1).
(f)_3 3 (=1)
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When nis even, the above expression becomes 4(1 —1/2")/3. When n is odd, the expression becomes 4(1—1/2""1)/3. Thus,
our upper bound on & (f), stated in Corollary 2.12, exactly matches the one derived in [9].

To show that the upper bound is tight, two lower bound examples are presented in [9,14]. These examples use respectively
the two alternating sequences (0, 1,0,1,...,) and (1,0, 1,0, ...,) for the canalyzed values on consecutive rules of the
definition of the corresponding NCF. It readily follows from our characterization (Theorem 2.9) that these two sequences
define NCFs with the largest average sensitivity. Our characterization, which captures all sequences of canalyzing values
that define NCFs with the largest average sensitivity, allows us to construct many other sequences to define such NCFs. For
example, when nis amultiple of 4, each of the two sequences of canalyzed values, namely (0,1, 1,0,0,1,1,0,...,0,1,1,0)
and (1,0,0,1,1,0,0,1, ..., 1,0, 0, 1), defines an NCF with the largest average sensitivity.

2.6. Counting the number of NCFs with maximum average sensitivity

We now derive a closed form expression for the number of NCFs with n variables and the largest average sensitivity.
In proving this result (Theorem 2.15), we use Theorem 2.9 (our characterization theorem), Lemma 2.8 and the following
observation.

Observation 2.14. Suppose an NCF f with n variables is specified using the simplified representation. For any q > 2 and for any
i,1 <i<n-—q+1,ifthe qconsecutive linesi,i+ 1, ..., i+ q — 1 have the same canalyzed value, then the function remains
unchanged if these q lines are permuted in any order without changing the other lines. O

We can now state and prove the main result of this section.

Theorem 2.15. For any n > 1, let I'(n) denote the number of NCFs with n variables and maximum average sensitivity.
Then,

2 ifn=1
8 ifn=2
I'n) = g n! 6t/ ifnisoddand > 3
16 e
> n! 62 ifnis evenand > 4.

Proof. We will consider the above four cases separately.

Casel: n=1.

For n = 1, it can be seen from Corollary 2.12 that the maximum average sensitivity is 1. Of the four possible Boolean
functions of one variable, it can be verified that there are exactly two NCFs with average sensitivity of 1: the identity function
defined by the rule 0 — 0 (with default value 1) and the complement function defined by the rule 0 — 1 (with default
value 0).

Case2: n=2.

Forn = 2, it can be seen from Corollary 2.12 that the maximum average sensitivity is 1. By Lemma 2.8, we may assume
that the canalyzed values on lines 1 and 2 are equal. Thus, for the first line, there are two choices for the canalyzing value
and two choices for the canalyzed value, giving a total of four choices. For each such choice, there are two choices for the
canalyzing value on the second line but only one choice for the canalyzed value on that line. This gives a total of eight choices
for the two lines. It can be verified that each of these eight choices leads to a distinct function with the maximum average
sensitivity of 1.

Case 3: nisodd and > 3.

Let n = 2r 4 1 for some integer r. Suppose we partition lines 1 through n of the simplified representation of an NCF
intor + 1 blocks, where Block 0 consists only of line 1 and each of the remaining r blocks (numbered 1 through r) consists
of two consecutive lines numbered 2k and 2k + 1, 1 < k < r. We now evaluate the number of possible choices of rules
for each of these blocks in three stages: choices for Block 0, Blocks 1 through r — 1 and Block r. (The last block needs to be
considered separately since by Lemma 2.8, the two lines of the block can be assumed to have the same canalyzed values. For
1 <i<r — 1,the two lines in Block i need not have the same canalyzed value.)

(i) Block 0: Recall that this block consists only of line 1. There are n ways to choose the variable tested in line 1. For each
such choice, there are two ways to choose the canalyzing value and two ways to choose the canalyzed value on that
line. Thus, there are 4n choices for the rule in Block 0. In other words, Block 0 contributes the factor 4n towards the
required number of functions I"(n).

Please cite this article in press as: R.E. Stearns, et al., A characterization of nested canalyzing functions with maximum average sensitivity, Discrete Applied
Mathematics (2018), https://doi.org/10.1016/j.dam.2018.05.014.




R.E. Stearns et al. / Discrete Applied Mathematics Il (REER) INE-REN 9

(ii) Block k, where 1 < k <r — 1: Recall that Block k consists of lines 2k and 2k + 1.

When this block is considered, 2k — 1 test variables have been chosen for lines 1 through 2k — 1. Thus, lines 2k
and 2k + 1 use two of the remaining n — 2k + 1 variables. Hence, there are C(n — 2k + 1, 2) choices' for the two test
variables on lines 2k and 2k + 1. Consider one such choice and let x, and xs denote the two test variables used in Block
k. We have two subcases.

Subcase 3.(ii).1: Lines 2k and 2k + 1 have different canalyzed values (i.e., by, # bari1).

Here, the two variables X, and xz can be permuted in two ways between lines 2k and 2k + 1. For each such
permutation, there are two choices each for the canalyzing values in lines 2k and 2k + 1. However, there is only one
choice for the canalyzed values on these lines since the canalyzed value on line 2k must be b,,_; (by Theorem 2.9) and
that on line 2k + 1 must be b,,_; (by our assumption for this subcase). So, we get 2 x 2 x 2 =8 choices in this subcase.

Subcase 3.(ii).2: Lines 2k and 2k + 1 have the same canalyzed value (i.e., by, = byry1)-

Here, by Observation 2.14, permuting the two variables does not produce different functions. There are two choices
each for the canalyzing values on the two lines and only one choice for the canalyzed values on these lines (since they
must both be byk—1). So, we get 2 x 2 =4 choices in this subcase.

Combining the two subcases, we conclude that for 1 < k < r — 1, Block k contributes the factor 12 C(n — 2k + 1, 2)
= 6(n— 2k + 1)(n — 2k) towards I"(n).
(iii) Blockr: Recall that this block consists of lines2r =n— land2r +1 =n.

By Theorem 2.9, the canalyzed value on line n — 1 must be b,_,, the complement of the canalyzed value on line
n — 2. From Lemma 2.8, we may assume that the canalyzed value on line n is also b,,_,. Thus, from Observation 2.14, it
follows that the function remains the same when lines n — 1 and n — 2 are permuted. Thus, we have two choices each
for the canalyzing values on lines n and n — 1 and only one choice for the canalyzed values on these lines. Therefore,
Block r contributes the factor of 4 towards I"(n) in this case.

In summary, when n is odd and > 3, the contributions of the various blocks towards I'(n) are as follows: (a) Block 0
contributes the factor 4n, (b) foreach k, 1 < k < r — 1, Block k contributes the factor 6 (n — 2k + 1)(n — 2k) and (c)
Block r contributes the factor 4. Therefore, for this case,

k=1
= 16x6" 'x[nn—1)(n—-2)...(n—2r+3)n—2r+2)]
= 16 x6"2"T xnn—1)(n—-2)...4-3] (sincen=2r+1)
= (4/3)x 62 xn

r—1
r(n) = 4n><|:l—[6(n—2k+l)(n—2k):|><4

as indicated in the statement of the theorem.

Case4: nisevenand > 4.

Let n = 2r for some integer r > 2. We partition the n-line simplified representation of an NCF into r blocks, numbered 0
through r — 1 as follows: Block 0 consists only of line 1, each of the next r — 2 blocks (numbered 1 through r — 2) consists of
two consecutive lines numbered 2k and 2k + 1, 1 < k < r — 2 and the last block consists of three lines, namely lines n — 2,
n — 1and n. As in Case 3, we evaluate the number of possible choices of rules for each of these blocks in three stages.

(i) Block 0: As in Case 3(i), the number of choices contributed by this block is 4n.
(ii) Block k, where 1 < k < r — 2: Asin Case 3(ii), the number of choices contributed by Block k is 6 (n — 2k + 1)(n — 2k).
(iii) Blockr — 1: This block consists of three lines, namely n — 2,n — 1 and n. Let b,_5, b,_1 and b, denote the respective
canalyzed values. By Lemma 2.8, we may assume that b,_1 = b,. By Theorem 2.9, b,_3 # b,_>. We have two subcases
depending on the values of b,_, and b,_;.

Subcase 4.(iii).1: Linesn — 2 and n — 1 have different canalyzed values (i.e., b,_, % b,_1).

There are three choices for the test variable on line n — 2. There are two choices for the canalyzing value on each
of the three lines in Block r — 1, but only one choice for the canalyzed value on each line (since b,_3 # b,_, and
b,_5 # b,_1). So, this subcase contributes 3 x 23 = 24 choices.

Subcase 4.(iii).2: Linesn — 2 and n — 1 have the same canalyzed value (i.e.,b,_, = b,_1).

Here, since all the three lines have the same canalyzed value, by Observation 2.14, permuting test variables has no
effect on the function. There are two choices for the canalyzing value on each of the three lines in Block r — 1, but only
one choice for the canalyzed value on each line (since by—3 # bn_2 andbn,_2 = by_1). So, this subcase contributes 23
= 8 choices.

Hence, the two subcases together contribute 24 + 8 = 32 choices.

In summary, when n is even and > 4, the contributions of the various blocks towards I"(n) are as follows: (a) Block 0
contributes the factor 4n, (b) for each k, 1 < k <r — 2, Block k contributes the factor 6 (n — 2k + 1)(n — 2k) and (c) Block r
contributes the factor 32. Therefore, for this case,

1 For nonnegative integers p and q, where p > q, we use C(p, q) to denote the Binomial coefficient ( 5) whose value is given by p!/[(p — q)!q!].
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r—2
rn) = 4nx|[][6(m—2k+1)n—2k)]| x32
k=1
= 128x6"2x[nn—1)(n—2)...(n—2r+5)n—2r+4)]
= 128x6MI2x n(n—1)(n—2)...5-4] (sincen = 2r)
= 128 x 6(1/2)=3 x p|
= (16/27) x 6™2 x n\.

This completes the proof of Theorem 2.15. O

3. Concluding remarks

We presented an elementary proof of the conjecture by Li etal.[13,14] that the average sensitivity of any NCFis strictly less
than 4/3. Our approach provides a characterization of NCFs with the largest average sensitivity. The upper bound resulting
from our method exactly matches the one derived in [9] using Fourier analysis of Boolean functions. We also derived an
expression for the number of NCFs with the largest average sensitivity. Our current work [17] focuses on the analysis of
discrete dynamical systems whose local functions are specified as NCFs.
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